실리콘 기반 탠덤 태양전지 연구 동향

  • 배수현 (고려대학교 신소재공학과) ;
  • 이상원 (고려대학교 신소재공학과) ;
  • 황재근 (고려대학교 신소재공학과) ;
  • 조경진 (고려대학교 신소재공학과) ;
  • 이원규 (고려대학교 신소재공학과) ;
  • 강윤묵 (고려대학교 그린스쿨대학원) ;
  • 이해석 (고려대학교 그린스쿨대학원) ;
  • 김동환 (고려대학교 신소재공학과 그린스쿨대학원)
  • 발행 : 2017.09.30

초록

실리콘 태양전지는 현재 태양광 시장의 90% 이상을 차지하고 있으며 향후에도 기술 개발을 통해 태양광 시장을 주도하는 기술로 예상되고 있다. 실리콘 태양전지의 가격 경쟁력 확보를 위해 새로운 기술이 개발되고 있는 상황에서 효율 한계를 극복하기 위한 탠덤 태양전지 연구가 주목 받고 있다. 실리콘 기반 탠덤 태양전지의 여러 후보 물질 중 페로브스카이트는 공정의 용이성뿐 아니라 물질의 특성이 탠덤 태양전지 소재로써 적합하여 최근 주요하게 연구되고 있다. 본 논문 에서는 페로브스카이트 실리콘 탠덤 태양전지의 연구 동향에 대해 살펴보고자 한다.

키워드

참고문헌

  1. International Technology Roadmap for Photovoltaic (ITRPV) 2016 Results, Eight Edition, 2017
  2. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nature Energy, 2017, 2, 17032. https://doi.org/10.1038/nenergy.2017.32
  3. W. Shockley, H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys., 1961, 32, 510. https://doi.org/10.1063/1.1736034
  4. A. Richter, M. Hermle, S. W. Glunz, "Reassessment of the limiting efficiency for crystalline silicon solar cells," IEEE Journal of Photovoltaics, 2013, 3(4), 1184. https://doi.org/10.1109/JPHOTOV.2013.2270351
  5. S. Essig, C. Alleb, T. Remo, J. F. Geisz, M. A. Steiner, K. Horowitz, L. Barraud, J. S. Ward, M. Schnabel, A. Descoeudres, D. L. Young, M. Woodhouse, M. Despeisse, C. Ballif, A. Tamboli, "Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions," Nature Energy, 2017 6, 17144.
  6. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. Uk Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, "Iodide management in formamidiniumlead-halide-based perovskite layers for efficient solar cells," Science, 2017, 356(6345), 1376. https://doi.org/10.1126/science.aan2301
  7. http://www.pveducation.org/pvcdrom/tandem-cells.
  8. C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gr tzel, R. Noufi, T. Buonassisi, A. Salleo, M. D. McGehee, "Semi-transparent perovskite solar cells for tandems with silicon and CIGS," Energy Environ. Sci., 2015, 8, 956. https://doi.org/10.1039/C4EE03322A
  9. P. LGper, S.-J. Moon, S. M. de Nicolas, B. Niesen, M. Ledinsky, S. Nicolay, J. Bailat, J.-H. Yum, S. D. Wolf, C. Ballif, "Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells$\dagger$," Phys. Chem. Chem. Phys., 2015, 17, 1619. https://doi.org/10.1039/C4CP03788J
  10. J. Werner, G. Dubuis, A. Walter, P. L per, S.-J. Moon, S. Nicolay, M. M.-Masis, S. D. Wolf, B. Niesen, C. Ballif, "Sputtered rear electrode with broadband transparency for perovskite solar cells," Solar Energy Materials and Solar Cells, 2015, 141, 407. https://doi.org/10.1016/j.solmat.2015.06.024
  11. J. Werner, S.-J. Moon, P. L per, A. Walter, M. Filipic, C.-H. Weng, L. L fgren, J. Bailat, M. Topic, M. M.-Masis, R. Peibst, R. Brendel, S. Nicolay, S. D. Wolf, B. Niesen, C. Ballif, Towards ultra-high efficient photovoltaics with perovskite/crystalline silicon tandem devices, 31st European PV Solar Energy Conference and Exhibition, 2015, Hamburg, Germany.
  12. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. H rantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, "A mixed-cation lead mixedhalide perovskite absorber for tandem solar cells," Science, 2016, 351(6269), 151. https://doi.org/10.1126/science.aad5845
  13. T. Duong, N. Lal, D. Grant, D. Jacobs, P. Zheng, S. Rahman, H. Shen, M. Stocks, A. Blakers, K. Weber, T. P. White, K. R. Catchpole, "Semitransparent perovskite solar cell with sputtered front and rear electrodes for a four-terminal tandem," IEEE Journal of Photovoltaics, 2016, 6(3), 679. https://doi.org/10.1109/JPHOTOV.2016.2521479
  14. B. Chen, Y. Bai, Z. Yu, T. Li, X. Zheng, Q. Dong, L. Shen, M. Boccard, A. Gruverman, Z. Holman, J. Huang, "Efficient semitransparent perovskite solar cells for 23.0%-efficiency perovskite/silicon four-terminal tandem cells," Adv. Energy Mater. 2016, 6, 1601128 https://doi.org/10.1002/aenm.201601128
  15. J. Werner, L. Barraud, A. Walter, M. Br uninger, F. Sahli, D. Sacchetto, N. TGtreault, B. P. -Salomon, S.-J. Moon, C. Alleb, M. Despeisse, S. Nicolay, S. D. Wolf, B. Niesen, C. Ballif, "Efficient near-infraredtransparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells," ACS Energy Lett., 2016, 1(2), 474. https://doi.org/10.1021/acsenergylett.6b00254
  16. T. Duong, Y. L. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.-C. Wang, T. C. Kho, K. C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.-B. Cheng, T. P. White, K. Weber, K. Catchpole, "Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency," Adv. Energy Mater. 2017, 7, 170022.
  17. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy Environ. Sci., 2014, 7, 982. https://doi.org/10.1039/c3ee43822h
  18. J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey, W. H. Nguyen, M. D. McGehee, T. Buonassisi, "A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction," Appl. Phys. Lett., 2015, 106, 121105. https://doi.org/10.1063/1.4914179
  19. S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Gr tzel, B. Rech, "Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature†," Energy Environ. Sci., 2016, 9, 81. https://doi.org/10.1039/C5EE02965A
  20. J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J. P. Seif, S. D. Wolf, B. Niesen, C. Ballif, "Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 $cm^2$," J. Phys. Chem. Lett., 2016, 7(1), 161. https://doi.org/10.1021/acs.jpclett.5b02686
  21. K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, M. D. McGehee, "23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability," Nature Energy, 2017, 2, 17009. https://doi.org/10.1038/nenergy.2017.9
  22. M. Filipic, P. L per, B. Niesen, S. D. Wolf, J. Krc, C. Ballif, M. Topic, "CH3NH3PbI3 perovskite/silicon tandem solar cells: characterization based optical simulations," Optics Express, 2015, 23(7), A263. https://doi.org/10.1364/OE.23.00A263