East Asian Math. J. Vol. 33 (2017), No. 5, pp. 483–494 http://dx.doi.org/10.7858/eamj.2017.033

ON gpr^{μ} -CLOSED MAPPINGS AND gpr^{μ} -OPEN MAPPINGS

VIDHYA MENON AND GNANAMBAL ILANGO

ABSTRACT. In this paper we define new types of mappings known as gpr^{μ} closed mappings, gpr^{μ} -open mappings and discuss its properties. Furthermore we introduce the concepts of supra pre*-normal spaces and also investigate its properties.

1. Introduction

In 1982, S.R.Malghan [5] introduced the notion of closed mappings in topology. Many researchers extended the work and investigated different types of closed and open functions in topological spaces. In 1983, Mashhour et.al.[6] introduced the notion of supra topological spaces and discussed the study of S-continuous maps and S^* -continuous maps in supra topological spaces. In 1999, Won Keun Min and Hong Soon Chang [13] introduced M-open mappings in supra topological spaces. In 2010, O.R.Sayed [9] investigated a class of sets called supra pre-open sets and discussed a class of maps called supra pre-open maps. In 2011, Ravi et.al. [7] introduced a class of sets called supra g-closed sets and analysed a class of maps called supra *q*-open and supra *q*-closed maps. Then in 2012, the same authors [4] used supra q-closed sets to define supra sg-closed sets and also introduced supra sg-closed mappings. In 2016, Vidhya Menon et.al. [10] made an extensive study of gpr^{μ} -closed sets. In this paper gpr^{μ} -closed mappings and gpr^{μ} -open mappings are introduced and their properties are studied. Also the notion of supra pre*-normal spaces is defined and studied.

Throughout this paper (X, τ) , (Y, σ) and (Z, η) denote topological spaces on which no separation axioms are assumed unless explicitly stated. A subcollection $\mu \subset P(X)$ is called a supra topology on X if $X \in \mu$ and μ is closed under arbitrary union. (X, μ) is called a supra topological space. The elements of μ are said to be supra open in (X, μ) and complements of supra open sets are called supra closed sets. The supra closure of a set A, denoted by $cl^{\mu}(A)$, is the intersection of supra closed sets including A. The supra interior of a set

©2017 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received August 8, 2016; Revised October 24, 2016; Accepted August 9, 2017.

²⁰¹⁰ Mathematics Subject Classification. 54C10.

Key words and phrases. gpr^{μ} -closed sets, gpr^{μ} -continuous functions, gpr^{μ} -closed maps, gpr^{μ} -open maps, supra pre*-normal spaces.

A, denoted by $int^{\mu}(A)$, is the union of supra open sets included in A. We call μ a supra topology associated with τ if $\tau \subset \mu$. A subset A of X is called supra pre-closed [9] (resp. supra α -closed [1], supra regular closed, supra b-closed [8]) if $cl^{\mu}(int^{\mu}(A)) \subseteq A$ (resp. $cl^{\mu}(int^{\mu}(A))) \subseteq A$, $A = cl^{\mu}(int^{\mu}(A))$, $int^{\mu}(cl^{\mu}(A)) \cap cl^{\mu}(int^{\mu}(A)) \subseteq A$). The complement of a supra pre-closed set (resp. supra α -closed set, supra closed set, supra b-closed set) is called supra pre-open set [9] (resp. supra α -open set [1], supra regular open set, supra b-open set [8]).

The collection of all supra pre-open, supra pre-closed, supra regular open, supra generalized pre-regular closed and supra generalized pre-regular open subsets of X are denoted by $PO^{\mu}(X)$, $PC^{\mu}(X)$, $RO^{\mu}(X)$, $GPRC^{\mu}(X)$, $GPRO^{\mu}(X)$.

2. Preliminaries

Definition 1. Let A be a subset of (X, μ) . Then

- (i) the supra pre-closure [12] of a set A, denoted by $pcl^{\mu}(A) = \bigcap \{B : B \text{ is a supra pre-closed set and } A \subseteq B\}.$
- (ii) the supra pre-interior [12] of a set A, denoted by $pint^{\mu}(A) = \bigcup \{B : B \text{ is a supra pre-open set and } B \subseteq A\}.$
- (iii) the supra gpr-closure of a set A, denoted by $gpr^{\mu}-cl(A) = \bigcap \{B : B \text{ is } a gpr^{\mu}-closed \text{ set and } A \subseteq B\}.$
- (iv) the supra gpr-interior of a set A, denoted by gpr^{μ} -int $(A) = \bigcup \{B : B \text{ is a } gpr^{\mu}$ -open set and $B \subseteq A\}$.
- (v) the supra α -closure [1] of a set A, denoted by supra $\alpha cl(A) = \bigcap \{B : B \text{ is a supra } \alpha\text{-closed set and } A \subseteq B\}.$
- (vi) the supra *b*-closure [8] of a set A, denoted by $cl_b^{\mu}(A) = \bigcap \{B : B \text{ is a supra } b\text{-closed set and } A \subseteq B\}.$

Definition 2. A subset A of a space (X, μ) is called

- (i) supra generalized closed [7] (briefly g^{μ} -closed) if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in (X, μ) .
- (ii) supra generalized pre-closed [12] (briefly gp^{μ} -closed) if $pcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in (X, μ) .
- (iii) supra generalized pre-regular closed [12] (briefly gpr^{μ} -closed) if $pcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra regular open in (X, μ) .
- (iv) supra generalized α -closed [11] (briefly $g\alpha^{\mu}$ -closed) if $\alpha cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra α -open in (X, μ) .
- (v) supra α -generalized closed [11] (briefly αg^{μ} -closed) if $\alpha cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in (X, μ) .
- (vi) supra regular generalized closed [12] (briefly rg^{μ} -closed) if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra regular open in (X, μ) .
- (vii) supra generalized b-regular closed [11] (briefly $g^{\mu}br$ -closed) if $bcl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra regular open in (X, μ) .

484

Definition 3. Let (X, τ) and (Y, σ) be two topological spaces with supra topology μ associated with σ . A function $f : (X, \tau) \to (Y, \sigma)$ is called

- (i) supra closed [7] if the image of each closed set in X is supra closed in Y.
- (ii) supra pre-closed [9] if the image of each closed set in X is supra preclosed in Y.
- (iii) supra regular closed if the image of each closed set in X is supra regular closed in Y.
- (iv) g^{μ} -closed [7] if the image of each closed set in X is g^{μ} -closed in Y.
- (v) gp^{μ} -closed if the image of each closed set in X is gp^{μ} -closed in Y.
- (vi) $g\alpha^{\mu}$ -closed if the image of each closed set in X is $g\alpha^{\mu}$ -closed in Y.
- (vii) αg^{μ} -closed if the image of each closed set in X is αg^{μ} -closed in Y.
- (viii) rg^{μ} -closed if the image of each closed set in X is rg^{μ} -closed in Y.

The respective open functions are defined in a similar manner.

Definition 4. Let (X, τ) and (Y, σ) be two topological spaces with supra topology μ associated with τ . A function $f : (X, \tau) \to (Y, \sigma)$ is called

- (i) supra-continuous [7] if $f^{-1}(V)$ is supra closed (resp. supra open) in X for every closed set (resp. open set) V of Y.
- (ii) gpr^{μ} -continuous [12] if $f^{-1}(V)$ is gpr^{μ} -closed (resp. gpr^{μ} -open) in X for every closed set (resp. open set) V of Y.

Definition 5. Let (X, τ) and (Y, σ) be two topological spaces with supra topology μ associated with σ . A function $f : (X, \tau) \to (Y, \sigma)$ is called

- (i) strongly supra continuous if $f^{-1}(V)$ is closed (resp. open) in X for every supra closed set (resp. supra open set) V of Y.
- (ii) strongly gpr^{μ} -continuous if $f^{-1}(V)$ is closed (resp. open) in X for every gpr^{μ} -closed set (resp. gpr^{μ} -open set) V of Y.

Definition 6. Let (X, τ) and (Y, σ) be two topological spaces with supra topologies λ and μ associated with τ and σ respectively. A function $f : (X, \tau) \to (Y, \sigma)$ is called

- (i) supra irresolute [4] if $f^{-1}(V)$ is supra closed (resp. supra open) in X for every supra closed set (resp. supra open set) V of Y.
- (ii) supra pre-irresolute if $f^{-1}(V)$ is supra pre-closed (resp. supra pre-open) in X for every supra pre-closed set (resp. supra pre-open set) V of Y.
- (iii) supra gpr-irresolute if $f^{-1}(V)$ is gpr^{λ} -closed (resp. gpr^{λ} -open) in X for every gpr^{μ} -closed set (resp. gpr^{μ} -open set) V of Y.
- **Definition 7.** (i) A space (X, τ) is called a $T_{1/2}$ space [2] if every *g*-closed set is closed.
 - (ii) A space (X, μ) is called a supra pre-regular $T_{1/2}$ space [12] if every gpr^{μ} -closed set is supra pre-closed.

3. gpr^{μ} -closed map & gpr^{μ} -open map

Definition 8. Let (X, τ) and (Y, σ) be two topological spaces with supra topology μ associated with σ . A function $f : (X, \tau) \to (Y, \sigma)$ is called gpr^{μ} -closed (resp. gpr^{μ} -open) if the image of each closed (resp. open) set in X is gpr^{μ} -closed (resp. gpr^{μ} -open) in Y.

Example 1

(i) Let $X = Y = \{a, b, c\}$, with the topology $\tau = \{\phi, X, \{a\}\}, \sigma = \{\phi, Y, \{b, c\}\}$ and the supra topology $\mu = \{\phi, Y, \{a, c\}, \{b, c\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined as f(a) = a, f(b) = b, f(c) = c. Then f is gpr^{μ} -closed.

(ii) Let $X = Y = \{0, 1, 2\}$, with the topology $\tau = \{\phi, X, \{1\}, \{1, 2\}\}$, $\sigma = \{\phi, Y, \{1\}\}$ and the supra topology $\mu = \{\phi, Y, \{1\}, \{0, 2\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a map defined as f(0) = 1, f(1) = 2, f(2) = 1. Then f is gpr^{μ} -open.

Definition 9. Let (X, τ) and (Y, σ) be two topological spaces with supra topology μ associated with σ . A function $f : (X, \tau) \to (Y, \sigma)$ is called

- (i) p- gpr^{μ} -open (resp. p- gpr^{μ} -closed) if the image of each pre-open (resp. pre-closed) set in X is gpr^{μ} -open (resp. gpr^{μ} -closed) in Y.
- (ii) $g^{\mu}br$ -closed (resp. $g^{\mu}br$ -open) if the image of each closed (resp. open) set in X is $g^{\mu}br$ -closed (resp. $g^{\mu}br$ -open) in Y.

Theorem 3.1. Every closed map is gpr^{μ} -closed.

Proof. Let (X, τ) and (Y, σ) be two topological spaces with supra topology μ associated with σ . Let $f : (X, \tau) \to (Y, \sigma)$ be a closed map and A be a closed set in X. Then f(A) is closed in Y. Since μ associated with $\sigma, \sigma \subset \mu$. Therefore f(A) is supra closed in Y which is gpr^{μ} -closed in Y. Hence f is gpr^{μ} -closed. \Box

Theorem 3.2. Every supra closed (resp. supra pre-closed, g^{μ} -closed, gp^{μ} -closed, gq^{μ} -closed, αg^{μ} -closed, rg^{μ} -closed) map is gpr^{μ} -closed.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a supra closed map with $\sigma \subset \mu$ and V be a closed set in X. Then f(V) is supra closed (resp. supra pre-closed, g^{μ} closed, gp^{μ} -closed, $g\alpha^{\mu}$ -closed, αg^{μ} -closed, rg^{μ} -closed) in Y. Since every supra closed (resp. supra pre-closed, g^{μ} -closed, gp^{μ} -closed, αg^{μ} -closed, αg^{μ} -closed, rg^{μ} -closed) set is gpr^{μ} -closed, f(V) is gpr^{μ} -closed in Y.

Converse of the theorem need not be true as seen from the following example:

Example 2:

(i) Let $X = Y = \{a, b, c\}$, with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{\phi, Y, \{b, c\}\}$ and the supra topology $\mu = \{\phi, Y, \{a, b\}, \{b, c\}\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Then the function f is gpr^{μ} -closed but not supra closed as $f(\{b, c\}) = \{b, c\}$ is not supra closed in Y.

(ii) Let $X = Y = \{a, b, c\}$, with the topology $\tau = \{\phi, X, \{b, c\}\}$, $\sigma = \{\phi, Y, \{a\}\}$ and the supra topology $\mu = \{\phi, Y, \{a\}, \{a, b\}\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Then the function f is gpr^{μ} -closed but not supra pre-closed as $f(\{a\}) = \{a\}$ is not supra pre-closed in Y.

(iii) Let $X = Y = \{a, b, c\}$, with the topology $\tau = \{\phi, X, \{a\}, \{b, c\}\}$, $\sigma = \{\phi, Y, \{b, c\}\}$ and the supra topology $\mu = \{\phi, Y, \{a\}, \{a, b\}, \{b, c\}\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = c, f(c) = a. Then the function f is gpr^{μ} -closed but not g^{μ} -closed as $f(\{a\}) = \{b\}$ is not g^{μ} -closed in Y. (iv) Let $X = Y = \{a, b, c\}$, with the topology $\tau = \{\phi, X, \{a\}, \{b, c\}\}$, $\sigma = \{\phi, Y, \{b, c\}\}$ and the supra topology $\mu = \{\phi, Y, \{a\}, \{a, b\}, \{b, c\}\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = c, f(b) = a, f(c) = b. Then the function f is gpr^{μ} -closed but not gp^{μ} -closed as $f(\{b, c\}) = \{a, b\}$ is not gp^{μ} -closed in Y.

(v) Let $X = Y = \{a, b, c, d\}$, with the topology $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}, \sigma = \{\phi, Y, \{b, c, d\}\}$ and the supra topology $\mu = \{\phi, Y, \{a, b, d\}, \{b, c, d\}\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then the function f is gpr^{μ} -closed but not αg^{μ} -closed as $f(\{b, c, d\}) = \{b, c, d\}$ is not αg^{μ} -closed in Y.

(vi) Let $X = Y = \{a, b, c, d\}$, with the topology $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}, \sigma = \{\phi, Y, \{b, c, d\}\}$ and the supra topology $\mu = \{\phi, Y, \{a, b, d\}, \{b, c, d\}\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then the function f is gpr^{μ} -closed but not $g\alpha^{\mu}$ -closed as $f(\{b, d\}) = \{b, d\}$ is not $g\alpha^{\mu}$ -closed in Y.

(vii) Let $X = Y = \{a, b, c, d\}$, with the topology $\tau = \{\phi, X, \{a\}, \{b, c\}, \{c\}, \{a, c\}, \{a, c, d\}, \{a, b, c\}\}, \sigma = \{\phi, Y, \{a\}\}$ and the supra topology $\mu = \{\phi, Y, \{a\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then the function f is gpr^{μ} -closed but not rg^{μ} -closed as $f(\{b\}) = \{b\}$ is not rg^{μ} -closed in Y.

Theorem 3.3. Every gpr^{μ} -closed map is $g^{\mu}br$ -closed.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a gpr^{μ} -closed map with supra topology μ associated with σ and V be a closed set in X. Then f(V) is gpr^{μ} -closed in Y. By theorem 3.1 [3], every gpr^{μ} -closed set is $g^{\mu}br$ -closed. Hence f(V) is $g^{\mu}br$ -closed in Y.

However the converse need not be true.

Example 3: Let $X = Y = \{a, b, c, d\}$, with the topology $\tau = \{\phi, X, \{a\}, \{b, c, d\}\}$, $\sigma = \{\phi, Y, \{a\}\}$ and the supra topology $\mu = \{\phi, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Then the function f is $g^{\mu}br$ -closed but not gpr^{μ} -closed as $f(\{a\}) = \{a\}$ is not gpr^{μ} -closed in Y.

Theorem 3.4. Let (X, τ) and (Y, σ) be the two topological spaces with supra topology μ associated with σ .

- (i) If $f: (X, \tau) \to (Y, \sigma)$ is gpr^{μ} -closed then gpr^{μ} -cl $(f(A)) \subset f(cl(A))$ for each set A in X.
- (ii) If $f: (X, \tau) \to (Y, \sigma)$ is gpr^{μ} -open then $f(int(A)) \subset gpr^{\mu}$ -int(f(A)) for each set A in X.
- *Proof.* (i) Let $A \subset X$ and $f: (X, \tau) \to (Y, \sigma)$ be a gpr^{μ} -closed map. Then f(cl(A)) is gpr^{μ} -closed in Y. Also $f(A) \subset f(cl(A))$. This implies gpr^{μ} - $cl(f(A)) \subset gpr^{\mu}$ -cl(f(cl(A))). That is gpr^{μ} - $cl(f(A)) \subset f(cl(A))$.
 - (ii) Let $A \subset X$ and $f : (X, \tau) \to (Y, \sigma)$ be a gpr^{μ} -open map. Then f(int(A)) is gpr^{μ} -open in Y. Also $f(int(A)) \subset f(A)$. This implies gpr^{μ} -int $(f(int(A))) \subset gpr^{\mu}$ -int(f(A)). As f(int(A)) is gpr^{μ} -open, $f(int(A)) \subset gpr^{\mu}$ -int(f(A)).

Theorem 3.5. Let (X, τ) and (Y, σ) be the two topological spaces with supra topology μ associated with σ . A function $f : (X, \tau) \to (Y, \sigma)$ is gpr^{μ} -closed iff for each subset S of Y and each open set U containing $f^{-1}(S)$ there is a gpr^{μ} -open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof. Let f be gpr^{μ} -closed, $S \subset Y$ and U be an open set of X such that $f^{-1}(S) \subset U$. Then $f(X - U) \in GPRC^{\mu}(Y)$ and $V = Y - f(X - U) \in GPRO^{\mu}(Y)$. $f^{-1}(S) \subset U$ implies $S \subset V$ and $f^{-1}(V) = X - f^{-1}(f(X - U)) \subset X - (X - U) = U$. Conversely let F be closed in X, then $f^{-1}(Y - f(F)) \subset X - F$. By hypothesis there exist $V \in GPRO^{\mu}(Y)$ such that $Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$ and

so $F \subset X - f^{-1}(V)$. Hence $Y - V \subset f(F) \subset f(X - f^{-1}(V)) \subset Y - V$. This implies $f(F) \subset Y - V$. Thus f(F) = Y - V. Thus f(F) is gpr^{μ} -closed in Y and therefore the function f is gpr^{μ} -closed.

Theorem 3.6. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective map with supra topology μ associated with σ . Then the following are equivalent:

- (i) f is a gpr^{μ} -open map
- (ii) f is a gpr^{μ} -closed map
- (iii) f^{-1} is a gpr^{μ} -continuous map.
- *Proof.* (i) \Rightarrow (ii) Suppose *B* is closed in *X*. Then *X B* is open in *X*. By (i) f(X B) is a gpr^{μ} -open set in *Y*. Since *f* is bijective, f(X B) = Y f(B). Hence f(B) is a gpr^{μ} -closed set in *Y*. Therefore *f* is a gpr^{μ} -closed map.
 - (ii) \Rightarrow (iii) Let f be a gpr^{μ} -closed map and B be a closed set in X. Since $(f^{-1})^{-1} = f$ and f(B) is gpr^{μ} -closed in Y, $(f^{-1})^{-1}(B) = f(B)$ is gpr^{μ} -closed set in Y. Hence by definition 4 (ii) f^{-1} is a gpr^{μ} -continuous map.

(iii) \Rightarrow (i) Let A be an open set in X. Since f^{-1} is gpr^{μ} -continuous map, $(f^{-1})^{-1}(A) = f(A)$ is a gpr^{μ} -open set in Y. Hence f is a gpr^{μ} -open map.

Theorem 3.7. Let $f : (X, \tau) \to (Y, \sigma)$ be a map with supra topology μ associated with σ . If a function $f : (X, \tau) \to (Y, \sigma)$ is strongly supra continuous, gpr^{μ} -closed and A is g-closed set in X, then f(A) is gpr^{μ} -closed in Y.

Proof. Let $f(A) \subseteq O$ where O is a supra regular open set of Y. Then $f^{-1}(O)$ is an open set of X containing A. Since A is g-closed, we have $cl(A) \subseteq f^{-1}(O)$. Now, f is gpr^{μ} -closed implies f(cl(A)) is gpr^{μ} -closed in Y. That is $pcl^{\mu}(f(cl(A))) \subseteq O$, where O is supra regular open in Y. Thus $pcl^{\mu}(f(A)) \subseteq pcl^{\mu}(f(cl(A))) \subseteq O$. Hence $pcl^{\mu}(f(A)) \subseteq O$. Therefore f(A) is a gpr^{μ} -closed set in Y.

Definition 10. Let (X, τ) and (Y, σ) be two topological spaces with supra topologies μ and λ associated with τ and σ respectively. A function $f : (X, \tau) \to (Y, \sigma)$ is called p- gpr^{μ} -continuous if $f^{-1}(F)$ is gpr^{μ} -closed in X for every supra pre-closed set F of Y.

Theorem 3.8. Let (X, τ) and (Y, σ) be two topological spaces with supra topologies μ and λ associated with τ and σ respectively. If $f : (X, \tau) \to (Y, \sigma)$ is p gpr^{μ} -continuous and Y is supra pre-regular $T_{1/2}$ then f is supra gpr-irresolute.

Proof. Let F be any gpr^{λ} -closed set of Y. Since Y is supra pre-regular $T_{1/2}$, then F is supra pre-closed in Y. By hypothesis f is p- gpr^{μ} -continuous, so $f^{-1}(F)$ is gpr^{μ} -closed in X. Hence f is supra gpr-irresolute.

Definition 11. Let (X, τ) and (Y, σ) be two topological spaces with supra topologies μ and λ associated with τ and σ respectively. A function $f: (X, \tau) \to (Y, \sigma)$ is called supra r^* -closed (resp. supra r^* -open) if the image of each supra regular closed (resp. supra regular open) set in X is supra regular closed (resp. supra regular open) in Y.

Remark 1. Let (X, τ) and (Y, σ) be two topological spaces with supra topologies μ and λ associated with τ and σ respectively. A function $f : (X, \tau) \to (Y, \sigma)$ is supra r^* -closed iff for each subset S of Y and each supra regular open set U containing $f^{-1}(S)$ there is a supra regular open set V of Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Theorem 3.9. Let (X, τ) and (Y, σ) be two topological spaces with supra topologies λ and μ associated with τ and σ respectively. If $f : (X, \tau) \to (Y, \sigma)$ is p-gpr $^{\lambda}$ -continuous, supra r^* -closed and K is a gpr $^{\mu}$ -closed set of Y, then f is supra gpr-irresolute.

Proof. Let K be any gpr^{μ} -closed set of Y and U be a supra regular open set containing $f^{-1}(K)$. Since f is supra r^* -closed, by remark 1 there exist a supra

regular open set V of Y such that $K \subset V$ and $f^{-1}(V) \subset U$. Since K is gpr^{μ} closed in Y, $pcl^{\mu}(K) \subset V$. This implies $f^{-1}(pcl^{\mu}(K)) \subset f^{-1}(V) \subset U$. Now, f is p- gpr^{λ} -continuous implies $f^{-1}(pcl^{\mu}(K))$ is gpr^{λ} -closed in X and hence $pcl^{\lambda}(f^{-1}(K)) \subset pcl^{\lambda}(f^{-1}(pcl^{\mu}(K))) \subset U$. Hence $f^{-1}(K)$ is gpr^{λ} -closed. \Box

Theorem 3.10. Let (X, τ) and (Y, σ) be two topological spaces with the supra topologies λ and μ associated with τ and σ respectively.

- (i) If the bijection $f: (X, \tau) \to (Y, \sigma)$ is supra r^* -open and p-gpr $^{\lambda}$ -continuous, then it is supra gpr-irresolute.
- (ii) If the bijection $f : (X, \tau) \to (Y, \sigma)$ is supra r^* -open and supra preirresolute, then it is supra gpr-irresolute.

Proof. (i) Let A be a gpr^{μ} -closed in Y. Let $f^{-1}(A) \subseteq O$ where O is supra regular open in X. Since f is supra r^* -open map, f(O) is supra regular open in Y. Thus $A \subseteq f(O)$ implies $pcl^{\mu}(A) \subseteq f(O)$. That is $f^{-1}(pcl^{\mu}(A)) \subseteq O$. Since f is p- gpr^{λ} -continuous, $pcl^{\lambda}(f^{-1}(pcl^{\mu}(A))) \subseteq O$ and hence $pcl^{\lambda}(f^{-1}(A)) \subseteq O$. Hence $f^{-1}(A)$ is gpr^{λ} -closed in X. Hence f is supra gpr-irresolute.

(ii) Let B be a gpr^{μ} -closed in Y and let $f^{-1}(B) \subseteq O$ where O is supra regular open in X. Since f is supra r^* -open map, f(O) is supra regular open in Y. Thus $B \subseteq f(O)$ implies $pcl^{\mu}(B) \subseteq f(O)$. That is $f^{-1}(pcl^{\mu}(B)) \subseteq O$. Since f is supra pre-irresolute, $f^{-1}(pcl^{\mu}(B))$ is a supra pre-closed set in X. Thus $pcl^{\lambda}(f^{-1}(B)) \subseteq pcl^{\lambda}(f^{-1}(pcl^{\mu}(B))) = f^{-1}(pcl^{\mu}(B)) \subseteq O$. Hence $f^{-1}(B)$ is gpr^{λ} -closed in X. Hence f is supra gpr-irresolute.

Remark 2. Composition of two gpr^{μ} -closed maps need not be gpr^{μ} -closed.

Example 4: Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two maps with the supra topologies μ , λ associated with σ , η respectively. Let $X = Y = \{0, 1, 2\}, Z = \{0, 1, 2, 3\}, \tau = \{\phi, X, \{0\}\}, \sigma = \{\phi, Y, \{0, 1\}\}, \mu = \{\phi, Y, \{0, 1\}, \{1, 2\}, \{1\}\}, \eta = \{\phi, Z, \{0\}\}$ and $\lambda = \{\phi, Z, \{0, 2\}, \{2, 3\}, \{0\}, \{0, 2, 3\}\}$. Let f be a identity mapping. Define the map $g: (Y, \sigma) \to (Z, \eta)$ by g(0) = 1, g(1) = 2, g(2) = 3. Then f and g are gpr^{μ} -closed mappings but $(g \circ f)(\{1, 2\})$ is not a gpr^{μ} -closed map.

Theorem 3.11. Let (X, τ) , (Y, σ) and (Z, η) be the topological spaces with supra topology μ associated with η . If $f : (X, \tau) \to (Y, \sigma)$ is closed and $g : (Y, \sigma) \to (Z, \eta)$ is gpr^{μ} -closed map then $g \circ f$ is gpr^{μ} -closed.

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a closed map, that is for each closed set $a \in X$, f(a) is closed in Y. Let $g: (Y, \sigma) \to (Z, \eta)$ be a gpr^{μ} -closed map that is for each closed set $y \in Y$, g(y) is gpr^{μ} -closed in Z. Also $f(a) \in Y$. Let U = f(a). Now $(g \circ f)(a) = g(f(a)) = g(U)$ is gpr^{μ} -closed in Z. Hence $g \circ f$ is gpr^{μ} -closed. \Box

Theorem 3.12. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two maps with supra topologies λ and μ associated with σ and η respectively.

 (i) If g ◦ f is gpr^µ-closed and f is continuous surjective, then g is gpr^µclosed. (ii) If $g \circ f$ is closed and g is gpr^{λ} -continuous injective, then f is gpr^{λ} -closed.

Proof. (i) Let A be a closed set in Y. Then $f^{-1}(A)$ is a closed set in X. Since $g \circ f$ is a gpr^{μ} -closed map, $(g \circ f)(f^{-1}(A)) = g(f(f^{-1}(A))) = g(A)$ (because f is surjective) is a gpr^{μ} -closed set in Z. Hence g is gpr^{μ} -closed.

(ii) Let A be a closed set in X. Then g(f(A)) is closed in Z. Therefore $g^{-1}(g(f(A))) = f(A)$ (because g is injective) is a gpr^{λ} -closed set in Y. Hence f is a gpr^{λ} -closed map.

Theorem 3.13. Let (X, τ) , (Y, σ) and (Z, η) be topological spaces with supra topologies λ and μ associated with σ and η respectively. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be the two functions such that $g \circ f: X \to Z$ is gpr^{μ} -closed. If g is supra pre-irresolute, supra r^* -closed injection then f is gpr^{μ} -closed.

Proof. Let F be a closed set of X and U be a supra regular open set of Y containing f(F). Then $(g \circ f)(F)$ is gpr^{μ} -closed in Z. Let V = Y - U. Then V is supra regular closed set in Y. Since g is supra r^* -closed injective, g(V) is supra regular closed in Z and $g(V) \cap (g \circ f)(F) = \phi$. Hence $g(V) \cap pcl^{\mu}(g \circ f)(F) = \phi$ that is $pcl^{\mu}((g \circ f)(F)) \subset Z - g(V)$. Since g is supra pre-irresolute, $pcl^{\lambda}(f(F)) = pcl^{\lambda}(g^{-1}(g \circ f)(F)) \subset pcl^{\lambda}(g^{-1}(pcl^{\mu}(g \circ f)(F))) = g^{-1}(pcl^{\mu}(g \circ f)(F)) \subset Y - V = U$. Thus f is gpr^{λ} -closed in Y.

Theorem 3.14. Let (X, τ) , (Y, σ) and (Z, η) be the topological spaces with supra topologies μ , λ and α associated with τ , σ and η respectively. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be the two functions such that

- (i) if f is supra gpr-irresolute and g is p-gpr^{λ}-continuous then $g \circ f : X \to Z$ is p-gpr^{μ}-continuous.
- (ii) if f is p-gpr^{μ}-continuous and g is supra pre-irresolute then $g \circ f : X \to Z$ is p-gpr^{μ}-continuous.
- *Proof.* (i) Let V be a supra pre-closed set in Z. Since g is $p-gpr^{\lambda}$ -continuous, $g^{-1}(V)$ is gpr^{λ} -closed in (Y, σ) . As f is supra gpr-irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is gpr^{μ} -closed in (X, τ) . Hence $g \circ f$ is $p-gpr^{\mu}$ -continuous.
 - (ii) Let V be a supra pre-closed set in Z. Since g is supra pre-irresolute, $g^{-1}(V)$ is supra pre-closed in (Y, σ) . As f is p- gpr^{μ} -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is gpr^{μ} -closed in (X, τ) . Hence $g \circ f$ is p- gpr^{μ} -continuous.

Theorem 3.15. Let (X, τ) , (Y, σ) and (Z, η) be the topological spaces and μ be the supra topology associated with η . Let $f : (X, \tau) \to (Y, \sigma)$ be a g-closed map, $g : (Y, \sigma) \to (Z, \eta)$ be a gpr^{μ} -closed map and (Y, σ) be a $T_{1/2}$ space. Then $g \circ f : (X, \tau) \to (Z, \eta)$ is a gpr^{μ} -closed map.

Proof. Let A be a closed set of (X, τ) . By assumption, f(A) is g-closed in Y. Since (Y, σ) is $T_{1/2}$ space, f(A) is closed in Y and g(f(A)) is gpr^{μ} -closed in (Z, η) . Thus $(g \circ f)(A)$ is gpr^{μ} -closed in (Z, η) . Hence $g \circ f$ is gpr^{μ} -closed in (Z, η) .

Theorem 3.16. Let (X, τ) , (Y, σ) and (Z, η) be the topological spaces with supra topologies λ and μ associated with respect to σ and η respectively. Let $f: (X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ be two maps and $g \circ f$ be a p-gpr^{μ}open function. Then

- (i) if f is surjective pre-irresolute map, then g is p-gpr^{μ}-open.
- (ii) if g is an injective supra gpr-irresolute map, then f is p-gpr^{λ}-open.
- *Proof.* (i) Let V be a pre-open set in Y. Then $f^{-1}(V)$ is pre-open in X. Since $g \circ f$ is p- gpr^{μ} -open function, $(g \circ f)(f^{-1}(V)) = g(V)$ is gpr^{μ} -open in Z. Hence g is p- gpr^{μ} -open map.
 - (ii) Let U be pre-open subset of X. Since $g \circ f$ is p- gpr^{μ} -open function, $(g \circ f)(U)$ is gpr^{μ} -open in Z. Also by assumption g is supra gprirresolute injective, $g^{-1}(g \circ f)(U) = f(U)$ is gpr^{λ} -open in Y. Hence f is p- gpr^{λ} -open map.

Definition 12. X is said to be supra pre*-normal if for each pair of disjoint supra regular closed sets A and B, there exist disjoint supra pre-open sets U and V such that $A \subset U$ and $B \subset V$.

Theorem 3.17. A space X is supra pre^{*}-normal iff for every supra regular closed set A and every supra regular open set B containing A, there exist a supra pre-open set U such that $A \subset U \subset pcl^{\mu}(U) \subset B$.

Proof. Necessity : Let A be a supra regular closed set in X and B be a supra regular open set containing A. Then A and X - B are disjoint supra regular closed sets in X. Since X is supra pre*-normal there exist disjoint supra preopen sets U and V such that $A \subset U$ and $X - B \subset V$. Thus $A \subset U \subset X - V \subset B$. Since X - V is supra pre-closed, $A \subset U \subset pcl^{\mu}(U) \subset X - V \subset B$.

Sufficiency: Let A and B be any two disjoint supra regular closed sets in X. That is $A \subset X - B$. Since X - B is supra regular open, there exist a supra pre-open set U such that $A \subset U \subset pcl^{\mu}(U) \subset X - B$. Let $V = X - pcl^{\mu}(U) = pint^{\mu}(X - U)$. Thus, V is the largest supra pre-open set contained in X - U. Also $B \subset V$. Thus $A \subset U$, $B \subset V$ and $U \cap V = \phi$. Hence X is supra pre*-normal.

Theorem 3.18. Let (X, τ) be a topological space and μ be the associated supra topology with τ . Then the following statements are equivalent:

- (i) X is supra pre^{*}-normal.
- (ii) for any pair of disjoint supra regular closed sets A and B of X, there exist disjoint gpr^μ-open sets U and V of X such that A ⊂ U and B ⊂ V.

(iii) for each supra regular closed set A and each supra regular open set B containing A, there exist a gpr^{μ} -open set U such that $cl^{\mu}(A) \subset U \subset pcl^{\mu}(U) \subset B.$

Proof. (i) \Rightarrow (ii) Let A and B be disjoint supra regular closed subsets of X. Since X is supra pre*-normal, for each pair of disjoint supra regular closed sets A and B there exist disjoint supra pre-open sets U and V such that $A \subset U$ and $B \subset V$. Also each supra pre-open set is gpr^{μ} -open. Thus we have for each pair of disjoint supra regular closed sets A and B, there exist disjoint gpr^{μ} -open sets U and V such that $A \subset U$ and be disjoint supra regular closed sets A and B, there exist disjoint gpr^{μ} -open sets U and V such that $A \subset U$ and $B \subset V$.

(ii) \Rightarrow (iii) Let A be a supra regular closed subset of X and B be a supra regular open set such that $A \subset B$. Then A and X - B are disjoint supra regular closed subsets of X. By (ii) there exist disjoint gpr^{μ} -open sets U and V such that $A \subset U$ and $X - B \subset V$. This implies $A \subset U \subset X - V \subset B$. Since B is supra regular open and X - V is gpr^{μ} -closed, $pcl^{\mu}(X - V) \subset B$. Thus $A \subset U \subset pcl^{\mu}(X - V) \subset B$. Hence $cl^{\mu}(A) \subset U \subset pcl^{\mu}(U) \subset B$.

(iii) \Rightarrow (i) Let A and X - B be two disjoint supra regular closed subsets of X. Then B is supra regular open such that $A \subset B$. Therefore there exists a gpr^{μ} -open set U such that $A \subset U \subset pcl^{\mu}(U) \subset B$. Since U is gpr^{μ} -open, $A \subset pint^{\mu}(U)$. Let $V = pint^{\mu}(U)$, then V is supra pre-open and $A \subset V \subset pcl^{\mu}(V) \subset B$. Thus $A \subset V, X - B \subset X - pcl^{\mu}(V)$ which is supra pre-open and $V \cap (X - pcl^{\mu}(V)) = \phi$. Hence X is supra pre*-normal. \Box

Theorem 3.19. Let (X, τ) be a topological space and μ be the associated supra topology with τ . If every supra closed (resp. supra open) set is supra regular closed (resp. supra regular open), then the following are equivalent:

- (i) X is supra pre^{*}-normal.
- (ii) for each supra regular closed set A and each g^µ-open set B containing A, there exist a supra pre-open set U such that A ⊂ U ⊂ pcl^µ (U) ⊂ int^µ(B).
- (iii) for each g^µ-closed set A and each supra regular open set B containing A, there exist a supra pre-open set U such that cl^µ(A) ⊂ U ⊂ pcl^µ(U) ⊂ B.
- (iv) for each g^{μ} -closed set A and each supra regular open set B containing A, there exist a gpr^{μ} -open set G such that $cl^{\mu}(A) \subset G \subset pcl^{\mu}(G) \subset B$.

Proof. (i) \Rightarrow (ii) Let A be a supra regular closed subset of X and B be an g^{μ} open set such that $A \subset B$. Then by theorem 3.18 [7], $A \subset int^{\mu}(B)$. Now, by hypothesis X is supra pre*-normal and $int^{\mu}(B)$ is supra regular open. Therefore by
theorem 3.17, there exist a supra pre-open set U such that $A \subset U \subset pcl^{\mu}(U) \subset int^{\mu}(B)$.

(ii) \Rightarrow (iii) Let A be any g^{μ} -closed subset of X and B be a supra regular open set such that $A \subset B$. Then $cl^{\mu}(A) \subset B$. Since every supra regular open set is g^{μ} -open, B is g^{μ} -open. By hypothesis $cl^{\mu}(A)$ is supra regular closed. Therefore, there exist a supra pre-open set U such that $cl^{\mu}(A) \subset U \subset pcl^{\mu}(U) \subset int^{\mu}(B) \subset B$. (iii) \Rightarrow (iv) Let A be a g^{μ} -closed set and B be a supra regular open set containing A. Then there exist a supra pre-open set U such that $cl^{\mu}(A) \subset U \subset pcl^{\mu}(U) \subset B$. Since each supra pre-open set is gpr^{μ} -open, there exist a gpr^{μ} -open set G such that $cl^{\mu}(A) \subset G \subset pcl^{\mu}(G) \subset B$.

(iv) \Rightarrow (i) Let A and B be two disjoint supra regular closed subsets of X. Then A is g^{μ} -closed and $A \subset X - B$. By hypothesis there exists a gpr^{μ} -open set G such that $A \subset cl^{\mu}(A) \subset G \subset pcl^{\mu}(G) \subset X - B$. Since G is gpr^{μ} -open, $A \subset pint^{\mu}(G)$. Let $V = pint^{\mu}(G)$, then V is supra pre-open and $A \subset V \subset pcl^{\mu}(V) \subset X - B$. Thus $A \subset V, B \subset X - pcl^{\mu}(V)$ which is supra pre-open and $V \cap (X - pcl^{\mu}(V)) = \phi$. Therefore X is supra pre*-normal. \Box

References

- R.Devi, S.Sampathkumar and M.Caldas, On Supra α-open sets and Sα-continuous functions, General Mathematics 16(2)(2008), 77-84.
- [2] W.Dunham, $T_{\frac{1}{2}}$ -spaces, Kyungpook Math.J. **17**(1977), 161-169.
- [3] Gnanambal Ilango and Vidhya Menon, Characterizations of supra generalized preregular closed sets, Int. Jr. of Engineering, Contemporary Mathematics and Sciences 1(2)(2015),7-12.
- [4] M.Kamraj, G.Ramkumar, O.Ravi and M.L.Thivagar, Supra sg-closed sets and related maps, Global Journal of Advances in Pure and Applied Mathematics 1(1)(2012), 9-23.
- [5] S.R.Malghan, Generalized closed maps, J. Karnatak Univ. Sci. 27(1982), 82-88.
- [6] A.S.Mashhour, A.A.Allam, F.S.Mahmoud and F.H.Khedr, On supra topological spaces, Indian J. Pure Appl. Math. 14(4)(1983), 502-510.
- [7] O.Ravi, G.Ramkumar and M.Kamaraj, On supra g-closed sets, International Journal of Advances in Pure and Applied Mathematics 1(2)(2011), 52-66.
- [8] O.R.Sayed and Takashi Noiri, On supra b-open sets and supra b-continuity on topological spaces, European Journal of Pure and Applied Mathematics 3(2) (2010), 295-302.
- O.R.Sayed, Supra pre-open sets and supra pre-continuity on topological spaces, Scientific Studies and Research Series Mathematics and Informatics 20(2)(2010), 79-88.
- [10] O.R.Sayed, Gnanambal Ilango and Vidhya Menon, An extensive study of supra generalized pre-regular closed sets, International Journal of Pure and Applied Mathematics 106(6)(2016), 57-73.
- [11] M.Trinita Pricilla and I.Arockiarani, On generalized b-regular closed sets in supra topological spaces, Asian Journal of Current Enigineering and Maths 1(1)(2012), 1-4.
- [12] Vidhya Menon, On generalized preregular closed sets in supra topological spaces, International Journal Of Scientific & Engineering Research 3(11)(2012), 6-11.
- [13] Won Keun Min and Hong Soon Chang, On M-open mappings, Kangweon-Kyungki Math.Jour. 7(1)(1999), 117-121.

Vidhya Menon

DEPARTMENT OF MATHEMATICS, CMS COLLEGE OF SCIENCE AND COMMERCE, COIMBAT-ORE, INDIA

E-mail address: vidhyamenon77@gmail.com

GNANAMBAL ILANGO

DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE, COIMBATORE, INDIA. *E-mail address*: gnanamilango68@gmail.com