DOI QR코드

DOI QR Code

Estimation of Temporal Surface Air Temperature under Nocturnal Inversion Conditions

야간 역전조건 하의 지표기온 경시변화 추정

  • Kim, Soo-ock (National Center for Agro-Meteorology, Seoul National University)
  • Received : 2017.08.21
  • Accepted : 2017.09.23
  • Published : 2017.09.30

Abstract

A method to estimate hourly temperature profiles on calm and clear nights was developed based on temporal changes of inversion height and strength. A meteorological temperature profiler (Model MTP5H, Kipp and Zonen) was installed on the rooftop of the Highland Agriculture Research Institute, located in Daegwallyeong-myeon, Pyeongchang-gun, Gangwon-do. The hourly vertical distribution of air temperature was measured up to 600 m at intervals of 50 m from May 2007 to March 2008. Temperature and relative humidity data loggers (HOBO U23 Pro v2, Onset Computer Corporation, USA) were installed in the Jungdae-ri Valley, located between Gurye-gun, Jeollanam-do and Gwangyang-si, Jeollanam-do. These loggers were used to archive measurements of weather data 1.5 m above the surface from October 3, 2014, to November 23, 2015. The inversion strength was determined using the difference between the temperature at the inversion height, which is the highest temperature in the profile, and the temperature at 100 m from the surface. Empirical equations for the changes of inversion height and strength were derived to express the development of temperature inversion on calm and clear nights. To estimate air temperature near the ground on a slope exposed to crops, the equation's parameters were modified using temperature distribution of the mountain slope obtained from the data loggers. Estimated hourly temperatures using the method were compared with observed temperatures at 19 weather sites located within three watersheds in the southern Jiri-mountain in 2015. The mean error (ME) and root mean square error (RMSE) of the hourly temperatures were $-0.69^{\circ}C$ and $1.61^{\circ}C$, respectively. Hourly temperatures were often underestimated from 2000 to 0100 LST the next day. When temperatures were estimated at 0600 LST using the existing model, ME and RMSE were $-0.86^{\circ}C$ and $1.72^{\circ}C$, respectively. The method proposed in this study resulted in a smaller error, e.g., ME of $-0.12^{\circ}C$ and RMSE of $1.34^{\circ}C$. The method could be improved further taking into account various weather conditions, which could reduce the estimation error.

청명미풍 조건에서 기온역전층 높이와 기온역전강도의 매시 변화를 정량적인 경험식으로 나타내어 야간의 매시 기온을 추정하는 방법을 고안하였다. 2007년 5월부터 2008년 3월까지 강원도 평창군 대관령면 고령지농업연구소에서 초단파 온도 프로파일러 (Model MTP5H)로 지면으로부터 높이 600m까지 50m 간격의 기온 연직 분포를 한 시간 간격으로 측정하였다. 연직기온에서 가장 기온이 높은 고도를 기온역전층 높이로, 역전층의 기온과 지면 위 100m의 기온 편차를 역전강도로 간주하고 야간 동안 시간에 따라 기온 역전층이 발달되는 정도를 모의하는 추정식을 작성하였다. 산사면에서 작물이 실제 경험하는 기온을 추정하기 위해 2014년 10월부터 2015년 11월 23일까지 전남 구례군과 광양시 사이의 중대리 계곡에서 사면의 고도별 기온을 수집하여 연직기온의 역전층 높이 및 역전강도 추정모수를 보정하였다. 지리산 남쪽의 집수역 3개 내에 구축된 검증관측망으로부터 2015년 한 해 동안의 기상자료를 수집하였고, 기상청 방재 및 종관기상관측망으로부터 배경기온을 제작, 기온감률과 함께 기온역전 조건하의 매시 기온을 추정한 다음 검증을 실시하였다. 그 결과, 청명미풍 조건에 대해 19지점 평균 ME $-0.69^{\circ}C$, 평균 RMSE $1.61^{\circ}C$이었고 2000-0100 시간대에서 과소추정오차가 증가되었다. 기존에 사용되어 왔던 최저기온 모형으로 0600 기온을 추정하고 새로운 모의 방법으로 산출된 결과와 추정 오차를 비교한 결과, 평균 ME는 기존 $-0.86^{\circ}C$에서 $-0.12^{\circ}C$로, 평균 RMSE는 $1.72^{\circ}C$에서 $1.34^{\circ}C$로 개선되었다. 청명미풍 조건에서 도출된 기온 추정식의 활용도를 높이기 위해서는 추정 오차를 개선하고 다양한 기상조건에 대한 영향을 반영하는 후속 연구가 필요하다.

Keywords

References

  1. Chung, U., H. H. Seo, K. H. Hwang, B. S. Hwang, J. Choi, J. T. Lee, and J. I. Yun, 2006: Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology 137, 15-24. https://doi.org/10.1016/j.agrformet.2005.12.011
  2. Devasthale, A., U. Willen, K. G. Karlsson, and C. G. Jones, 2010: Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles. Atmospheric Chemistry and Physics 10, 5565-5572. doi:10.5194/acp-10-5565-2010
  3. Geiger, R., R. H. Aron, and P. Todhunter, 2008: The climate near the ground (7th ed.). Rowman & Littlefield Publishers, Inc., 623pp.
  4. Hanna, S. R., and R. Yang, 2001: Evaluations of mesoscale model's simulations of near-surface winds, temperature gradients, and mixing depths. Journal of Applied Meteorology 40, 1095-1104. https://doi.org/10.1175/1520-0450(2001)040<1095:EOMMSO>2.0.CO;2
  5. Hauge, G., and L. R. Hole, 2003: Implementation of slope irradiance in mesoscale model version 5 and its effect on temperature and wind fields during the breakup of a temperature inversion. Journal of Geophysical Research 108, AAC 5-1-12. doi:10.1029/2002JD002575
  6. Hole, L. R., and G. Hauge, 2003: Simulation of a morning air temperature inversion break-up in complex terrain and the influence on sound propagation on a local scale. Applied Acoustics 64, 401-414. https://doi.org/10.1016/S0003-682X(02)00104-4
  7. Hudson, S. R., and R. E. Brandt, 2005: A look at the surface-based temperature inversion on the Antarctic plateau. Journal of Climate 18, 1673-1696. https://doi.org/10.1175/JCLI3360.1
  8. Kyung Hee University (KHU), 2010: The final report of digital climate modeling for agrometeorological forecasting at watershed scale. 160pp.
  9. Kim, S. O., and J. I. Yun, 2016: Feasibility of the lapse rate prediction at an hourly time interval. Korean Journal of Agricultural and Forest Meteorology 18(1), 55-63. (in Korean with English abstract) doi: 10.5532/KJAFM.2016.18.1.55
  10. Kim, S. O., and J. I. Yun, 2011: A quantification method for the cold pool effect on nocturnal temperature in a closed catchment. Korean Journal of Agricultural and Forest Meteorology 13(4),176-184. (in Korean with English abstract) doi: 10.5532/KJAFM.2011.13.4.176
  11. Muller, H., and C. D. Whiteman, 1988: Breakup of a nocturnal temperature inversion in the Dischma Valley during DISKUS. Journal of Applied Meteorology 27, 188-194. https://doi.org/10.1175/1520-0450(1988)027<0188:BOANTI>2.0.CO;2
  12. Sorbjan, Z., 1996: Effects caused by varying the strength of the capping inversion based on a large eddy simulation model of the shear-free convective boundary layer. Journal of the Atmospheric Sciences 53(14), 2015-2024. https://doi.org/10.1175/1520-0469(1996)053<2015:ECBVTS>2.0.CO;2
  13. Whiteman, C. D., 1982a: Breakup of temperature inversions in deep mountain valleys: Part I. Observations. Journal of Applied Meteorology 21, 270-289. https://doi.org/10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2
  14. Whiteman, C. D., 1982b: Breakup of temperature inversions in deep mountain valleys: Part II. Thermodynamic Model. Journal of Applied Meteorology 21, 290-302. https://doi.org/10.1175/1520-0450(1982)021<0290:BOTIID>2.0.CO;2
  15. Whiteman, C. D., 1986: Temperature inversion buildup in Colorado's Eagle Valley. Meteorology and Atmospheric Physics 35, 220-226. https://doi.org/10.1007/BF01041814
  16. Whiteman, C. D., X. Bian, and S. Zhong, 1999: Wintertime evolution of the temperature inversion in the Colorado plateau basin. Journal of Applied Meteorology 38, 1103-1117. https://doi.org/10.1175/1520-0450(1999)038<1103:WEOTTI>2.0.CO;2
  17. Zhang, D. L., and W. Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. Journal of Applied Meteorology 43, 157-169. https://doi.org/10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2