DOI QR코드

DOI QR Code

Evolving Cancer Classification in the Era of Personalized Medicine: A Primer for Radiologists

  • O'Neill, Ailbhe C. (Department of Imaging, Dana-Farber Cancer Institute) ;
  • Jagannathan, Jyothi P. (Department of Imaging, Dana-Farber Cancer Institute) ;
  • Ramaiya, Nikhil H. (Department of Imaging, Dana-Farber Cancer Institute)
  • Received : 2016.06.26
  • Accepted : 2016.08.26
  • Published : 2017.01.01

Abstract

Traditionally tumors were classified based on anatomic location but now specific genetic mutations in cancers are leading to treatment of tumors with molecular targeted therapies. This has led to a paradigm shift in the classification and treatment of cancer. Tumors treated with molecular targeted therapies often show morphological changes rather than change in size and are associated with class specific and drug specific toxicities, different from those encountered with conventional chemotherapeutic agents. It is important for the radiologists to be familiar with the new cancer classification and the various treatment strategies employed, in order to effectively communicate and participate in the multi-disciplinary care. In this paper we will focus on lung cancer as a prototype of the new molecular classification.

Keywords

References

  1. Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC. Pathology and Genetics: Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC, 2004
  2. Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba II, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol 2015;10:768-777 https://doi.org/10.1097/JTO.0000000000000516
  3. Ha SY, Choi SJ, Cho JH, Choi HJ, Lee J, Jung K, et al. Lung cancer in never-smoker asian females is driven by oncogenic mutations, most often involving EGFR. Oncotarget 2015;6:5465-5474
  4. Hsu KH, Ho CC, Hsia TC, Tseng JS, Su KY, Wu MF, et al. Identification of five driver gene mutations in patients with treatment-naive lung adenocarcinoma in Taiwan. PLoS One 2015;10:e0120852 https://doi.org/10.1371/journal.pone.0120852
  5. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 2015;10:1243-1260 https://doi.org/10.1097/JTO.0000000000000630
  6. Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 2002;110:669-672 https://doi.org/10.1016/S0092-8674(02)00966-2
  7. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002;2:489-501 https://doi.org/10.1038/nrc839
  8. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19:183-232 https://doi.org/10.1016/1040-8428(94)00144-I
  9. Mologni L. Inhibitors of the anaplastic lymphoma kinase. Expert Opin Investig Drugs 2012;21:985-994 https://doi.org/10.1517/13543784.2012.690031
  10. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007;448:561-566 https://doi.org/10.1038/nature05945
  11. Mologni L. Current and future treatment of anaplastic lymphoma kinase-rearranged cancer. World J Clin Oncol 2015;6:104-108 https://doi.org/10.5306/wjco.v6.i5.104
  12. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004;101:13306-13311 https://doi.org/10.1073/pnas.0405220101
  13. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339-346 https://doi.org/10.1093/jnci/dji055
  14. Hasegawa M, Sakai F, Ishikawa R, Kimura F, Ishida H, Kobayashi K. CT Features of epidermal growth factor receptormutated adenocarcinoma of the lung: comparison with nonmutated adenocarcinoma. J Thorac Oncol 2016;11:819-826 https://doi.org/10.1016/j.jtho.2016.02.010
  15. Liu Y, Kim J, Qu F, Liu S, Wang H, Balagurunathan Y, et al. CT features associated with epidermal growth factor receptor mutation status in patients with lung adenocarcinoma. Radiology 2016;280:271-280 https://doi.org/10.1148/radiol.2016151455
  16. Sordella R, Bell DW, Haber DA, Settleman J. Gefitinibsensitizing EGFR mutations in lung cancer activate antiapoptotic pathways. Science 2004;305:1163-1167 https://doi.org/10.1126/science.1101637
  17. Tracy S, Mukohara T, Hansen M, Meyerson M, Johnson BE, Janne PA. Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res 2004;64:7241-7244 https://doi.org/10.1158/0008-5472.CAN-04-1905
  18. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007;7:169-181 https://doi.org/10.1038/nrc2088
  19. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, openlabel, randomised, phase 3 study. Lancet Oncol 2011;12:735-742 https://doi.org/10.1016/S1470-2045(11)70184-X
  20. Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFRmutant lung cancers. Clin Cancer Res 2013;19:2240-2247 https://doi.org/10.1158/1078-0432.CCR-12-2246
  21. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007;316:1039-1043 https://doi.org/10.1126/science.1141478
  22. Riely GJ, Kris MG, Zhao B, Akhurst T, Milton DT, Moore E, et al. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin Cancer Res 2007;13:5150-5155 https://doi.org/10.1158/1078-0432.CCR-07-0560
  23. Chaft JE, Oxnard GR, Sima CS, Kris MG, Miller VA, Riely GJ. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin Cancer Res 2011;17:6298-6303 https://doi.org/10.1158/1078-0432.CCR-11-1468
  24. Hughes B, Mileshkin L, Townley P, Gitlitz B, Eaton K, Mitchell P, et al. Pertuzumab and erlotinib in patients with relapsed non-small cell lung cancer: a phase II study using 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging. Oncologist 2014;19:175-176 https://doi.org/10.1634/theoncologist.2013-0026
  25. Howard SA, Rosenthal MH, Jagannathan JP, Krajewski KM, Shinagare AB, Ramaiya NH, et al. Beyond the vascular endothelial growth factor axis: update on role of imaging in nonantiangiogenic molecular targeted therapies in oncology. AJR Am J Roentgenol 2015;204:919-932 https://doi.org/10.2214/AJR.14.12876
  26. Thornton E, Howard SA, Jagannathan J, Krajewski KM, Shinagare AB, O'Regan K, et al. Imaging features of bowel toxicities in the setting of molecular targeted therapies in cancer patients. Br J Radiol 2012;85:1420-1426 https://doi.org/10.1259/bjr/19815818
  27. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 2009;27:4247-4253 https://doi.org/10.1200/JCO.2009.22.6993
  28. Yamamoto S, Korn RL, Oklu R, Migdal C, Gotway MB, Weiss GJ, et al. ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology 2014;272:568-576 https://doi.org/10.1148/radiol.14140789
  29. Ou SH, Bartlett CH, Mino-Kenudson M, Cui J, Iafrate AJ. Crizotinib for the treatment of ALK-rearranged non-small cell lung cancer: a success story to usher in the second decade of molecular targeted therapy in oncology. Oncologist 2012;17:1351-1375 https://doi.org/10.1634/theoncologist.2012-0311
  30. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013;368:2385-2394 https://doi.org/10.1056/NEJMoa1214886
  31. Ou SH, Bazhenova L, Camidge DR, Solomon BJ, Herman J, Kain T, et al. Rapid and dramatic radiographic and clinical response to an ALK inhibitor (crizotinib, PF02341066) in an ALK translocation-positive patient with non-small cell lung cancer. J Thorac Oncol 2010;5:2044-2046 https://doi.org/10.1097/JTO.0b013e318200f9ff
  32. Nishino M, Hatabu H, Johnson BE, McLoud TC. State of the art: response assessment in lung cancer in the era of genomic medicine. Radiology 2014;271:6-27 https://doi.org/10.1148/radiol.14122524
  33. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010;363:1734-1739 https://doi.org/10.1056/NEJMoa1007478
  34. Costa DB, Shaw AT, Ou SH, Solomon BJ, Riely GJ, Ahn MJ, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol 2015;33:1881-1888 https://doi.org/10.1200/JCO.2014.59.0539
  35. Kinoshita K, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, et al. Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg Med Chem 2012;20:1271-1280 https://doi.org/10.1016/j.bmc.2011.12.021
  36. Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinibresistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol 2014;15:1119-1128 https://doi.org/10.1016/S1470-2045(14)70362-6
  37. Schnell P, Bartlett CH, Solomon BJ, Tassell V, Shaw AT, de Pas T, et al. Complex renal cysts associated with crizotinib treatment. Cancer Med 2015;4:887-896 https://doi.org/10.1002/cam4.437
  38. Weickhardt AJ, Rothman MS, Salian-Mehta S, Kiseljak-Vassiliades K, Oton AB, Doebele RC, et al. Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer 2012;118:5302-5309 https://doi.org/10.1002/cncr.27450
  39. Cadoo KA, Fornier MN, Morris PG. Biological subtypes of breast cancer: current concepts and implications for recurrence patterns. Q J Nucl Med Mol Imaging 2013;57:312-321
  40. Morrow M. Personalizing extent of breast cancer surgery according to molecular subtypes. Breast 2013;22 Suppl 2:S106-S109 https://doi.org/10.1016/j.breast.2013.07.020
  41. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol 2010;28:3271-3277 https://doi.org/10.1200/JCO.2009.25.9820
  42. Bria E, Cuppone F, Fornier M, Nistico C, Carlini P, Milella M, et al. Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: the dark side of the moon? A meta-analysis of the randomized trials. Breast Cancer Res Treat 2008;109:231-239 https://doi.org/10.1007/s10549-007-9663-z
  43. Ang KK, Berkey BA, Tu X, Zhang HZ, Katz R, Hammond EH, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 2002;62:7350-7356
  44. Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res 2015;21:632-641 https://doi.org/10.1158/1078-0432.CCR-13-3310
  45. Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximabinduced rash and survival. Lancet Oncol 2010;11:21-28 https://doi.org/10.1016/S1470-2045(09)70311-0
  46. Yazdi MH, Faramarzi MA, Nikfar S, Abdollahi M. A comprehensive review of clinical trials on EGFR inhibitors such as cetuximab and panitumumab as monotherapy and in combination for treatment of metastatic colorectal cancer. Avicenna J Med Biotechnol 2015;7:134-144
  47. Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004;22:1201-1218 https://doi.org/10.1200/JCO.2004.10.182
  48. Dong F, Kojiro S, Borger DR, Growdon WB, Oliva E. Squamous cell carcinoma of the vulva: a subclassification of 97 cases by clinicopathologic, immunohistochemical, and molecular features (p16, p53, and EGFR). Am J Surg Pathol 2015;39:1045-1053 https://doi.org/10.1097/PAS.0000000000000454
  49. Santos M, Landolfi S, Olivella A, Lloveras B, Klaustermeier J, Suarez H, et al. p16 overexpression identifies HPVpositive vulvar squamous cell carcinomas. Am J Surg Pathol 2006;30:1347-1356 https://doi.org/10.1097/01.pas.0000213251.82940.bf
  50. Scheistroen M, Trope C, Pettersen EO, Nesland JM. p53 protein expression in squamous cell carcinoma of the vulva. Cancer 1999;85:1133-1138 https://doi.org/10.1002/(SICI)1097-0142(19990301)85:5<1133::AID-CNCR17>3.0.CO;2-T
  51. Growdon WB, Boisvert SL, Akhavanfard S, Oliva E, Dias-Santagata DC, Kojiro S, et al. Decreased survival in EGFR gene amplified vulvar carcinoma. Gynecol Oncol 2008;111:289-297 https://doi.org/10.1016/j.ygyno.2008.07.038
  52. Johnson GA, Mannel R, Khalifa M, Walker JL, Wren M, Min KW, et al. Epidermal growth factor receptor in vulvar malignancies and its relationship to metastasis and patient survival. Gynecol Oncol 1997;65:425-429 https://doi.org/10.1006/gyno.1997.4660
  53. Horowitz NS, Olawaiye AB, Borger DR, Growdon WB, Krasner CN, Matulonis UA, et al. Phase II trial of erlotinib in women with squamous cell carcinoma of the vulva. Gynecol Oncol 2012;127:141-146 https://doi.org/10.1016/j.ygyno.2012.06.028
  54. Brugieres L, Pacquement H, Le Deley MC, Leverger G, Lutz P, Paillard C, et al. Single-drug vinblastine as salvage treatment for refractory or relapsed anaplastic large-cell lymphoma: a report from the French Society of Pediatric Oncology. J Clin Oncol 2009;27:5056-5061 https://doi.org/10.1200/JCO.2008.20.1764
  55. Sibon D, Fournier M, Briere J, Lamant L, Haioun C, Coiffier B, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d'Etude des Lymphomes de l'Adulte trials. J Clin Oncol 2012;30:3939-3946 https://doi.org/10.1200/JCO.2012.42.2345
  56. Mosse YP, Lim MS, Voss SD, Wilner K, Ruffner K, Laliberte J, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children's Oncology Group phase 1 consortium study. Lancet Oncol 2013;14:472-480 https://doi.org/10.1016/S1470-2045(13)70095-0
  57. Coffin CM, Watterson J, Priest JR, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 1995;19:859-872 https://doi.org/10.1097/00000478-199508000-00001
  58. Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol 2007;31:509-520 https://doi.org/10.1097/01.pas.0000213393.57322.c7
  59. Antonescu CR, Suurmeijer AJ, Zhang L, Sung YS, Jungbluth AA, Travis WD, et al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am J Surg Pathol 2015;39:957-967 https://doi.org/10.1097/PAS.0000000000000404
  60. Chan JK, Cheuk W, Shimizu M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol 2001;25:761-768 https://doi.org/10.1097/00000478-200106000-00007
  61. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet 2013;45:279-284 https://doi.org/10.1038/ng.2529
  62. Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 2008;455:930-935 https://doi.org/10.1038/nature07261
  63. De Brouwer S, De Preter K, Kumps C, Zabrocki P, Porcu M, Westerhout EM, et al. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin Cancer Res 2010;16:4353-4362 https://doi.org/10.1158/1078-0432.CCR-09-2660

Cited by

  1. Baicalein inhibits tumor progression by inhibiting tumor cell growth and tumor angiogenesis vol.38, pp.5, 2017, https://doi.org/10.3892/or.2017.6007
  2. ASK1 (MAP3K5) is transcriptionally upregulated by E2F1 in adipose tissue in obesity, molecularly defining a human dys-metabolic obese phenotype vol.6, pp.7, 2017, https://doi.org/10.1016/j.molmet.2017.05.003
  3. Prognostic Impact of Longitudinal Monitoring of Radiomic Features in Patients with Advanced Non-Small Cell Lung Cancer vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-45117-y
  4. A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
  5. Solitary Nodular Invasive Mucinous Adenocarcinoma of the Lung: Imaging Diagnosis Using the Morphologic-Metabolic Dissociation Sign vol.20, pp.3, 2017, https://doi.org/10.3348/kjr.2018.0409
  6. A Radiologist's Guide to the Changing Treatment Paradigm of Advanced Non-Small Cell Lung Cancer: The ASCO 2018 Molecular Testing Guidelines and Targeted Therapies vol.213, pp.5, 2017, https://doi.org/10.2214/ajr.19.21135