References
- Barton MD. 2000. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 13: 279-299. https://doi.org/10.1079/095442200108729106
- Soulsby L. 2007. Antimicrobials and animal health: a fascinating nexus. J. Antimicrob. Chemother. 60: I77-I78. https://doi.org/10.1093/jac/dkm164
- Barza M. 2002. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin. Infect. Dis. 34: S123-S125. https://doi.org/10.1086/340249
- Finley RL, Collignon P, Larsson DG, McEwen SA, Li XZ, Gaze WH, et al. 2013. The Scourge of antibiotic resistance: the important role of the environment. Clin. Infect. Dis. 57: 704-710. https://doi.org/10.1093/cid/cit355
- Smet A, Rasschaert G, Martel A, Persoons D, Dewulf J, Butaye P, et al. 2011. In situ ESBL conjugation from avian to human Escherichia coli during cefotaxime administration. J. Appl. Microbiol. 110: 541-549. https://doi.org/10.1111/j.1365-2672.2010.04907.x
-
Pitout JD, Laupland KB. 2008. Extended-spectrum
${\beta}$ -lactamaseproducing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8: 159-166. https://doi.org/10.1016/S1473-3099(08)70041-0 -
Sanders CC, Sanders WE. 1992.
${\beta}$ -lactam resistance in gramnegative bacteria - global trends and clinical impact. Clin. Infect. Dis. 15: 824-839. https://doi.org/10.1093/clind/15.5.824 -
Bonnet R. 2004. Growing group of extended-spectrum
${\beta}$ -lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48: 1-14. https://doi.org/10.1128/AAC.48.1.1-14.2004 -
Philippon A, Arlet G, Jacoby GA. 2002. Plasmid-determined AmpC-type
${\beta}$ -lactamases. Antimicrob. Agents Chemother. 46: 1-11. https://doi.org/10.1128/AAC.46.1.1-11.2002 -
Kim J, Lim YM, Jeong YS, Seol SY. 2005. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extendedspectrum
${\beta}$ -lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob. Agents Chemother. 49: 1572-1575. https://doi.org/10.1128/AAC.49.4.1572-1575.2005 -
Rodriguez-Bano J, Ngugro MD. 2008. Extended-spectrum
${\beta}$ -lactamases in ambulatory care: a clinical perspective. Clin. Microbiol. Infect. 14: 104-110. https://doi.org/10.1111/j.1469-0691.2007.01866.x -
Lim JS, Choi DS, Kim YJ, Chon JW, Kim HS, Park HJ, et al. 2015. Characterization of Escherichia coli-producing extendedspectrum
${\beta}$ -lactamase (ESBL) isolated from chicken slaughterhouses in South Korea. Foodborne Pathog. Dis. 12: 741-748. https://doi.org/10.1089/fpd.2014.1921 -
Tamang MD, Nam HM, Kim TS, Jang GC, Jung SC, Lim SK. 2011. Emergence of extended-spectrum
${\beta}$ -Lactamase (CTXM-15 and CTX-M-14)-producing nontyphoid Salmonella with reduced susceptibility to ciprofloxacin among food animals and humans in Korea. J. Clin. Microbiol. 49: 2671-2675. https://doi.org/10.1128/JCM.00754-11 - Rayamajhi N, Cha SB, Shin SW, Jung BY, Lim SK, Yoo HS. 2011. Plasmid typing and resistance profiling of Escherichia fergusonii and other Enterobacteriaceae isolates from South Korean farm animals. Appl. Environ. Microbiol. 77: 3163-3166. https://doi.org/10.1128/AEM.02188-10
-
Tamang MD, Nam HM, Gurung M, Jang GC, Kim SR, Jung SC, et al. 2013. Molecular Characterization of CTX-M
${\beta}$ -Lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl. Environ. Microbiol. 79: 3898-3905. https://doi.org/10.1128/AEM.00522-13 -
Tamang MD, Nam HM, Kim SR, Chae MH, Jang GC, Jung SC, et al. 2013. Prevalence and molecular characterization of CTX-M
${\beta}$ -lactamase-producing Escherichia coli i solated f rom healthy swine and cattle. Foodborne Pathog. Dis. 10: 13-20. https://doi.org/10.1089/fpd.2012.1245 - Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, et al. 2005. Establishment of a universal size s tandard strain f or u se with the PulseNet s tandardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J. Clin. Microbiol. 43: 1045-1050. https://doi.org/10.1128/JCM.43.3.1045-1050.2005
- Clinical and Laboratory Standard Institutes. 2013. Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement M100-S23. Clinical and Laboratory Standards Institute, Wayne, PA.
-
Rayamajhi N, Kang SG, Lee DY, Kang ML, Lee SI, Park KY, et al. 2008. Characterization of TEM-, SHV- and AmpC-type
${\beta}$ -lactamases from cephalosporin-resistant Enterobacteriaceae isolated from swine. Int. J. Food Microbiol. 124: 183-187. https://doi.org/10.1016/j.ijfoodmicro.2008.03.009 - Batchelor M, Hopkins K, Threlfall EJ, Clifton-Hadley FA, Stallwood AD, Davies RH, et al. 2005. blaCTX-M genes in clinical Salmonella isolates recovered from humans in England and Wales from 1992 to 2003. Antimicrob. Agents Chemother. 49: 1319-1322. https://doi.org/10.1128/AAC.49.4.1319-1322.2005
-
Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. 2010. Development of a set of multiplex PCR assays for the detection of genes encoding important
${\beta}$ -lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 65: 490-495. https://doi.org/10.1093/jac/dkp498 -
Jeong SH, Bae IK, Kwon SB, Lee JH, Song JS, Jung HI, et al. 2005. Dissemination of transferable CTX-M-type extendedspectrum
${\beta}$ -lactamase-producing Escherichia coli in Korea. J. Appl. Microbiol. 98: 921-927. https://doi.org/10.1111/j.1365-2672.2004.02526.x - Clermont O, Bonacorsi S, Bingen E. 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66: 4555-4558. https://doi.org/10.1128/AEM.66.10.4555-4558.2000
- Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63: 219-228. https://doi.org/10.1016/j.mimet.2005.03.018
- Shin SW, Byun JW, Jung M, Shin MK, Yoo HS. 2014. Antimicrobial resistance, virulence genes and PFGE-profiling of Escherichia coli Isolates from South Korean cattle farms. J. Microbiol. 52:785-793. https://doi.org/10.1007/s12275-014-4166-1
- Shin SW, Shin MK, Jung M, Belaynehe KM, Yoo HS. 2015. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl.Environ.Microbiol. 81: 5560-5566. https://doi.org/10.1128/AEM.01511-15
- Agerso Y, Aarestrup FM. 2013. Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs. J. Antimicrob. Chemother. 68: 569-572. https://doi.org/10.1093/jac/dks427
-
Hiroi M, Yamazaki F, Harada T, Takahashi N, Iida N, Noda Y, et al. 2012. Prevalence of extended-spectrum
${\beta}$ -lactamaseproducing Escherichia coli and Klebsiella pneumoniae in foodproducing animals. J. Vet. Med. Sci. 74: 189-195. https://doi.org/10.1292/jvms.11-0372 - Ho PL, Chow KH, Lai EL, Lo WU, Yeung MK, Chan J, et al. 2011. Extensive dissemination of CTX-M-producing Escherichia coli with multidrug resistance to 'critically important' antibiotics among food animals in Hong Kong, 2008-10. J. Antimicrob. Chemother. 66: 765-768. https://doi.org/10.1093/jac/dkq539
-
Dierikx C, van der Goot J, Fabri T, van Essen-Zandbergen A, Smith H, Mevius D. 2013. Extended-spectrum-
${\beta}$ -lactamaseand AmpC-${\beta}$ -lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J. Antimicrob. Chemother. 68: 60-67. https://doi.org/10.1093/jac/dks349 - Hiki M, Usui M, Kojima A, Ozawa M, Ishii Y, Asai T. 2013. Diversity of plasmid replicons encoding the blaCMY-2 gene in broad-spectrum cephalosporin-resistant Escherichia coli f rom livestock animals in Japan. Foodborne Pathog. Dis. 10: 243-249. https://doi.org/10.1089/fpd.2012.1306
- Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Canica MM, et al. 2008. Intercontinental emergence of Escherichia coli clone O25 : H4-ST131 producing CTX-M-. J. Antimicrob. Chemother. 61: 273-281.
-
Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, et al. 2013. Public health risks of enterobacterial isolates producing extended-spectrum
${\beta}$ -lactamases or AmpC${\beta}$ -lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin. Infect. Dis. 56: 1030-1037. https://doi.org/10.1093/cid/cis1043 -
Winokur PL, Vonstein DL, Hoffman LJ, Uhlenhopp EK, Doern GV. 2001. Evidence for transfer of CMY-2 AmpC
$\beta$ -lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob. Agents Chemother. 45: 2716-2722. https://doi.org/10.1128/AAC.45.10.2716-2722.2001 -
Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS. 2010. High prevalence of extended-spectrum
${\beta}$ -lactamases and plasmid-mediated AmpC${\beta}$ -lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn. Microbiol. Infect. Dis. 67: 261-265. https://doi.org/10.1016/j.diagmicrobio.2010.02.012 -
Tarnberg M, Ostholm-Balkhed A, Monstein HJ, Hallgren A, Hanberger H, Nilsson LE. 2011. In vitro activity of
${\beta}$ -lactam antibiotics against CTX-M-producing Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 30: 981-987. https://doi.org/10.1007/s10096-011-1183-4 -
Yan JJ, Ko WC, Tsai SH, Wu HM, Jin YT, Wu JJ. 2000. Dissemination of CTX-M-3 and CMY-2
${\beta}$ -lactamases among clinical isolates of Escherichia coli in southern Taiwan. J. Clin. Microbiol. 38: 4320-4325. - Animal and Plant Quarantine Agency. 2014. Antimicrobial use in livestock and monitoring of antimicrobial resistance in animal and carcass. Korea Food and Drug Administraition. Seoul, South Korea. 10-12.
-
Brinas L, Moreno MA, Teshager T, Saenz Y, Porrero MC, Dominguez L, et al. 2005. Monitoring and characterization of extended-spectrum
${\beta}$ -lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob. Agents Chemother. 49: 1262-1264. https://doi.org/10.1128/AAC.49.3.1262-1264.2005 -
Hammerum AM, Larsen J, Andersen VD, Lester CH, Skytte TSS, Hansen F, et al. 2014. Characterization of extended-spectrum
${\beta}$ -lactamase (ESBL)-producing Escherichia coli obtained from Danish pigs, pig farmers and their families from farms with high or no consumption of third-or fourth-generation cephalosporins. J. Antimicrob. Chemother. 69: 2650-2657. https://doi.org/10.1093/jac/dku180
Cited by
- Characterization of extended-spectrum and CMY-2ß-lactamases, and associated virulence genes inEscherichia colifrom food of animal origin in México vol.120, pp.7, 2017, https://doi.org/10.1108/bfj-02-2018-0104
- Differences in Antimicrobial Resistance Phenotypes by the Group of CTX-M Extended-Spectrum β-Lactamase vol.22, pp.1, 2017, https://doi.org/10.5145/acm.2019.22.1.1
- Emergence of CMY-2-Producing Escherichia coli in Korean Layer Parent Stock vol.25, pp.3, 2017, https://doi.org/10.1089/mdr.2018.0254
- Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines vol.15, pp.None, 2017, https://doi.org/10.1186/s12917-019-1975-9
- Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance vol.46, pp.1, 2017, https://doi.org/10.1080/1040841x.2020.1715339
- Clinically Relevant Extended-Spectrum β-Lactamase–Producing Escherichia coli Isolates From Food Animals in South Korea vol.11, pp.None, 2017, https://doi.org/10.3389/fmicb.2020.00604
- Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines vol.26, pp.2, 2017, https://doi.org/10.1089/mdr.2019.0019
- Resistance Profiling and Molecular Characterization of Extended-Spectrum/Plasmid-Mediated AmpC β-Lactamase-Producing Escherichia coli Isolated from Healthy Broiler Chickens in South Korea vol.8, pp.9, 2017, https://doi.org/10.3390/microorganisms8091434
- Extended Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae from Broiler Liver in the Center of Algeria, with Detection of CTX-M-55 and B2/ST131-CTX-M-15 in Escherichi vol.27, pp.2, 2017, https://doi.org/10.1089/mdr.2020.0024
- Comparative analysis of genetic characterization of β-lactam-resistant Escherichia coli from bulk tank milk in Korea vol.74, pp.1, 2017, https://doi.org/10.1186/s13620-021-00203-4