DOI QR코드

DOI QR Code

Characteristics of Transmissible CTX-M- and CMY-Type β-Lactamase-Producing Escherichia coli Isolates Collected from Pig and Chicken Farms in South Korea

  • Shin, Seung Won (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Jung, Myunghwan (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Won, Ho Geun (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Belaynehe, Kuastros Mekonnen (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Yoon, In Joong (Chung Ang Vaccine Laboratory) ;
  • Yoo, Han Sang (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University)
  • Received : 2016.10.05
  • Accepted : 2017.07.02
  • Published : 2017.09.28

Abstract

The rapid dissemination of extended-spectrum ${\beta}$-lactamase (ESBL)-producing Escherichia coli has significantly contributed to public health hazard globally. A total of 281 E. coli strains recovered from pigs and chickens between 2009 and 2015 in South Korea were analyzed for ESBL production. ESBL phenotypes were recognized in 14 E. coli isolates; ten and three ESBL-producing isolates carried only $bla_{CTX-M}$ and $bla_{CMY}$ genes, respectively, and one isolate harbored both genes. The predominant CTX-M and CMY types were CTX-M-15 (n = 8) and CMY-2 (n = 3). We also detected ESBL-producing isolates harboring $bla_{CTX-M-65}$, $bla_{CTX-M-14}$, $bla_{CMY-6}$, $bla_{DHA-1}$, and $bla_{TEM-1}$ genes. All ESBL-producing isolates showed resistance to the extent of the fourth generation cephalosporins, along with multidrug resistance. CTX-M-15-producing isolates showed higher MIC values than CTX-M-14- and CTX-M-65-producing isolates. The $bla_{CTX-M}$ and $bla_{CMY}$ genes have the potential to be transferable. The spreading of $bla_{CMY}$ and $bla_{CTX-M}$ genes was arbitrated mainly via Frep and IncI1 plasmids. Our isolates showed clonal diversity in PFGE analysis. This is the first report of E. coli isolates carrying $bla_{CMY-6}$ in chicken from South Korea. The emergence of CMY-6 ESBLs in a population of poultry suggests that extensive screening with long-term surveillance is necessary to prevent the dissemination of ESBL from chicken to human.

Keywords

References

  1. Barton MD. 2000. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 13: 279-299. https://doi.org/10.1079/095442200108729106
  2. Soulsby L. 2007. Antimicrobials and animal health: a fascinating nexus. J. Antimicrob. Chemother. 60: I77-I78. https://doi.org/10.1093/jac/dkm164
  3. Barza M. 2002. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin. Infect. Dis. 34: S123-S125. https://doi.org/10.1086/340249
  4. Finley RL, Collignon P, Larsson DG, McEwen SA, Li XZ, Gaze WH, et al. 2013. The Scourge of antibiotic resistance: the important role of the environment. Clin. Infect. Dis. 57: 704-710. https://doi.org/10.1093/cid/cit355
  5. Smet A, Rasschaert G, Martel A, Persoons D, Dewulf J, Butaye P, et al. 2011. In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J. Appl. Microbiol. 110: 541-549. https://doi.org/10.1111/j.1365-2672.2010.04907.x
  6. Pitout JD, Laupland KB. 2008. Extended-spectrum ${\beta}$-lactamaseproducing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8: 159-166. https://doi.org/10.1016/S1473-3099(08)70041-0
  7. Sanders CC, Sanders WE. 1992. ${\beta}$-lactam resistance in gramnegative bacteria - global trends and clinical impact. Clin. Infect. Dis. 15: 824-839. https://doi.org/10.1093/clind/15.5.824
  8. Bonnet R. 2004. Growing group of extended-spectrum ${\beta}$-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48: 1-14. https://doi.org/10.1128/AAC.48.1.1-14.2004
  9. Philippon A, Arlet G, Jacoby GA. 2002. Plasmid-determined AmpC-type ${\beta}$-lactamases. Antimicrob. Agents Chemother. 46: 1-11. https://doi.org/10.1128/AAC.46.1.1-11.2002
  10. Kim J, Lim YM, Jeong YS, Seol SY. 2005. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extendedspectrum ${\beta}$-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob. Agents Chemother. 49: 1572-1575. https://doi.org/10.1128/AAC.49.4.1572-1575.2005
  11. Rodriguez-Bano J, Ngugro MD. 2008. Extended-spectrum ${\beta}$-lactamases in ambulatory care: a clinical perspective. Clin. Microbiol. Infect. 14: 104-110. https://doi.org/10.1111/j.1469-0691.2007.01866.x
  12. Lim JS, Choi DS, Kim YJ, Chon JW, Kim HS, Park HJ, et al. 2015. Characterization of Escherichia coli-producing extendedspectrum ${\beta}$-lactamase (ESBL) isolated from chicken slaughterhouses in South Korea. Foodborne Pathog. Dis. 12: 741-748. https://doi.org/10.1089/fpd.2014.1921
  13. Tamang MD, Nam HM, Kim TS, Jang GC, Jung SC, Lim SK. 2011. Emergence of extended-spectrum ${\beta}$-Lactamase (CTXM-15 and CTX-M-14)-producing nontyphoid Salmonella with reduced susceptibility to ciprofloxacin among food animals and humans in Korea. J. Clin. Microbiol. 49: 2671-2675. https://doi.org/10.1128/JCM.00754-11
  14. Rayamajhi N, Cha SB, Shin SW, Jung BY, Lim SK, Yoo HS. 2011. Plasmid typing and resistance profiling of Escherichia fergusonii and other Enterobacteriaceae isolates from South Korean farm animals. Appl. Environ. Microbiol. 77: 3163-3166. https://doi.org/10.1128/AEM.02188-10
  15. Tamang MD, Nam HM, Gurung M, Jang GC, Kim SR, Jung SC, et al. 2013. Molecular Characterization of CTX-M ${\beta}$-Lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl. Environ. Microbiol. 79: 3898-3905. https://doi.org/10.1128/AEM.00522-13
  16. Tamang MD, Nam HM, Kim SR, Chae MH, Jang GC, Jung SC, et al. 2013. Prevalence and molecular characterization of CTX-M ${\beta}$-lactamase-producing Escherichia coli i solated f rom healthy swine and cattle. Foodborne Pathog. Dis. 10: 13-20. https://doi.org/10.1089/fpd.2012.1245
  17. Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, et al. 2005. Establishment of a universal size s tandard strain f or u se with the PulseNet s tandardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J. Clin. Microbiol. 43: 1045-1050. https://doi.org/10.1128/JCM.43.3.1045-1050.2005
  18. Clinical and Laboratory Standard Institutes. 2013. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement M100-S23. Clinical and Laboratory Standards Institute, Wayne, PA.
  19. Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, et al. 2008. Characterization of TEM-, SHV- and AmpC-type ${\beta}$-lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int. J. Food Microbiol. 124: 183-187. https://doi.org/10.1016/j.ijfoodmicro.2008.03.009
  20. Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, et al. 2005. blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 49: 1319-1322. https://doi.org/10.1128/AAC.49.4.1319-1322.2005
  21. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important ${\beta}$-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65: 490-495. https://doi.org/10.1093/jac/dkp498
  22. Jeong SH, Bae IK, Kwon SB, Lee JH, Song JS, Jung HI, et al. 2005. Dissemination of transferable CTX-M-type extendedspectrum ${\beta}$-lactamase-producing Escherichia coli in Korea. J. Appl. Microbiol. 98: 921-927. https://doi.org/10.1111/j.1365-2672.2004.02526.x
  23. Clermont O, Bonacorsi S, Bingen E. 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66: 4555-4558. https://doi.org/10.1128/AEM.66.10.4555-4558.2000
  24. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63: 219-228. https://doi.org/10.1016/j.mimet.2005.03.018
  25. Shin SW, Byun JW, Jung M, Shin MK, Yoo HS. 2014. Antimicrobial resistance, virulence genes and PFGE-profiling of Escherichia coli Isolates from South Korean cattle farms. J. Microbiol. 52:785-793. https://doi.org/10.1007/s12275-014-4166-1
  26. Shin SW, Shin MK, Jung M, Belaynehe KM, Yoo HS. 2015. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl.Environ.Microbiol. 81: 5560-5566. https://doi.org/10.1128/AEM.01511-15
  27. Agerso Y, Aarestrup FM. 2013. Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs. J. Antimicrob. Chemother. 68: 569-572. https://doi.org/10.1093/jac/dks427
  28. Hiroi M, Yamazaki F, Harada T, Takahashi N, Iida N, Noda Y, et al. 2012. Prevalence of extended-spectrum ${\beta}$-lactamaseproducing Escherichia coli and Klebsiella pneumoniae in foodproducing animals. J. Vet. Med. Sci. 74: 189-195. https://doi.org/10.1292/jvms.11-0372
  29. Ho PL, Chow KH, Lai EL, Lo WU, Yeung MK, Chan J, et al. 2011. Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to 'critically important' antibiotics among food animals in Hong Kong, 2008-10. J. Antimicrob. Chemother. 66: 765-768. https://doi.org/10.1093/jac/dkq539
  30. Dierikx C, van der Goot J, Fabri T, van Essen-Zandbergen A, Smith H, Mevius D. 2013. Extended-spectrum-${\beta}$-lactamaseand AmpC-${\beta}$-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J. Antimicrob. Chemother. 68: 60-67. https://doi.org/10.1093/jac/dks349
  31. Hiki M, Usui M, Kojima A, Ozawa M, Ishii Y, Asai T. 2013. Diversity of plasmid replicons encoding the blaCMY-2 gene in broad-spectrum cephalosporin-resistant Escherichia coli f rom livestock animals in Japan. Foodborne Pathog. Dis. 10: 243-249. https://doi.org/10.1089/fpd.2012.1306
  32. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Canica MM, et al. 2008. Intercontinental emergence of Escherichia coli clone O25 : H4-ST131 producing CTX-M-. J. Antimicrob. Chemother. 61: 273-281.
  33. Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, et al. 2013. Public health risks of enterobacterial isolates producing extended-spectrum ${\beta}$-lactamases or AmpC ${\beta}$-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin. Infect. Dis. 56: 1030-1037. https://doi.org/10.1093/cid/cis1043
  34. Winokur PL, Vonstein DL, Hoffman LJ, Uhlenhopp EK, Doern GV. 2001. Evidence for transfer of CMY-2 AmpC $\beta$-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob. Agents Chemother. 45: 2716-2722. https://doi.org/10.1128/AAC.45.10.2716-2722.2001
  35. Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. 2010. High prevalence of extended-spectrum ${\beta}$-lactamases and plasmid-mediated AmpC ${\beta}$-lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn. Microbiol. Infect. Dis. 67: 261-265. https://doi.org/10.1016/j.diagmicrobio.2010.02.012
  36. Tarnberg M, Ostholm-Balkhed A, Monstein HJ, Hallgren A, Hanberger H, Nilsson LE. 2011. In vitro activity of ${\beta}$-lactam antibiotics against CTX-M-producing Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 30: 981-987. https://doi.org/10.1007/s10096-011-1183-4
  37. Yan JJ, Ko WC, Tsai SH, Wu HM, Jin YT, Wu JJ. 2000. Dissemination of CTX-M-3 and CMY-2 ${\beta}$-lactamases among clinical isolates of Escherichia coli in southern Taiwan. J. Clin. Microbiol. 38: 4320-4325.
  38. Animal and Plant Quarantine Agency. 2014. Antimicrobial use in livestock and monitoring of antimicrobial resistance in animal and carcass. Korea Food and Drug Administraition. Seoul, South Korea. 10-12.
  39. Brinas L, Moreno MA, Teshager T, Saenz Y, Porrero MC, Dominguez L, et al. 2005. Monitoring and characterization of extended-spectrum ${\beta}$-lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob. Agents Chemother. 49: 1262-1264. https://doi.org/10.1128/AAC.49.3.1262-1264.2005
  40. Hammerum AM, Larsen J, Andersen VD, Lester CH, Skytte TSS, Hansen F, et al. 2014. Characterization of extended-spectrum ${\beta}$-lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third-or fourth-generation cephalosporins. J. Antimicrob. Chemother. 69: 2650-2657. https://doi.org/10.1093/jac/dku180

Cited by

  1. Characterization of extended-spectrum and CMY-2ß-lactamases, and associated virulence genes inEscherichia colifrom food of animal origin in México vol.120, pp.7, 2017, https://doi.org/10.1108/bfj-02-2018-0104
  2. Differences in Antimicrobial Resistance Phenotypes by the Group of CTX-M Extended-Spectrum β-Lactamase vol.22, pp.1, 2017, https://doi.org/10.5145/acm.2019.22.1.1
  3. Emergence of CMY-2-Producing Escherichia coli in Korean Layer Parent Stock vol.25, pp.3, 2017, https://doi.org/10.1089/mdr.2018.0254
  4. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines vol.15, pp.None, 2017, https://doi.org/10.1186/s12917-019-1975-9
  5. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance vol.46, pp.1, 2017, https://doi.org/10.1080/1040841x.2020.1715339
  6. Clinically Relevant Extended-Spectrum β-Lactamase–Producing Escherichia coli Isolates From Food Animals in South Korea vol.11, pp.None, 2017, https://doi.org/10.3389/fmicb.2020.00604
  7. Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines vol.26, pp.2, 2017, https://doi.org/10.1089/mdr.2019.0019
  8. Resistance Profiling and Molecular Characterization of Extended-Spectrum/Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli Isolated from Healthy Broiler Chickens in South Korea vol.8, pp.9, 2017, https://doi.org/10.3390/microorganisms8091434
  9. Extended Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Broiler Liver in the Center of Algeria, with Detection of CTX-M-55 and B2/ST131-CTX-M-15 in Escherichi vol.27, pp.2, 2017, https://doi.org/10.1089/mdr.2020.0024
  10. Comparative analysis of genetic characterization of β-lactam-resistant Escherichia coli from bulk tank milk in Korea vol.74, pp.1, 2017, https://doi.org/10.1186/s13620-021-00203-4