참고문헌
- Floegel-Niesmann G, Blome S, Gerss-Dulmer H, Bunzenthal C, Moennig V. 2009. Virulence of classical swine fever virus isolates from Europe and other areas during 1996 until 2007. Vet. Microbiol. 139: 165-169. https://doi.org/10.1016/j.vetmic.2009.05.008
- Schweizer M, Peterhans E. 2014. Pestiviruses. Annu. Rev. Anim. Biosci. 2: 141-163. https://doi.org/10.1146/annurev-animal-022513-114209
- Lamp B, Riedel C, Roman-Sosa G, Heimann M, Jacobi S, Becher P, et al. 2011. Biosynthesis of classical swine fever virus nonstructural proteins. J. Virol. 85: 3607-3620. https://doi.org/10.1128/JVI.02206-10
- Suradhat S, Damrongwatanapokin S, Thanawongnuwech R. 2007. Factors critical for successful vaccination against classical swine fever in endemic areas. Vet. Microbiol. 119: 1-9. https://doi.org/10.1016/j.vetmic.2006.10.003
- Huang YL, Deng MC, Wang FI, Huang CC, Chang CY. 2014. The challenges of classical swine fever control: modified live and E2 subunit vaccines. Virus Res. 179: 1-11. https://doi.org/10.1016/j.virusres.2013.10.025
- Luo Y, Li S, Sun Y, Qiu HJ. 2014. Classical swine fever in China: a minireview. Vet. Microbiol. 172: 1-6. https://doi.org/10.1016/j.vetmic.2014.04.004
- Xia H, Wahlberg N, Qiu HJ, Widen F, Belak S, Liu L. 2011. Lack of phylogenetic evidence that the Shimen strain is the parental strain of the lapinized Chinese strain (C-strain) vaccine against classical swine fever. Arch. Virol. 156: 1041-1044. https://doi.org/10.1007/s00705-011-0948-5
- Wu SC, Liau MY, Lin YC, Sun CJ, Wang CT. 2013. The feasibility of a novel bioreactor for vaccine production of classical swine fever virus. Vaccine 31: 867-872. https://doi.org/10.1016/j.vaccine.2012.12.017
- Moormann RJ, van Gennip HG, Miedema GK, Hulst MM, van Rijn PA. 1996. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J. Virol. 70: 763-770.
- van Gennip HG, van Rijn PA, Widjojoatmodjo MN, Moormann RJ. 1999. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase. J. Virol. Methods 78: 117-128. https://doi.org/10.1016/S0166-0934(98)00171-2
- Hu W, Zhang H, Han Q, Li L, Chen Y, Xia N, et al. 2015. A Vero-cell-adapted vaccine donor strain of influenza A virus generated by serial passages. Vaccine 33: 374-381. https://doi.org/10.1016/j.vaccine.2014.11.007
- Biswal JK, Mohapatra JK, Bisht P, Subramaniam S, Sanyal A, Pattnaik B. 2015. A positively charged lysine residue at VP2 131 position allows for the enhanced adaptability of footand- mouth disease virus serotype A in BHK-21 cells. Biologicals 43: 71-78. https://doi.org/10.1016/j.biologicals.2014.07.001
- Berryman S, Clark S, Kakker NK, Silk R, Seago J, Wadsworth J, et al. 2013. Positively charged residues at the five-fold symmetry axis of cell culture-adapted foot-andmouth disease virus permit novel receptor interactions. J. Virol. 87: 8735-8744. https://doi.org/10.1128/JVI.01138-13
- Liu S, Xiao L, Nelson C, Hagedorn CH. 2012. A cell culture adapted HCV JFH1 variant that increases viral titers and permits the production of high titer infectious chimeric reporter viruses. PLoS One 7: e44965. https://doi.org/10.1371/journal.pone.0044965
- Kaul A, Woerz I, Meuleman P, Leroux-Roels G, Bartenschlager R. 2007. Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant. J. Virol. 81: 13168-13179. https://doi.org/10.1128/JVI.01362-07
- Tong C, Chen N, Liao X, Xie W, Li D, Li X, Fang W. 2015. The epitope recognized by monoclonal antibody 2B6 in the B/C domains of classical swine fever virus glycoprotein E2 affects viral binding to hyperimmune sera and replication. J. Microbiol. Biotechnol. 25: 537-546. https://doi.org/10.4014/jmb.1407.07073
- Chen N, Tong C, Li D, Wan J, Yuan X, Li X, et al. 2010. Antigenic analysis of classical swine fever virus E2 glycoprotein using pig antibodies identifies residues contributing to antigenic variation of the vaccine C-strain and group 2 strains circulating in China. Virol. J. 7: 378. https://doi.org/10.1186/1743-422X-7-378
- McHugh ML. 2011. Multiple comparison analysis testing in ANOVA. Biochem. Med. (Zagreb) 21: 203-209.
- Tews BA, Meyers G. 2007. The pestivirus glycoprotein Erns is anchored in plane in the membrane via an amphipathic helix. J. Biol. Chem. 282: 32730-32741. https://doi.org/10.1074/jbc.M706803200
- Hulst MM, Moormann RJ. 2001. Erns protein of pestiviruses. Methods Enzymol. 342: 431-440.
- Hulst MM, van Gennip HG, Moormann RJ. 2000. Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein Erns. J. Virol. 74: 9553-9561. https://doi.org/10.1128/JVI.74.20.9553-9561.2000
- Li C, Li Y, Shen L, Huang J, Sun Y, Luo Y, et al. 2014. The role of noncoding regions of classical swine fever virus Cstrain in its adaptation to the rabbit. Virus Res. 183: 117-122. https://doi.org/10.1016/j.virusres.2014.02.003
- Graham SP, Haines FJ, Johns HL, Sosan O, La Rocca SA, Lamp B, et al. 2012. Characterisation of vaccine-induced, broadly cross-reactive IFN-gamma secreting T cell responses that correlate with rapid protection against classical swine fever virus. Vaccine 30: 2742-2748. https://doi.org/10.1016/j.vaccine.2012.02.029
- Graham SP, Everett HE, Johns HL, Haines FJ, La Rocca SA, Khatri M, et al. 2010. Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses. Vet. Microbiol. 142: 34-40. https://doi.org/10.1016/j.vetmic.2009.09.040
- Dong XN, Chen YH. 2007. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 25: 205-230. https://doi.org/10.1016/j.vaccine.2006.07.033
- Jiang J, Luo G. 2012. Cell culture-adaptive mutations promote viral protein-protein interactions and morphogenesis of infectious hepatitis C virus. J. Virol. 86: 8987-8997. https://doi.org/10.1128/JVI.00004-12
- Koutsoudakis G, Perez-del-Pulgar S, Coto-Llerena M, Gonzalez P, Dragun J, Mensa L, et al. 2011. Cell culture replication of a genotype 1b hepatitis C virus isolate cloned from a patient who underwent liver transplantation. PLoS One 6: e23587. https://doi.org/10.1371/journal.pone.0023587
- Kang JI, Kim JP, Wakita T, Ahn BY. 2009. Cell cultureadaptive mutations in the NS5B gene of hepatitis C virus with delayed replication and reduced cytotoxicity. Virus Res. 144: 107-116. https://doi.org/10.1016/j.virusres.2009.04.002
- van Rijn PA, Miedema GK, Wensvoort G, van Gennip HG, Moormann RJ. 1994. Antigenic structure of envelope glycoprotein E1 of hog cholera virus. J. Virol. 68: 3934-3942.
- Vanderhallen H, Mittelholzer C, Hofmann MA, Koenen F. 1999. Classical swine fever virus is genetically stable in vitro and in vivo. Arch. Virol. 144: 1669-1677. https://doi.org/10.1007/s007050050622
- Ferrari M. 1992. A tissue culture vaccine with lapinized Chinese (LC) strain of hog cholera virus (HCV). Comp. Immunol. Microbiol. Infect. Dis. 15: 221-228. https://doi.org/10.1016/0147-9571(92)90095-9
- Gualandi GL, Ferrari M, Cardeti G, Boldini M, Buonavoglia C. 1991. Protection tests in pigs vaccinated with the lapinized Chinese strain of hog cholera virus (HCV) previously adapted in a minipig kidney (MPK) cell line, to challenge infection with virulent HCV. Microbiologica 14: 213-217.
- Xiao M, Gao J, Wang Y, Wang X, Lu W, Zhen Y, et al. 2004. Influence of a 12-nt insertion present in the 3' untranslated region of classical swine fever virus HCLV strain genome on RNA synthesis. Virus Res. 102: 191-198. https://doi.org/10.1016/j.virusres.2004.01.029
피인용 문헌
- E2 and Erns of classical swine fever virus C-strain play central roles in its adaptation to rabbits vol.55, pp.2, 2019, https://doi.org/10.1007/s11262-018-01631-1
- Classical swine fever virus C-strain with eight mutation sites shows enhanced cell adaptation and protects pigs from lethal challenge vol.164, pp.6, 2017, https://doi.org/10.1007/s00705-019-04239-4
- Zika Virus Proteins NS2A and NS4A Are Major Antagonists that Reduce IFN-β Promoter Activity Induced by the MDA5/RIG-I Signaling Pathway vol.29, pp.10, 2019, https://doi.org/10.4014/jmb.1909.09017
- Attenuation of Equine Lentivirus Alters Mitochondrial Protein Expression Profile from Inflammation to Apoptosis vol.93, pp.21, 2017, https://doi.org/10.1128/jvi.00653-19
- A Self-Assembling Ferritin Nanoplatform for Designing Classical Swine Fever Vaccine: Elicitation of Potent Neutralizing Antibody vol.9, pp.1, 2017, https://doi.org/10.3390/vaccines9010045
- Proline to Threonine Mutation at Position 162 of NS5B of Classical Swine Fever Virus Vaccine C Strain Promoted Genome Replication and Infectious Virus Production by Facilitating Initiation of RNA Synt vol.13, pp.8, 2017, https://doi.org/10.3390/v13081523