DOI QR코드

DOI QR Code

Establishing Tree Ring δ18O Chronologies for Principle Tree Species (T. cuspidata, P. koraiensis, A. koreana, Q. mongolica) at Subalpine Zone in Mt. Jiri National Park and Their Correlations with The Corresponding Climate

지리산국립공원 아고산대 주요 수종(주목, 잣나무, 구상나무, 신갈나무)에 대한 산소동위원소연대기 작성 및 기후와의 관계 분석

  • Seo, Jeong-Wook (Department of Wood & Paper Science, Collge of Agriculture, Life and Envionment Science, Chungbuk National University) ;
  • Jeong, Hyun-Min (Architectural Elements Research Team, Korea Foundation for the Traditional Architecture and Technology) ;
  • Sano, Masaki (Faculty of Human Science, Waseda University) ;
  • Choi, En-Bi (Department of Cultural Heritage Science, Chungbuk National University) ;
  • Park, Jun-Hui (Department of Wood & Paper Science, Collge of Agriculture, Life and Envionment Science, Chungbuk National University) ;
  • Lee, Kwang-Hee (Department of Conservation Science, Korea National University of Cultural Heritage) ;
  • Kim, Yo-Jung (Department of Wood & Paper Science, Collge of Agriculture, Life and Envionment Science, Chungbuk National University) ;
  • Park, Hong-Chul (Korea National Park Research Institute)
  • 서정욱 (충북대학교 농업생명환경대학 목재.종이과학과) ;
  • 정현민 (전통건축수리기술진흥재단 부재조사연구팀) ;
  • ;
  • 최은비 (충북대학교 문화재과학협동과정) ;
  • 박준희 (충북대학교 농업생명환경대학 목재.종이과학과) ;
  • 이광희 (한국전통문화대학교 문화재보존과학과) ;
  • 김요정 (충북대학교 농업생명환경대학 목재.종이과학과) ;
  • 박홍철 (국립공원관리공단 국립공원연구원)
  • Received : 2017.08.03
  • Accepted : 2017.09.15
  • Published : 2017.09.25

Abstract

50-year tree-ring ${\delta}^{18}O$ chronologies (1966~2015) for principle conifer tree species (Taxus cuspidata, Pinus koraiensis, Abies koreana) and Quercus mongolica at subalpine zone in Mt. Jiri were established. The establishing of tree-ring ${\delta}^{18}O$ chronologies for each tree species were fulfilled using four trees, which showed the good result in cross-dating. In the comparisons between tree-ring ${\delta}^{18}O$ chronologies within the same tree species all tree species showed reliable results statistically (p < 0.001), and they also showed EPS higher than 0.85. In addition to, the reliable correlations (p < 0.001) were verified between tree-ring ${\delta}^{18}O$ chronologies of four tree species, as well. In the response function analysis in order to investigate the relationships between tree-ring ${\delta}^{18}O$ chronologies and corresponding climatic factors, i.e., monthly precipitation and mean temperature, T. cuspidata showed a negative correlation with May precipitation (p < 0.05) and A. koreana showed a negative correlation with April precipitation (p < 0.05). If long tree-ring ${\delta}^{18}O$ chronologies of T. cuspidata and A. koreana will be established, it will be possible to reconstruct April and May precipitation in the past when we have no the meteorological data.

지리산 아고산대 주요 침엽수(주목, 잣나무, 구상나무)와 신갈나무를 이용하여 50년간의 산소동위원소연대기(1966~2015)를 작성하였다. 산소동위원소연대기 작성은 크로스데이팅(cross-dating) 결과가 우수한 4본을 각 수종에서 선발하여 실시하였다. 동일 수종 내 임목 간 산소동위원소연대기의 상관분석 결과 모두 유의성(p < 0.001) 높은 상관이 있는 것으로 확인되었으며, EPS도 0.85 이상이었다. 동일 수종 내 임목 간 상관분석뿐만 아니라 수종간 상관분석에서도 유의성(p < 0.001) 높은 상관관계가 확인되었다. 기후요소(강수량, 기온)와 산소동위원소와의 관계를 조사하기 위한 반응함수 분석에서 주목은 당년 5월 강수량과 유의성 있는 부의 상관을 보였으며, 구상나무는 4월 강수량과 유의성 있는 부의 상관을 보였다. 향후 주목과 구상나무에 대한 장기간의 산소동위원소연대기가 작성된다면 과거 측정하지 못한 장기간의 4월과 5월 강수량 복원이 가능할 것이다.

Keywords

References

  1. Altieri, S., Mereu, S., Cherubini, P., Castaldi, S., Sirignano, C., Lubritto, C., Battipaglia, G. 2015. Tree-ring carbon and oxygen isotopes indicate different water use strategies in three Mediterranea shrubs at Capo Cassia (Sardinia, Italy). Trees 29: 1593-1603. https://doi.org/10.1007/s00468-015-1242-z
  2. Biondi, F., Waikul, K. 2004. Dendroclim2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30: 303-311. https://doi.org/10.1016/j.cageo.2003.11.004
  3. Briffa, K.R., Jones, P.D. 1990. Basic chronology statistics and assessment. In: Cook, E.R., Kairiukstis, L.A. eds. Method of Dendrochronology: Applications in the Environmental Science. Dordrecht: Kluwer p. 137-152.
  4. Choi, J.N., Yu, K.B, Park, W.-K. 1992. Paleoclimate reconstruction for Chungbu mountainous region using tree-ring chronology. The Korean Journal of Quaternary Research 6(1): 21-32.
  5. Cook, E.R. 1985. A Time Series Analysis Approach to Tree Ring Standardization. Ph.D. Dissertation. University of Arizona, Tucson, Arizona. pp.175.
  6. Danis, P.A., Masson-Delmotte, V., Stievenard, M., Guillemin, M.T., Daux, V., Naveau, Ph., von Grafenstein, U. 2006. Reconstruction of past precipitation ${\delta}^{18}O$ using tree-ring cellulose ${\delta}^{18}O$ and ${\delta}^{13}C$: a calibration study near Lac d'Annecy, France. Earth and Planetary Science Letters 243: 439-448. https://doi.org/10.1016/j.epsl.2006.01.023
  7. Garcia-Gonzalez, I., Eckstein, D. 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23(7): 497-504. https://doi.org/10.1093/treephys/23.7.497
  8. Jeong, H.-M., Kim, Y.-J., Seo, J.-W. 2017. Relationships between vessel-lumen-area time series of Quercus spp. at Mt. Songni and corresponding climatic factors. Journal of Korean Wood Science and Technology 45(1): 72-84. https://doi.org/10.5658/WOOD.2017.45.1.72
  9. Kaennel, M., Schweingruber, F.H. 1995. Multilingual Glossary of Dendrochronology. Paul Haupt Berne pp. 90-98.
  10. Kagawa, A., Sano, M, Nakatsuka, T., Ikeda, T., Kubo, S. 2015. An optimized method for stable isotope analysis of tree rings by extracting cellulose dirctly from cross-sectional laths. Chemical Geology 393-394: 16-25. https://doi.org/10.1016/j.chemgeo.2014.11.019
  11. Koo, K.-A., Park, W.-K., Kong, W.-S. 2000. Growth of Daphniphyllum macropodum and climatic factors at Mt. Naejang, Korea. The Korean Journal of Quaternary Research 14(1): 65-71.
  12. Kress, A., Saurer, M., Siegwolf, R.T.W., Frank, D.C., Esper, J., Bugmann, H. 2010. A 350 year drought reconstruction from Alpine tree ring stable isotopes. Gobal Biogeochemical Cycles 24:GB2011, doi:10.1029/2009GB003613.
  13. Li, Z., Nakatsuka, T., Sano, M. 2015. Tree-ring cellulose ${\delta}^{18}O$ variability in pine and oak and its potential to reconstruct precipitation and relative humidity in central Japan. Geochemical Journal 49: 125-137. https://doi.org/10.2343/geochemj.2.0336
  14. Liang, E., Eckstein, D. 2009. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibet Plateau. Annals of Botany 104: 665-670. https://doi.org/10.1093/aob/mcp158
  15. Loader, N.J., Robertson, I., Barker, A.C., Switsur, V.R., Waterhouse, J.S. 1997. An improved technique for the batch prosessing of small wholewood samples to ${\alpha}$-cellulose. Chemical Geology 136: 313-317. https://doi.org/10.1016/S0009-2541(96)00133-7
  16. McCarroll, D., Loader, N.J. 2004. Stable isotopes in tree rings. Quaternary Science Reviews 23(7-8): 771-801. https://doi.org/10.1016/j.quascirev.2003.06.017
  17. Park, S.-Y., Eom, C.-D., Seo, J.-W. 2015. Seasonal change of cambium activity of pine trees at different growth sites. Journal of Korean Wood Science and Technology 43(4): 411-420. https://doi.org/10.5658/WOOD.2015.43.4.411
  18. Park, W.-K. 1993. Increasing atmospheric carbon dioxide and growth trends of korean subalpine conifers. Journal of Korean Forest Science 82(1): 17-25.
  19. Park, W.-K., Seo, J.-W. 1999. A dendroclimatic analysis on Abies koreana in Cheonwang-bong area of Mt. Chiri, Korea. The Korean Journal of Quaternary Research 13(1): 25-33.
  20. Park, W.-K., Yadav, R.R. 1998. Reconstruction of May precipitation (A.D. 1731-1995) in west-central Korea from tree rings of korean red pine. Journal of Korean Meteorological Society 34(3): 459-465.
  21. Rebetez, M., Saurer, M., Cherubini, P. 2003. To what extent can oxygen isotopes in tree rings and precipitation be used to reconstruct past atmosheric temperature? A case study. Climatic Change 61: 237-248. https://doi.org/10.1023/A:1026369000246
  22. Sano, M., Tshering, P., Komori, J., Fujita, K., Xu, C., Nakatsuka, T. 2013. May-September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose ${\delta}^{18}O$. Journal of Geophysical Research: Atmospheres 118: 8399-8410. https://doi.org/10.1002/jgrd.50664
  23. Sauer, M., Cherubini, P., Reynolde-Henne, C.E., Treydte, K.S., Anderson, W.T., Siegwolf, R.T.W. 2008. An investigation of the common signal in tree ring stable isotope chronologies at temperate sites. Journal of Geophysical Research 113:G04035, doi:10.1029/2008JG000689.
  24. Schweingruber, F.H. 1988. Tree Rings - Basics and Applications of Dendrochronology. Dordrecht, D. Reidel Publishing Company, Boston pp. 276.
  25. Seo, J.-W., Kim, J., Park, W.-K. 2000. Analysis of heterogeneous tree-ring growths of Pinus densiflora with various topographical characteristics in Mt. Worak using GIS. The Korean Journal of Ecology 23(1): 25-32.
  26. Seo, J.-W., Eckstein, D., Jalkanen, R. 2012. Screening various variables of cellular anatomy of Scots pine in subarctic Finland for climatic signals. IAWA Journal 33(4): 417-429. https://doi.org/10.1163/22941932-90000104
  27. Seo, J.-W., Choi, E.-B., Ju, J.-D., Shin, C.-S. 2017. The association of intra-annual cambial activities of Pinus koraiensis and Chameacyparis pisifera plnated in Mt. Worak with climatic factros. Journal of Korean Wood Science and Technology 45(1): 43-52. https://doi.org/10.5658/WOOD.2017.45.1.43
  28. Seo, J.-W., Park, W.-K. 2002. Reconstruction of May precipitation (317 years: A.D. 1682-1998) using tree rings of Pinus densiflora S. et Z. in western Sorak Mt. The Korean Journal of Quaternary Research 16(1): 29-36.
  29. Xu, C, Sano, M., Nakatsuka, T. 2013. Tree-ring cellulose ${\delta}^{18}O$ of Fokienia hodginsii in northern Laos: a promising proxy to reconstruct ENSO?. Journal of Geophysical Research 116:D24109, doi:10.1029/2011JD016694.
  30. Xu, C., Sano, M., Nakatsuka, T. 2013. A 400-year record of hydroclimate variability and local ENSO history in northern Southeast Asia inferred from tree-ring ${\delta}^{18}O$. Palaeogeography, Palaeoclimatology, Palaeoecology 386: 588-598. https://doi.org/10.1016/j.palaeo.2013.06.025