DOI QR코드

DOI QR Code

Evaluation of Ethanol Production Activity by Engineered Saccharomyces cerevisiae Fermenting Cellobiose through the Phosphorolytic Pathway in Simultaneous Saccharification and Fermentation of Cellulose

  • Lee, Won-Heong (Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign) ;
  • Jin, Yong-Su (Department of Food Science and Human Nutrition, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign)
  • 투고 : 2017.05.16
  • 심사 : 2017.06.25
  • 발행 : 2017.09.28

초록

In simultaneous saccharification and fermentation (SSF) for production of cellulosic biofuels, engineered Saccharomyces cerevisiae capable of fermenting cellobiose has provided several benefits, such as lower enzyme costs and faster fermentation rate compared with wild-type S. cerevisiae fermenting glucose. In this study, the effects of an alternative intracellular cellobiose utilization pathway-a phosphorolytic pathway based on a mutant cellodextrin transporter (CDT-1 (F213L)) and cellobiose phosphorylase (SdCBP)-was investigated by comparing with a hydrolytic pathway based on the same transporter and an intracellular ${\beta}$-glucosidase (GH1-1) for their SSF performances under various conditions. Whereas the phosphorolytic and hydrolytic cellobiose-fermenting S. cerevisiae strains performed similarly under the anoxic SSF conditions, the hydrolytic S. cerevisiae performed slightly better than the phosphorolytic S. cerevisiae under the microaerobic SSF conditions. Nonetheless, the phosphorolytic S. cerevisiae expressing the mutant CDT-1 showed better ethanol production than the glucose-fermenting S. cerevisiae with an extracellular ${\beta}$-glucosidase, regardless of SSF conditions. These results clearly prove that introduction of the intracellular cellobiose metabolic pathway into yeast can be effective on cellulosic ethanol production in SSF. They also demonstrate that enhancement of cellobiose transport activity in engineered yeast is the most important factor affecting the efficiency of SSF of cellulose.

키워드

참고문헌

  1. Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JH. 2010. Cellodextrin transport in yeast for improved biofuel production. Science 330: 84-86. https://doi.org/10.1126/science.1192838
  2. Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, et al. 2011. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc. Natl. Acad. Sci. USA 108: 504-509. https://doi.org/10.1073/pnas.1010456108
  3. Kim SR, Ha SJ, Wei N, Oh EJ, Jin YS. 2012. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 30: 274-282. https://doi.org/10.1016/j.tibtech.2012.01.005
  4. Jin YS, Cate JH. 2012. Model-guided strain improvement: Simultaneous hydrolysis and co-fermentation of cellulosic sugars. Biotechnol. J. 7: 328-329. https://doi.org/10.1002/biot.201100489
  5. Kim SR, Park YC, Jin YS, Seo JH. 2013. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol. Adv. 31: 851-861. https://doi.org/10.1016/j.biotechadv.2013.03.004
  6. Lee WH, Nan H, Kim HJ, Jin YS. 2013. Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular ${\beta}$-glucosidase. J. Biotechnol. 167: 316-322. https://doi.org/10.1016/j.jbiotec.2013.06.016
  7. Olofsson K, Bertilsson M, Liden G. 2008. A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 1: 1-14. https://doi.org/10.1186/1754-6834-1-1
  8. Chen R. 2015. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Bioengineered 6: 69-72. https://doi.org/10.1080/21655979.2014.1004019
  9. Ha SJ, Galazka JM, Oh EJ, Kordić V, Kim H, Jin YS, Cate JH. 2013. Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab. Eng. 15: 134-143. https://doi.org/10.1016/j.ymben.2012.11.005
  10. Ha SJ, Kim H, Lin Y, Jang MU, Galazka JM, Kim TJ, et al. 2013. Single amino acid substitutions in HXT2.4 from Scheffersomyces stipitis lead to improved cellobiose fermentation by engineered Saccharomyces cerevisiae. Appl. Environ. Microbiol. 79: 1500-1507. https://doi.org/10.1128/AEM.03253-12
  11. Hu ML, Zha J, He LW, Lv YJ, Shen MH, Zhong C, et al. 2016. Enhanced bioconversion of cellobiose by industrial Saccharomyces cerevisiae used for cellulose utilization. Front. Microbiol. 7: 241.
  12. Dos Reis TF, de Lima PB, Parachin NS, Mingossi FB, de Castro Oliveira JV, Ries LN, et al. 2016. Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans. Biotechnol. Biofuels 9: 204. https://doi.org/10.1186/s13068-016-0611-1
  13. Sadie CJ, Rose SH, den Haan R, van Zyl WH. 2011. Coexpression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 90: 1373-1380. https://doi.org/10.1007/s00253-011-3164-z
  14. Zhang W, Kou Y, Xu J, Cao Y, Zhao G, Shao J, et al. 2013. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. J. Biol. Chem. 288: 32861-32872. https://doi.org/10.1074/jbc.M113.505826
  15. Alexander JK. 1961. Characteristics of cellobiose phosphorylase. J. Bacteriol. 81: 903-910.
  16. Tewari YB, Goldberg RN. 1989. Thermodynamics of hydrolysis of disaccharides. Cellobiose, gentiobiose, isomaltose, and maltose. J. Biol Chem. 264: 3966-3971.
  17. Lee WH, Jin YS. 2017. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J. Biotechnol. 245: 1-8. https://doi.org/10.1016/j.jbiotec.2017.01.018
  18. Bae YH, Kang KH, Jin YS, Seo JH. 2014. Molecular cloning and expression of fungal cellobiose transporters and ${\beta}$ glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J. Biotechnol. 169: 34-41. https://doi.org/10.1016/j.jbiotec.2013.10.030
  19. Hosaka K, Nikawa J, Kodaki T, Yamashita S. 1992. A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J. Biochem. 111: 352-358. https://doi.org/10.1093/oxfordjournals.jbchem.a123761
  20. McMillan JD, Jennings EW, Mohagheghi A, Zuccarello M. 2011. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol. Biofuels 4: 29. https://doi.org/10.1186/1754-6834-4-29
  21. Hector RE, Dien BS, Cotta MA, Qureshi N. 2011. Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J. Ind. Microbiol. Biotechnol. 38: 1193-1202. https://doi.org/10.1007/s10295-010-0896-1
  22. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A. 2013. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127: 500-507. https://doi.org/10.1016/j.biortech.2012.09.012
  23. Teugjas H, Valjamae P. 2013. Selecting ${\beta}$-glucosidases to support cellulases in cellulose saccharification. Biotechnol. Biofuels 6: 105. https://doi.org/10.1186/1754-6834-6-105
  24. Lou J, Dawson K, Strobel H. 1996. Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola. Appl. Environ. Microbiol. 62: 1770-1773.
  25. Reichenbecher M, Lottspeich F, Bronnenmeier K. 1997. Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. Eur. J. Biochem. 247: 262-267. https://doi.org/10.1111/j.1432-1033.1997.00262.x

피인용 문헌

  1. Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042
  2. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol vol.104, pp.8, 2017, https://doi.org/10.1007/s00253-020-10427-z
  3. Predominant secretion of cellobiohydrolases and endo-β-1,4-glucanases in nutrient-limited medium by Aspergillus spp. isolated from subtropical field vol.168, pp.3, 2017, https://doi.org/10.1093/jb/mvaa049
  4. Enzymatic degradation and fermentation of Corn Bran for Bioethanol production by Pseudomonas aeruginosa AU4738 and Saccharomyces cerevisiae using Co-culture technique vol.42, pp.3, 2017, https://doi.org/10.17776/csj.835765