참고문헌
- Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330: 84-86. https://doi.org/10.1126/science.1192838
- Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509. https://doi.org/10.1073/pnas.1010456108
- Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
- Jin YS, Cate JH. 2012. Model-guided strain improvement: Simultaneous hydrolysis and co-fermentation of cellulosic sugars. Biotechnol. J. 7: 328-329. https://doi.org/10.1002/biot.201100489
- Kim SR, Park YC, Jin YS, Seo JH. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31: 851-861. https://doi.org/10.1016/j.biotechadv.2013.03.004
-
Lee WH, Nan H, Kim HJ, Jin YS. 2013. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular
${\beta}$ -glucosidase. J. Biotechnol. 167: 316-322. https://doi.org/10.1016/j.jbiotec.2013.06.016 - Olofsson K, Bertilsson M, Liden G. 2008. A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 1: 1-14. https://doi.org/10.1186/1754-6834-1-1
- Chen R. 2015. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Bioengineered 6: 69-72. https://doi.org/10.1080/21655979.2014.1004019
- Ha SJ, Galazka JM, Oh EJ, Kordić V, Kim H, Jin YS, Cate JH. 2013. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab. Eng. 15: 134-143. https://doi.org/10.1016/j.ymben.2012.11.005
- Ha SJ, Kim H, Lin Y, Jang MU, Galazka JM, Kim TJ, et al. 2013. Single amino acid substitutions in HXT2.4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79: 1500-1507. https://doi.org/10.1128/AEM.03253-12
- Hu ML, Zha J, He LW, Lv YJ, Shen MH, Zhong C, et al. 2016. Enhanced bioconversion of cellobiose by industrial Saccharomyces cerevisiae used for cellulose utilization. Front. Microbiol. 7: 241.
- Dos Reis TF, de Lima PB, Parachin NS, Mingossi FB, de Castro Oliveira JV, Ries LN, et al. 2016. Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans. Biotechnol. Biofuels 9: 204. https://doi.org/10.1186/s13068-016-0611-1
- Sadie CJ, Rose SH, den Haan R, van Zyl WH. 2011. Coexpression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 90: 1373-1380. https://doi.org/10.1007/s00253-011-3164-z
- Zhang W, Kou Y, Xu J, Cao Y, Zhao G, Shao J, et al. 2013. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J. Biol. Chem. 288: 32861-32872. https://doi.org/10.1074/jbc.M113.505826
- Alexander JK. 1961. Characteristics of cellobiose phosphorylase. J. Bacteriol. 81: 903-910.
- Tewari YB, Goldberg RN. 1989. Thermodynamics of hydrolysis of disaccharides. Cellobiose, gentiobiose, isomaltose, and maltose. J. Biol Chem. 264: 3966-3971.
- Lee WH, Jin YS. 2017. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J. Biotechnol. 245: 1-8. https://doi.org/10.1016/j.jbiotec.2017.01.018
-
Bae YH, Kang KH, Jin YS, Seo JH. 2014. Molecular cloning and expression of fungal cellobiose transporters and
${\beta}$ glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J. Biotechnol. 169: 34-41. https://doi.org/10.1016/j.jbiotec.2013.10.030 - Hosaka K, Nikawa J, Kodaki T, Yamashita S. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 111: 352-358. https://doi.org/10.1093/oxfordjournals.jbchem.a123761
- McMillan JD, Jennings EW, Mohagheghi A, Zuccarello M. 2011. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol. Biofuels 4: 29. https://doi.org/10.1186/1754-6834-4-29
- Hector RE, Dien BS, Cotta MA, Qureshi N. 2011. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J. Ind. Microbiol. Biotechnol. 38: 1193-1202. https://doi.org/10.1007/s10295-010-0896-1
- Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. 2013. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127: 500-507. https://doi.org/10.1016/j.biortech.2012.09.012
-
Teugjas H, Valjamae P. 2013. Selecting
${\beta}$ -glucosidases to support cellulases in cellulose saccharification. Biotechnol. Biofuels 6: 105. https://doi.org/10.1186/1754-6834-6-105 - Lou J, Dawson K, Strobel H. 1996. Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola. Appl. Environ. Microbiol. 62: 1770-1773.
- Reichenbecher M, Lottspeich F, Bronnenmeier K. 1997. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. Eur. J. Biochem. 247: 262-267. https://doi.org/10.1111/j.1432-1033.1997.00262.x
피인용 문헌
- Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042
- Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol vol.104, pp.8, 2017, https://doi.org/10.1007/s00253-020-10427-z
- Predominant secretion of cellobiohydrolases and endo-β-1,4-glucanases in nutrient-limited medium by Aspergillus spp. isolated from subtropical field vol.168, pp.3, 2017, https://doi.org/10.1093/jb/mvaa049
- Enzymatic degradation and fermentation of Corn Bran for Bioethanol production by Pseudomonas aeruginosa AU4738 and Saccharomyces cerevisiae using Co-culture technique vol.42, pp.3, 2017, https://doi.org/10.17776/csj.835765