References
- Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. 1999. Control of acid resistance in Escherichia coli. J. Bacteriol. 181: 3525-3535.
- Kim SH, Shin BH, Kim YH, Nam SW, Jeon SY. 2007. Cloning and expression of a full-length glutamate decarboxylase gene from Lactobacillus brevis BH2. Biotechnol. Bioprocess Eng. 12: 707-712. https://doi.org/10.1007/BF02931089
- Saskiawan I. 2008. Biosynthesis of polyamide 4, a biobased and biodegradable polymer. Microbiol. Indonesia 2: 119-123. https://doi.org/10.5454/mi.2.2.5
- Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Gruetter GM. 2003. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J. 22: 4027-4037. https://doi.org/10.1093/emboj/cdg403
- Park KB, Oh SH. 2006. Enhancement of gama-aminobutyric acid production in chungkukjang by applying a Bacillus subtilis strain expressing glutamate decarboxylase from Lactobacillus brevis. Biotechnol. Lett. 28: 1459-1463. https://doi.org/10.1007/s10529-006-9112-9
-
Park KB, Ji GE, Park MS, Oh SH. 2005. Expression of rice glutamate decarboxylase in Bifidobacterium longum enhances
${\gamma}$ -aminobutyric acid production. Biotechnol. Lett. 27: 1681-1684. https://doi.org/10.1007/s10529-005-2730-9 - Vo TD, Kim TW, Hong SH. 2012. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli. Bioprocess Biosyst. Eng. 35: 645-650. https://doi.org/10.1007/s00449-011-0634-8
- Moon TS, Dueber JE, Shiue E, Prather KL. 2010. Use of modular, synthetic scaffold for improved production of glucaric acid in engineered E. coli. Metab. Eng. 12: 298-305. https://doi.org/10.1016/j.ymben.2010.01.003
- Hao R, Schmit JC. 1993. Cloning of the gene for glutamate decarboxylase and its expression during conidiation in Neurospora crassa. Biochem. J. 293: 735-738. https://doi.org/10.1042/bj2930735
- Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, et al. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859-868. https://doi.org/10.1038/nature01554
- Vo TD, Ko JS, Lee SH, Park SJ, Hong SH. 2013. Overexpression of Neurospora crassa OR74A glutamate decarboxylase in Escherichia coli for efficient GABA production. Biotechnol. Bioprocess Eng. 18: 1062-1066. https://doi.org/10.1007/s12257-013-0282-8
- Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, et al. 2009. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27: 753-759. https://doi.org/10.1038/nbt.1557
- Baek JM, Mazumdar S, Lee SW, Jung MY, Lim JH, Seo SW, et al. 2013. Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol. Bioeng. 110: 2790-2794. https://doi.org/10.1002/bit.24925
- Tsai MF, McCarthy P, Miller C. 2013. Substrate selectivity in glutamate-dependent acid resistance in enteric bacteria. Proc. Natl. Acad. Sci. USA 110: 5898-5902. https://doi.org/10.1073/pnas.1301444110
- M a D, L u P, Y an C , Fan C, Y in P , Wang J, et al. 2012. Structure and mechanism of a glutamate-GABA antiporter. Nature 483: 632-636. https://doi.org/10.1038/nature10917
Cited by
- Production of γ-aminobutyric acid in Escherichia coli by engineering MSG pathway vol.48, pp.10, 2017, https://doi.org/10.1080/10826068.2018.1514519
- Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives vol.41, pp.4, 2017, https://doi.org/10.1080/07388551.2020.1869688
- Whole-cell display of Pyrococcus horikoshii glutamate decarboxylase in Escherichia coli for high-titer extracellular gamma-aminobutyric acid production vol.48, pp.7, 2021, https://doi.org/10.1093/jimb/kuab039
- Cell surface display of Neurospora crassa glutamate decarboxylase on Escherichia coli for extracellular Gamma-aminobutyric acid production from high cell density culture vol.176, pp.None, 2017, https://doi.org/10.1016/j.bej.2021.108196
- Stevioside Attenuates Insulin Resistance in Skeletal Muscle by Facilitating IR/IRS-1/Akt/GLUT 4 Signaling Pathways: An In Vivo and In Silico Approach vol.26, pp.24, 2021, https://doi.org/10.3390/molecules26247689