DOI QR코드

DOI QR Code

Reserpine treatment activates AMP activated protein kinase (AMPK)

  • Park, Rackhyun (Division of Biological Science and Technology, Yonsei University) ;
  • Lee, Kang Il (Division of Biological Science and Technology, Yonsei University) ;
  • Kim, Hyunju (Division of Biological Science and Technology, Yonsei University) ;
  • Jang, Minsu (Division of Biological Science and Technology, Yonsei University) ;
  • Ha, Thi Kim Quy (Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University) ;
  • Oh, Won Keun (Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University) ;
  • Park, Junsoo (Division of Biological Science and Technology, Yonsei University)
  • Received : 2017.01.18
  • Accepted : 2017.05.04
  • Published : 2017.09.29

Abstract

Reserpine is a well-known medicine for the treatment of hypertension, however the role of reserpine in cell signaling is not fully understood. Here, we report that reserpine treatment induces the phosphorylation of AMP activated protein kinase (AMPK) at threonine 172 (T172) in PC12 cells. Phosphorylation of AMPK T172 is regulated by upstream signaling molecules, and the increase of phospho-T172 indicates that AMPK is activated. When we examined the FOXO3a dependent transcription by using the FHRE-Luc reporter assay, reserpine treatment repressed the FHRE-Luc reporter activity in a dose dependent manner. Finally, we showed that reserpine treatment induced the phosphorylation of AMPK as well as cell death in MCF-7 cells. These results suggest that AMPK is a potential cellular target of reserpine.

Keywords

References

  1. Hardie, D. G.; Schaffer, B. E.; Brunet, A. Trends Cell Biol. 2016, 26, 190-201. https://doi.org/10.1016/j.tcb.2015.10.013
  2. Shaw, R. J.; Kosmatka, M.; Bardeesy, N.; Hurley, R. L.; Witters, L. A.; DePinho, R. A.; Cantley, L. C. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 3329-3335. https://doi.org/10.1073/pnas.0308061100
  3. Hardie, D. G.; Scott, J. W.; Pan, D. A.; Hudson, E. R. FEBS Lett. 2003, 546, 113-120. https://doi.org/10.1016/S0014-5793(03)00560-X
  4. Kemp, B. E.; Mitchelhill, K. I.; Stapleton, D.; Michell, B. J.; Chen, Z. P.; Witters, L. A. Trends Biochem. Sci. 1999, 24, 22-25. https://doi.org/10.1016/S0968-0004(98)01340-1
  5. Adams, J.; Chen, Z. P.; Van Denderen, B. J.; Morton, C. J.; Parker, M. W.; Witters, L. A.; Stapleton, D.; Kemp, B. E. Protein Sci. 2004, 13, 155-165. https://doi.org/10.1110/ps.03340004
  6. Woods, A.; Vertommen, D.; Neumann, D.; Turk, R.; Bayliss, J.; Schlattner, U.; Wallimann, T.; Carling, D.; Rider, M. H. J. Biol. Chem. 2003, 278, 28434-28442. https://doi.org/10.1074/jbc.M303946200
  7. Li, N.; Huang, D.; Lu, N.; Luo, L. Oncol. Rep. 2015, 34, 2821-2826. https://doi.org/10.3892/or.2015.4288
  8. Ben Sahra, I.; Laurent, K.; Loubat, A.; Giorgetti-Peraldi, S.; Colosetti, P.; Auberger, P.; Tanti, J. F.; Le Marchand-Brustel, Y.; Bost, F. Oncogene 2008, 27, 3576-3586. https://doi.org/10.1038/sj.onc.1211024
  9. Ben Sahra, I.; Le Marchand-Brustel, Y.; Tanti, J. F.; Bost, F. Mol. Cancer Ther. 2010, 9, 1092-1099. https://doi.org/10.1158/1535-7163.MCT-09-1186
  10. Plummer, A. J.; Earl, A.; Schneider, J. A.; Trapold, J.; Barrett, W. Ann. N Y Acad. Sci. 1954, 59, 8-21. https://doi.org/10.1111/j.1749-6632.1954.tb45914.x
  11. Lopez-Munoz, F.; Bhatara, V. S.; Alamo, C.; Cuenca, E. Actas Esp. Psiquiatr. 2004, 32, 387-395.
  12. Guo, Z.; Liu, X.; Huang, H. PLoS One 2015, 10, e0138619. https://doi.org/10.1371/journal.pone.0138619
  13. Eiden, L. E.; Weihe, E. Ann. N Y Acad. Sci. 2011, 1216, 86-98. https://doi.org/10.1111/j.1749-6632.2010.05906.x
  14. Leao, A. H.; Sarmento-Silva, A. J.; Santos, J. R.; Ribeiro, A. M.; Silva, R. H. Brain Pathol. 2015, 25, 377-390. https://doi.org/10.1111/bpa.12253
  15. Fernandes, V. S.; Santos, J. R.; Leao, A. H.; Medeiros, A. M.; Melo, T. G.; Izídio, G. S.; Cabral, A.; Ribeiro, R. A.; Abilio, V. C.; Ribeiro, A. M.; Silva, R. H. Behav Brain Res 2012, 231, 154-163. https://doi.org/10.1016/j.bbr.2012.03.008
  16. Lee, K. I.; Kim, M. J.; Koh, H.; Lee, J. I.; Namkoong, S.; Oh, W. K.; Park, J. Biochem. Biophys. Res. Commun. 2015, 462, 402-408. https://doi.org/10.1016/j.bbrc.2015.04.145
  17. Brunet, A.; Bonni, A.; Zigmond, M. J.; Lin, M. Z.; Juo, P.; Hu, L. S.; Anderson, M. J.; Arden, K. C.; Blenis, J.; Greenberg, M. E. Cell 1999, 96, 857-868. https://doi.org/10.1016/S0092-8674(00)80595-4
  18. Takayama, H.; Misu, H.; Iwama, H.; Chikamoto, K.; Saito, Y.; Murao, K.; Teraguchi, A.; Lan, F.; Kikuchi, A.; Saito, R.; Tajima, N.; Shirasaki, T.; Matsugo, S.; Miyamoto, K.; Kaneko, S.; Takamura, T. J. Biol. Chem. 2014, 289, 335-345. https://doi.org/10.1074/jbc.M113.479386
  19. Takayama, H.; Misu, H.; Iwama, H.; Chikamoto, K.; Raynaud, S.; Auberger, P. Cancer Res. 2010, 70, 1042-1052. https://doi.org/10.1158/0008-5472.CAN-09-3537

Cited by

  1. Fridamycin A, a Microbial Natural Product, Stimulates Glucose Uptake without Inducing Adipogenesis vol.11, pp.4, 2017, https://doi.org/10.3390/nu11040765
  2. Hypoxylonol F Isolated from Annulohypoxylon annulatum Improves Insulin Secretion by Regulating Pancreatic β-cell Metabolism vol.9, pp.8, 2017, https://doi.org/10.3390/biom9080335
  3. Electro-Acupuncture Alleviates Cisplatin-Induced Anorexia in Rats by Modulating Ghrelin and Monoamine Neurotransmitters vol.9, pp.10, 2017, https://doi.org/10.3390/biom9100624
  4. Piceatannol promotes hepatic and renal AMPK/SIRT1/PGC-1α mitochondrial pathway in rats exposed to reserpine or gamma-radiation vol.35, pp.None, 2021, https://doi.org/10.1177/20587384211016194