DOI QR코드

DOI QR Code

Molecular Targeted Therapy in Modern Oncology: Imaging Assessment of Treatment Response and Toxicities

  • Krajewski, Katherine M. (Department of Imaging, Dana-Farber Cancer Institute) ;
  • Braschi-Amirfarzan, Marta (Department of Imaging, Dana-Farber Cancer Institute) ;
  • DiPiro, Pamela J. (Department of Imaging, Dana-Farber Cancer Institute) ;
  • Jagannathan, Jyothi P. (Department of Imaging, Dana-Farber Cancer Institute) ;
  • Shinagare, Atul B. (Department of Imaging, Dana-Farber Cancer Institute)
  • 투고 : 2016.08.12
  • 심사 : 2016.09.11
  • 발행 : 2017.01.01

초록

Oncology is a rapidly evolving field with a shift toward personalized cancer treatment. The use of therapies targeted to the molecular features of individual tumors and the tumor microenvironment has become much more common. In this review, anti-angiogenic and other molecular targeted therapies are discussed, with a focus on typical and atypical response patterns and imaging manifestations of drug toxicities.

키워드

참고문헌

  1. Mendelsohn J. Personalizing oncology: perspectives and prospects. J Clin Oncol 2013;31:1904-1911 https://doi.org/10.1200/JCO.2012.45.3605
  2. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182-1186 https://doi.org/10.1056/NEJM197111182852108
  3. Lee JC, Chow NH, Wang ST, Huang SM. Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur J Cancer 2000;36:748-753 https://doi.org/10.1016/S0959-8049(00)00003-4
  4. Berger DP, Herbstritt L, Dengler WA, Marme D, Mertelsmann R, Fiebig HH. Vascular endothelial growth factor (VEGF) mRNA expression in human tumor models of different histologies. Ann Oncol 1995;6:817-825 https://doi.org/10.1093/oxfordjournals.annonc.a059322
  5. Krieg M, Haas R, Brauch H, Acker T, Flamme I, Plate KH. Upregulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 2000;19:5435-5443 https://doi.org/10.1038/sj.onc.1203938
  6. Ohta Y, Endo Y, Tanaka M, Shimizu J, Oda M, Hayashi Y, et al. Significance of vascular endothelial growth factor messenger RNA expression in primary lung cancer. Clin Cancer Res 1996;2:1411-1416
  7. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-2342 https://doi.org/10.1056/NEJMoa032691
  8. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355:2542-2550 https://doi.org/10.1056/NEJMoa061884
  9. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, et al. A randomized trial of bevacizumab, an antivascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 2003;349:427-434 https://doi.org/10.1056/NEJMoa021491
  10. Tewari KS, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med 2014;370:734-743 https://doi.org/10.1056/NEJMoa1309748
  11. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 2011;365:2484-2496 https://doi.org/10.1056/NEJMoa1103799
  12. Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 2011;365:2473-2483 https://doi.org/10.1056/NEJMoa1104390
  13. Ciombor KK, Berlin J, Chan E. Aflibercept. Clin Cancer Res 2013;19:1920-1925 https://doi.org/10.1158/1078-0432.CCR-12-2911
  14. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012;30:3499-3506 https://doi.org/10.1200/JCO.2012.42.8201
  15. Tirumani SH, Fairchild A, Krajewski KM, Nishino M, Howard SA, Baheti AD, et al. Anti-VEGF molecular targeted therapies in common solid malignancies: comprehensive update for radiologists. Radiographics 2015;35:455-474 https://doi.org/10.1148/rg.352140119
  16. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-390 https://doi.org/10.1056/NEJMoa0708857
  17. Motzer RJ, Hutson TE, Cella D, Reeves J, Hawkins R, Guo J, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 2013;369:722-731 https://doi.org/10.1056/NEJMoa1303989
  18. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 2007;13:1367-1373 https://doi.org/10.1158/1078-0432.CCR-06-2328
  19. Rehman S, Jayson GC. Molecular imaging of antiangiogenic agents. Oncologist 2005;10:92-103 https://doi.org/10.1634/theoncologist.10-2-92
  20. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000;92:205-216 https://doi.org/10.1093/jnci/92.3.205
  21. Thiam R, Fournier LS, Trinquart L, Medioni J, Chatellier G, Balvay D, et al. Optimizing the size variation threshold for the CT evaluation of response in metastatic renal cell carcinoma treated with sunitinib. Ann Oncol 2010;21:936-941 https://doi.org/10.1093/annonc/mdp466
  22. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002;2:727-739 https://doi.org/10.1038/nrc905
  23. Nishino M, Jagannathan JP, Krajewski KM, O'Regan K, Hatabu H, Shapiro G, et al. Personalized tumor response assessment in the era of molecular medicine: cancer-specific and therapyspecific response criteria to complement pitfalls of RECIST. AJR Am J Roentgenol 2012;198:737-745 https://doi.org/10.2214/AJR.11.7483
  24. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010;28:1963-1972 https://doi.org/10.1200/JCO.2009.26.3541
  25. Chun YS, Vauthey JN, Boonsirikamchai P, Maru DM, Kopetz S, Palavecino M, et al. Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 2009;302:2338-2344 https://doi.org/10.1001/jama.2009.1755
  26. Crabb SJ, Patsios D, Sauerbrei E, Ellis PM, Arnold A, Goss G, et al. Tumor cavitation: impact on objective response evaluation in trials of angiogenesis inhibitors in non-small-cell lung cancer. J Clin Oncol 2009;27:404-410 https://doi.org/10.1200/JCO.2008.16.2545
  27. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010;30:52-60 https://doi.org/10.1055/s-0030-1247132
  28. Arizumi T, Ueshima K, Takeda H, Osaki Y, Takita M, Inoue T, et al. Comparison of systems for assessment of post-therapeutic response to sorafenib for hepatocellular carcinoma. J Gastroenterol 2014;49:1578-1587 https://doi.org/10.1007/s00535-014-0936-0
  29. van der Veldt AA, Meijerink MR, van den Eertwegh AJ, Haanen JB, Boven E. Choi response criteria for early prediction of clinical outcome in patients with metastatic renal cell cancer treated with sunitinib. Br J Cancer 2010;102:803-809 https://doi.org/10.1038/sj.bjc.6605567
  30. Smith AD, Shah SN, Rini BI, Lieber ML, Remer EM. Morphology, attenuation, size, and structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. AJR Am J Roentgenol 2010;194:1470-1478 https://doi.org/10.2214/AJR.09.3456
  31. Krajewski KM, Guo M, Van den Abbeele AD, Yap J, Ramaiya N, Jagannathan J, et al. Comparison of four early posttherapy imaging changes (EPTIC; RECIST 1.0, tumor shrinkage, computed tomography tumor density, Choi criteria) in assessing outcome to vascular endothelial growth factortargeted therapy in patients with advanced renal cell carcinoma. Eur Urol 2011;59:856-862 https://doi.org/10.1016/j.eururo.2011.01.038
  32. Badgwell BD, Camp ER, Feig B, Wolff RA, Eng C, Ellis LM, et al. Management of bevacizumab-associated bowel perforation: a case series and review of the literature. Ann Oncol 2008;19:577-582
  33. Shinagare AB, Howard SA, Krajewski KM, Zukotynski KA, Jagannathan JP, Ramaiya NH. Pneumatosis intestinalis and bowel perforation associated with molecular targeted therapy: an emerging problem and the role of radiologists in its management. AJR Am J Roentgenol 2012;199:1259-1265 https://doi.org/10.2214/AJR.12.8782
  34. Howard SA, Krajewski KM, Thornton E, Jagannathan JP, O'Regan K, Cleary J, et al. Decade of molecular targeted therapy: abdominal manifestations of drug toxicities--what radiologists should know. AJR Am J Roentgenol 2012;199:58-64 https://doi.org/10.2214/AJR.11.7432
  35. Hapani S, Sher A, Chu D, Wu S. Increased risk of serious hemorrhage with bevacizumab in cancer patients: a metaanalysis. Oncology 2010;79:27-38 https://doi.org/10.1159/000314980
  36. Schutz FA, Je Y, Azzi GR, Nguyen PL, Choueiri TK. Bevacizumab increases the risk of arterial ischemia: a large study in cancer patients with a focus on different subgroup outcomes. Ann Oncol 2011;22:1404-1412 https://doi.org/10.1093/annonc/mdq587
  37. Choueiri TK, Schutz FA, Je Y, Rosenberg JE, Bellmunt J. Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. J Clin Oncol 2010;28:2280-2285 https://doi.org/10.1200/JCO.2009.27.2757
  38. Nalluri SR, Chu D, Keresztes R, Zhu X, Wu S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 2008;300:2277-2285 https://doi.org/10.1001/jama.2008.656
  39. Hurwitz HI, Saltz LB, Van Cutsem E, Cassidy J, Wiedemann J, Sirzen F, et al. Venous thromboembolic events with chemotherapy plus bevacizumab: a pooled analysis of patients in randomized phase II and III studies. J Clin Oncol 2011;29:1757-1764 https://doi.org/10.1200/JCO.2010.32.3220
  40. Dienstmann R, Brana I, Rodon J, Tabernero J. Toxicity as a biomarker of efficacy of molecular targeted therapies: focus on EGFR and VEGF inhibiting anticancer drugs. Oncologist 2011;16:1729-1740 https://doi.org/10.1634/theoncologist.2011-0163
  41. Singer S, Grommes C, Reiner AS, Rosenblum MK, DeAngelis LM. Posterior reversible encephalopathy syndrome in patients with cancer. Oncologist 2015;20:806-811 https://doi.org/10.1634/theoncologist.2014-0149
  42. Tirumani S, Baheti A, Nishino M, Krajewski K, Rosenthal M, Ramaiya N. The cancer imaging radiology report template in the era of molecular-targeted therapy (MTT): what should be included in the radiology interpretation and why. Radiological Society of North America 2014 Scientific Assembly and Annual Meeting, Chicago, IL. Web site. http://archive.rsna.org/2014/14009488.html. Accessed June 29, 2016
  43. Shinagare AB, Jagannathan JP, Krajewski KM, Ramaiya NH. Liver metastases in the era of molecular targeted therapy: new faces of treatment response. AJR Am J Roentgenol 2013;201:W15-W28 https://doi.org/10.2214/AJR.12.9498
  44. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008;359:1367-1380 https://doi.org/10.1056/NEJMra0802714
  45. Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J Clin Oncol 2007;25:587-595 https://doi.org/10.1200/JCO.2006.07.3585
  46. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497-1500 https://doi.org/10.1126/science.1099314
  47. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-2139 https://doi.org/10.1056/NEJMoa040938
  48. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004;101:13306-13311 https://doi.org/10.1073/pnas.0405220101
  49. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-smallcell lung cancer. N Engl J Med 2010;363:1693-1703 https://doi.org/10.1056/NEJMoa1006448
  50. Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 2014;370:1189-1197 https://doi.org/10.1056/NEJMoa1311107
  51. Sequist LV, Martins RG, Spigel D, Grunberg SM, Spira A, Janne PA, et al. First-line gefitinib in patients with advanced nonsmall-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol 2008;26:2442-2449 https://doi.org/10.1200/JCO.2007.14.8494
  52. Inoue A, Suzuki T, Fukuhara T, Maemondo M, Kimura Y, Morikawa N, et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-smallcell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 2006;24:3340-3346 https://doi.org/10.1200/JCO.2005.05.4692
  53. Nishino M, Jackman DM, Hatabu H, Janne PA, Johnson BE, Van den Abbeele AD. Imaging of lung cancer in the era of molecular medicine. Acad Radiol 2011;18:424-436 https://doi.org/10.1016/j.acra.2010.10.020
  54. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013;368:2385-2394 https://doi.org/10.1056/NEJMoa1214886
  55. Nishino M, Dahlberg SE, Fulton LE, Digumarthy SR, Hatabu H, Johnson BE, et al. Volumetric tumor response and progression in EGFR-mutant NSCLC patients treated with erlotinib or gefitinib. Acad Radiol 2016;23:329-336 https://doi.org/10.1016/j.acra.2015.11.005
  56. Chaft JE, Oxnard GR, Sima CS, Kris MG, Miller VA, Riely GJ. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin Cancer Res 2011;17:6298-6303 https://doi.org/10.1158/1078-0432.CCR-11-1468
  57. Nishino M, Cardarella S, Dahlberg SE, Jackman DM, Ramaiya NH, Hatabu H, et al. Radiographic assessment and therapeutic decisions at RECIST progression in EGFR-mutant NSCLC treated with EGFR tyrosine kinase inhibitors. Lung Cancer 2013;79:283-288 https://doi.org/10.1016/j.lungcan.2012.11.007
  58. Park K, Yu CJ, Kim SW, Lin MC, Sriuranpong V, Tsai CM, et al. First-line erlotinib therapy until and beyond response evaluation criteria in solid tumors progression in asian patients with epidermal growth factor receptor mutationpositive non-small-cell lung cancer: the ASPIRATION study. JAMA Oncol 2016;2:305-312 https://doi.org/10.1001/jamaoncol.2015.4921
  59. Nishino M, Dahlberg SE, Cardarella S, Jackman DM, Rabin MS, Ramaiya NH, et al. Volumetric tumor growth in advanced nonsmall cell lung cancer patients with EGFR mutations during EGFR-tyrosine kinase inhibitor therapy: developing criteria to continue therapy beyond RECIST progression. Cancer 2013;119:3761-3768 https://doi.org/10.1002/cncr.28290
  60. Yang J, Ramalingam SS, Janne PA, Cantarini M, Mitsudomi T. LBA2_PR: Osimertinib (AZD9291) in pre-treated pts with T790M-positive advanced NSCLC: updated Phase 1 (P1) and pooled Phase 2 (P2) results. J Thorac Oncol 2016;11(4 Suppl):S152-S153
  61. Endo M, Johkoh T, Kimura K, Yamamoto N. Imaging of gefitinib-related interstitial lung disease: multi-institutional analysis by the West Japan Thoracic Oncology Group. Lung Cancer 2006;52:135-140 https://doi.org/10.1016/j.lungcan.2006.02.002
  62. Herbst RS, Prager D, Hermann R, Fehrenbacher L, Johnson BE, Sandler A, et al. TRIBUTE: a phase III trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol 2005;23:5892-5899 https://doi.org/10.1200/JCO.2005.02.840
  63. Howard SA, Rosenthal MH, Jagannathan JP, Krajewski KM, Shinagare AB, Ramaiya NH, et al. Beyond the vascular endothelial growth factor axis: update on role of imaging in nonantiangiogenic molecular targeted therapies in oncology. AJR Am J Roentgenol 2015;204:919-932 https://doi.org/10.2214/AJR.14.12876
  64. Hughes B, Mileshkin L, Townley P, Gitlitz B, Eaton K, Mitchell P, et al. Pertuzumab and erlotinib in patients with relapsed non-small cell lung cancer: a phase II study using 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging. Oncologist 2014;19:175-176 https://doi.org/10.1634/theoncologist.2013-0026
  65. Miller JA, Ford DJ, Ahmed MS, Loree TR. Two cases of pneumatosis intestinalis during cetuximab therapy for advanced head and neck cancer. Case Rep Oncol Med 2015;2015:214236
  66. Lin YT, Wang YF, Yang JC, Yu CJ, Wu SG, Shih JY, et al. Development of renal cysts after crizotinib treatment in advanced ALK-positive non-small-cell lung cancer. J Thorac Oncol 2014;9:1720-1725 https://doi.org/10.1097/JTO.0000000000000326
  67. Weickhardt AJ, Rothman MS, Salian-Mehta S, Kiseljak-Vassiliades K, Oton AB, Doebele RC, et al. Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer 2012;118:5302-5309 https://doi.org/10.1002/cncr.27450
  68. Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin Oncol 2009;36 Suppl 3:S3-S17 https://doi.org/10.1053/j.seminoncol.2009.10.011
  69. Shinagare AB, Krajewski KM, Jagannathan JP, Ramaiya NH. Genitourinary imaging: part 2, role of imaging in medical management of advanced renal cell carcinoma. AJR Am J Roentgenol 2012;199:W554-W564 https://doi.org/10.2214/AJR.12.9233
  70. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007;356:2271-2281 https://doi.org/10.1056/NEJMoa066838
  71. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 2008;372:449-456 https://doi.org/10.1016/S0140-6736(08)61039-9
  72. Ghobrial IM, Gertz M, Laplant B, Camoriano J, Hayman S, Lacy M, et al. Phase II trial of the oral mammalian target of rapamycin inhibitor everolimus in relapsed or refractory Waldenstrom macroglobulinemia. J Clin Oncol 2010;28:1408-1414 https://doi.org/10.1200/JCO.2009.24.0994
  73. Oudard S, Thiam R, Fournier LS, Medioni J, Lamuraglia M, Scotte F, et al. Optimisation of the tumour response threshold in patients treated with everolimus for metastatic renal cell carcinoma: analysis of response and progression-free survival in the RECORD-1 study. Eur J Cancer 2012;48:1512-1518 https://doi.org/10.1016/j.ejca.2012.01.027
  74. Krajewski KM, Nishino M, Franchetti Y, Ramaiya NH, Van den Abbeele AD, Choueiri TK. Intraobserver and interobserver variability in computed tomography size and attenuation measurements in patients with renal cell carcinoma receiving antiangiogenic therapy: implications for alternative response criteria. Cancer 2014;120:711-721 https://doi.org/10.1002/cncr.28493
  75. Lamuraglia M, Raslan S, Elaidi R, Oudard S, Escudier B, Slimane K, et al. mTOR-inhibitor treatment of metastatic renal cell carcinoma: contribution of Choi and modified Choi criteria assessed in 2D or 3D to evaluate tumor response. Eur Radiol 2016;26:278-285 https://doi.org/10.1007/s00330-015-3828-7
  76. Maroto JP, Hudes G, Dutcher JP, Logan TF, White CS, Krygowski M, et al. Drug-related pneumonitis in patients with advanced renal cell carcinoma treated with temsirolimus. J Clin Oncol 2011;29:1750-1756 https://doi.org/10.1200/JCO.2010.29.2235
  77. Dabydeen DA, Jagannathan JP, Ramaiya N, Krajewski K, Schutz FA, Cho DC, et al. Pneumonitis associated with mTOR inhibitors therapy in patients with metastatic renal cell carcinoma: incidence, radiographic findings and correlation with clinical outcome. Eur J Cancer 2012;48:1519-1524 https://doi.org/10.1016/j.ejca.2012.03.012
  78. Atkinson BJ, Cauley DH, Ng C, Millikan RE, Xiao L, Corn P, et al. mTOR inhibitor associated noninfectious pneumonitis in patients with renal cell cancer: management, predictors, and outcomes. BJU Int 2014;113:376-382 https://doi.org/10.1111/bju.12420
  79. Nishino M, Boswell EN, Hatabu H, Ghobrial IM, Ramaiya NH. Drug-related pneumonitis during mammalian target of rapamycin inhibitor therapy: radiographic pattern-based approach in Waldenstrom macroglobulinemia as a paradigm. Oncologist 2015;20:1077-1083 https://doi.org/10.1634/theoncologist.2015-0033
  80. Nishino M, Brais LK, Brooks NV, Hatabu H, Kulke MH, Ramaiya NH. Drug-related pneumonitis during mammalian target of rapamycin inhibitor therapy in patients with neuroendocrine tumors: a radiographic pattern-based approach. Eur J Cancer 2016;53:163-170 https://doi.org/10.1016/j.ejca.2015.10.015
  81. Tirumani SH, Krajewski KM, Shinagare AB, Jagannathan JP, Ramaiya NH. Gallbladder complications associated with molecular targeted therapies: clinical and imaging features. Clin Imaging 2014;38:50-55 https://doi.org/10.1016/j.clinimag.2013.08.012
  82. Tirumani SH, Jagannathan JP, Shinagare AB, Kim KW, Krajewski KM, Ramaiya NH. Acute pancreatitis associated with molecular targeted therapies: a retrospective review of the clinico-radiological features, management and outcome. Pancreatology 2013;13:461-467 https://doi.org/10.1016/j.pan.2013.08.001
  83. Parithivel K, Ramaiya N, Jagannathan JP, O'Regan K, Krajewski K, Fisher D, et al. Everolimus- and temsirolimusassociated enteritis: report of three cases. J Clin Oncol 2011;29:e404-e406 https://doi.org/10.1200/JCO.2010.33.5984
  84. National Clinical Practice Guidelines in Oncology (NCCN guidelines): Breast cancer-version 3. 2015. Web site. http://www.consensocancermamario.com/guias/NCCN_2015.pdf. Accessed November 29, 2016
  85. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as firstline treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol 2015;16:25-35 https://doi.org/10.1016/S1470-2045(14)71159-3
  86. Cristofanilli M, Turner NC, Bondarenko I, Ro J, Im SA, Masuda N, et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol 2016;17:425-439 https://doi.org/10.1016/S1470-2045(15)00613-0
  87. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormonereceptor-positive advanced breast cancer. N Engl J Med 2012;366:520-529 https://doi.org/10.1056/NEJMoa1109653
  88. Cooley C, Nishino M, Jagannathan J, Ramaiya N, Di Salvo D, Krajewski KM. Clinical problem solving: utility of sonography in oncologic patients. J Ultrasound Med 2014;33:9-22 https://doi.org/10.7863/ultra.33.1.9
  89. Hadji P, Aapro MS, Body JJ, Bundred NJ, Brufsky A, Coleman RE, et al. Management of aromatase inhibitor-associated bone loss in postmenopausal women with breast cancer: practical guidance for prevention and treatment. Ann Oncol 2011;22:2546-2555 https://doi.org/10.1093/annonc/mdr017
  90. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D, et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized antip185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998;16:2659-2671 https://doi.org/10.1200/JCO.1998.16.8.2659
  91. Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 2012;366:109-119 https://doi.org/10.1056/NEJMoa1113216
  92. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006;355:2733-2743 https://doi.org/10.1056/NEJMoa064320
  93. Lin NU, Dieras V, Paul D, Lossignol D, Christodoulou C, Stemmler HJ, et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 2009;15:1452-1459 https://doi.org/10.1158/1078-0432.CCR-08-1080
  94. Krop IE, LoRusso P, Miller KD, Modi S, Yardley D, Rodriguez G, et al. A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J Clin Oncol 2012;30:3234-3241 https://doi.org/10.1200/JCO.2011.40.5902

피인용 문헌

  1. Correlation Between HER-2 Gene Amplification or Protein Expression and Clinical Pathological Features of Breast Cancer vol.34, pp.1, 2017, https://doi.org/10.1089/cbr.2018.2576
  2. Solitary Nodular Invasive Mucinous Adenocarcinoma of the Lung: Imaging Diagnosis Using the Morphologic-Metabolic Dissociation Sign vol.20, pp.3, 2017, https://doi.org/10.3348/kjr.2018.0409
  3. Comparison of the Response Evaluation Criteria in Solid Tumors with Volumetric Measurement for Evaluation of Response and Overall Survival with Liver Metastases from Colorectal Cancer vol.80, pp.5, 2017, https://doi.org/10.3348/jksr.2019.80.5.906
  4. Tumour-bowel fistula as a possible complication of pazopanib therapy in retroperitoneal leiomyosarcoma vol.12, pp.11, 2017, https://doi.org/10.1136/bcr-2019-230727
  5. Integrin beta 4 (ITGB4) and its tyrosine-1510 phosphorylation promote pancreatic tumorigenesis and regulate the MEK1-ERK1/2 signaling pathway vol.20, pp.1, 2020, https://doi.org/10.17305/bjbms.2019.4255
  6. The promise of single-cell mechanophenotyping for clinical applications vol.14, pp.3, 2020, https://doi.org/10.1063/5.0010800
  7. Decoding the Genomic Report for Radiologists vol.214, pp.5, 2017, https://doi.org/10.2214/ajr.19.21677
  8. A Review of the Mechanisms and Clinical Implications of Precision Cancer Therapy-Related Toxicity: A Primer for the Radiologist vol.215, pp.3, 2020, https://doi.org/10.2214/ajr.20.22837
  9. Radiological assessment of response and adverse events associated with novel systemic oncological therapies vol.76, pp.4, 2017, https://doi.org/10.1016/j.crad.2020.10.018