DOI QR코드

DOI QR Code

기후학적 평년 표준편차 분포도의 상세화

Estimation of Climatological Standard Deviation Distribution

  • Kim, Jin-Hee (National Center for Agro-Meteorology, Seoul National University) ;
  • Kim, Soo-ock (National Center for Agro-Meteorology, Seoul National University) ;
  • Kim, Dae-jun (National Center for Agro-Meteorology, Seoul National University)
  • 투고 : 2017.09.09
  • 심사 : 2017.09.21
  • 발행 : 2017.09.30

초록

2011-2015년까지 경남 하동군 악양 집수역의 해발고도 8~1,073m 범위에 설치된 10개 무인기상관측기에서 0600, 1500 기온 관측값을 수집하여 월별 표준편차를 계산하고, 소기후모형으로부터 예측된 기온의 표준편차 결과를 함께 비교하여 미관측 지점의 추정기술에 실효성이 있는지 평가하였다. 소기후모형에 따른 예측값은 월별 0600, 1500 기온의 표준편차를 각각 88%, 86% 정도 설명할 수 있었지만, 전반적으로 과소추정하는 경향이었다. 겨울철과 여름철에 나타나는 낮은 고도 대비 해발고도가 높아질수록 변이가 작아지거나 커지는 방향성에 있어서 관측값과는 반대양상으로 나타나 당초 기대와는 다른 결과를 보였다. 또 다른방법으로 월별 기온 표준편차와 지형간의 관계를 정량화하여 임의지역의 지형특성과 종관규모 수준의 기온자료 만으로 표준편차 분포를 예측할 수 있을지 회귀분석을 수행하였다. 회귀모형은 해발고도편차에 따라 보정된 월별 기온 외에, 경사도와 경사향 등 기본적인 지형인자와 온난대효과와 냉기집적효과, 개방도 등의 기온과 관련된 변수들을 고려하여 월별로 표준편차를 가장 잘 설명할 수 있는 변수를 1~3개까지 선발하여 만들어졌으며, 월별 결정계수는 0.46부터 0.98 범위로 나타났다. 회귀모델을 이용해 기온이 관측되지 않는 임의지역의 표준편차를 지형변수의 최소-최대값 유효범위 내에서 월별로 예측한다면 70% 수준의 추정능력으로 공간변이 분포도를 나타낼 수 있을 것으로 예상된다.

The distribution of inter-annual variation in temperature would help evaluate the likelihood of a climatic risk and assess suitable zones of crops under climate change. In this study, we evaluated two methods to estimate the standard deviation of temperature in the areas where weather information is limited. We calculated the monthly standard deviation of temperature by collecting temperature at 0600 and 1500 local standard time from 10 automated weather stations (AWS). These weather stations were installed in the range of 8 to 1,073m above sea level within a mountainous catchment for 2011-2015. The observed values were compared with estimates, which were calculated using a geospatial correction scheme to derive the site-specific temperature. Those estimates explained 88 and 86% of the temperature variations at 0600 and 1500 LST, respectively. However, it often underestimated the temperatures. In the spring and fall, it tended to had different variance (e.g., increasing or decreasing pattern) from lower to higher elevation with the observed values. A regression analysis was also conducted to quantify the relationship between the standard deviation in temperature and the topography. The regression equation explained a relatively large variation of the monthly standard deviation when lapse-rate corrected temperature, basic topographical variables (e.g., slope, and aspect) and topographical variables related to temperature (e.g., thermal belt, cold air drainage, and brightness index) were used. The coefficient of determination for the regression analysis ranged between 0.46 and 0.98. It was expected that the regression model could account for 70% of the spatial variation of the standard deviation when the monthly standard deviation was predicted by using the minimum-maximum effective range of topographical variables for the area.

키워드

참고문헌

  1. Jung, J. E., U. Chung, J. I. Yun, and D. K. Choi, 2004: The observed change in interannual variations of January minimum temperature between 1951-1980 and 1971-2000 in South Korea. Korean Journal of Agricultural and Forest Meteorology 6(4), 235-241. (in Korean with English abstract)
  2. Kim, S. O., and J. I. Yun, 2011: A quantification method for the cold pool effect on nocturnal temperature in a closed catchment. Korean Journal of Agricultural and Forest Meteorology 13(4), 176-184. (in Korean with English abstract) doi: 10.5532/KJAFM.2011.13.4.176
  3. Kim, S. O., and J. I. Yun, 2013: Distribution of midday air temperature and the solar irradiance over sloping surfaces under cloudless condition. Korean Journal of Agricultural and Forest Meteorology 15(4), 291-297. (in Korean with English abstract) doi:10.5532/KJAFM.2013.15.4.291
  4. Kim S. O., and J. I. Yun, 2014: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: III. Correction for advection effect on determination of daily maximum temperature over sloped surfaces. Korean Journal of Agricultural and Forest Meteorology 16(4), 297-303. (in Korean with English abstract) doi: 10.5532/KJAFM.2014.16.4.297
  5. KMA, 2011: Climatological Normals of Korea 1981-2010. Korea Meteorological Administration, 1-678pp.
  6. Yun, J. I., 2004: Visualization of local climates based on geospatial climatology. Korean Journal of Agricultural and Forest Meteorology 6(4), 272-289. (in Korean with English abstract)
  7. Yun, J. I., 2007: Applications of "high definition digital climate maps" in restructuring of Korean agriculture. Korean Journal of Agricultural and Forest Meteorology 9(1), 1-16. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2007.9.1.001
  8. Yun, J. I., S. O. Kim, J. H. Kim, and D. J. Kim, 2013: User- specific agrometeorological service to local farming community: A case study. Korean Journal of Agricultural and Forest Meteorology 15, 320-331. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.4.320
  9. Yun, J. I., 2014: Agrometeorological early warning system: a service infrastructure for climate-smart agriculture. Korean Journal of Agricultural and Forest Meteorology 16(4), 403-417. (in Korean with English abstract) doi: 10.5532/KJAFM.2014.16.4.403
  10. 최영은, 정재준, 이정덕, 박창용, 이재원, 김희수, 노경숙, 이한수, 권재일, 2012: 30 년 (1981-2010 년) 기후값을 이용한 한국기후도 작성. Proceedings of the Autumn Meeting of KMS, Korean Meteorological Society, 290-291.