DOI QR코드

DOI QR Code

Optimization of Microwave-Assisted Method for Accelerated Glycated Hemoglobin Quantification from Amino Acids to Proteins

  • Tran, Thi Thanh Huong (Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science) ;
  • Jeong, Ji-Seon (Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science)
  • Received : 2017.08.02
  • Accepted : 2017.09.12
  • Published : 2017.09.30

Abstract

Glycated hemoglobin ($HbA_{1c}$) has been commonly used to screen and diagnose for patients with diabetes mellitus. Here the accelerated procedure of microwave-assisted sample treatment from acid hydrolysis to enzyme digestion followed by isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) was optimized and applied to measure $HbA_{1c}$ in an effort to speed up analysis time. First, two signature peptides of $HbA_{1c}$ and hemoglobin $A_0$ were certified with amino acid analysis by setting optimized acid hydrolysis conditions to $150^{\circ}C$, 1.5 h and $10{\mu}M$ sample concentration in 8 M hydrochloric acid. Consequently, the accurate certified peptides above were used as calibration standards to implement the proteolytic procedure with endoproteinase Glu-C at $37^{\circ}C$, 700 W for 6 h. Compared to the traditional method, the microwave heating not only shortened dramatically sample preparation time, but also afforded comparable recovery yields. The optimized protocol and analytical conditions in this study are suitable for a primary reference method of $HbA_{1c}$ quantification with full SI-traceability and other similar proteins in complex biological samples.

Keywords

References

  1. Peterson, K. P.; Pavlovich, J. G.; Goldstein, D.; Little, R.; England, J.; Peterson, C. M. Clin. Chem. 1998, 44, 1951.
  2. Higgins, T. Clin. Biochem. 2012, 45, 1038. https://doi.org/10.1016/j.clinbiochem.2012.06.006
  3. World Health Organization Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus - Abbreviated Report of a WHO Consultation, WHO/NMH/CHP/CPM/11.1: Geneva, 2011.
  4. Jeppsson, J. O.; Kobold, U.; Barr, J.; Finke, A.; Hoelzel, W.; Hoshino, T.; Miedema, K.; Mosca, A.; Mauri, P.; Paroni, R.; Thienpont, L.; Umemoto, M.; Weykamp, C.; International Federation of Clinical Chemistry and Laboratory Medicine Clin. Chem. Lab. Med. 2002, 40, 78.
  5. Kaiser, P.; Akerboom, T.; Ohlendorf, R.; Reinauer, H. Clin. Chem. 2010, 56, 750. https://doi.org/10.1373/clinchem.2009.139477
  6. Chen, S. T.; Chiou, S. H.; Chu, Y. H.; Wang, K. T. Int. J. Pept. Protein Res. 1987, 30, 572.
  7. Weiss, M.; Manneberg, M.; Juranville, J. F.; Lahm, H. W.; Fountoulakis, M. J. Chromatogr. A 1998, 795, 263. https://doi.org/10.1016/S0021-9673(97)00983-7
  8. Engelhart, W. G. Am. Biotechnol. Lab. 1990, 8, 30.
  9. Mishra, A.; Vats, T.; Clark, J. H. Microwave-Assisted Polymerization, Royal Society of Chemistry, 2015.
  10. Rejasse, B.; Lamare, S.; Legoy, M. D.; Besson, T. J. Enzyme Inhib. Med. Chem. 2007, 22, 518.
  11. Tran, T. T. H.; Lim, J.; Kim, J.; Kwon, H. J.; Kwon, G. C.; Jeong, J. S. J. Chromatogr. A 2017, 1513, 183. https://doi.org/10.1016/j.chroma.2017.07.056
  12. Pritchard, C.; Torma, F. A.; Hopley, C.; Quaglia, M.; O'Connor, G. Anal. Biochem. 2011, 412, 40. https://doi.org/10.1016/j.ab.2010.12.015
  13. Fountoulakis, M.; Lahm, H. W. J. Chromatogr. A 1998, 826, 109. https://doi.org/10.1016/S0021-9673(98)00721-3
  14. Damm, M.; Holzer, M.; Radspieler, G.; Marsche, G.; Kappe, C. O. J. Chromatogr. A 2010, 1217, 7826. https://doi.org/10.1016/j.chroma.2010.10.062