DOI QR코드

DOI QR Code

Effects of Heavy Metal and Salinity on Electrical Conductivity in Fully Saturated Sand

포화된 사질토의 전기전도도에 중금속과 염분 농도가 미치는 영향

  • Lee, Dongsoo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hong, Young-Ho (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hong, Won-Teak (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Chae, Kwang-Seok (Infra & Offshore Research Team, GS E&C) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea University)
  • Received : 2017.08.10
  • Accepted : 2017.09.11
  • Published : 2017.10.01

Abstract

As the electrical property of fully saturated soils is dependent on the pore water, it has been commonly used for the detection of the contamination into the ground. The objective of this study is to investigate the electrical characteristics according to the salinity and the lead concentration in fully saturated soils. Fresh water and saline water with the salinity of 1%, 2% and 3%, which are mixed with 6 different lead solutions with the range of 0~10 mg/L, are prepared in the cylindrical cell incorporated with sensors for measuring electrical resistance and time domain reflectometry signal. Then, the dried sands are water-pluviated into the cell. The electrical resistance and the time domain reflectometry signal are used to estimate the electrical conductivity. Test results show that electrical conductivity determined from electrical resistance at the frequency of 1 kHz continuously increases with an increase in the lead concentration, thus it may be used for the estimation of the contaminant level. In addition, the electrical conductivity estimated by the time domain reflectometry changes even at very low concentration of lead, the variation rate decreases as the lead concentration increases. Thus, the time domain reflectometry can be used for the investigation of the heavy metal leakage. This study demonstrates that complementary characteristics of electrical resistance and time domain reflectometry may be used for the detection of the leakage and contamination of heavy metal in coastal and marine environments.

포화된 흙의 전기적인 특성은 흙 주위에 있는 간극수의 전기전도도에 크게 의존하므로, 흙의 전기전도도 변화를 이용하여 지반속으로의 오염물 침투를 감지하는데 널리 활용되고 있다. 본 연구의 목적은 포화시료에 대해 염분비와 납의 농도 변화에 따른 흙의 전기적 특성 변화를 조사하는 것이다. 전기저항과 시간영역반사법 신호측정을 위한 센서를 매설한 원통형 셀 내부에 담수 및 염분 농도 1%, 2% 그리고 3%의 염수용액을 0~10mg/L 사이의 6가지 납 표준용액과 혼합하여 수용액을 준비하였다. 이후 수용액 속에 건조시킨 모래시료를 수중강사법을 이용하여 조성하였다. 조성된 포화시료에 대해 셀 내부에 설치된 센서들로부터 전기저항과 시간영역반사법 신호를 측정하고 이 결과로부터 전기전도도를 산정하였다. 실험 결과, 주파수 1kHz에서 측정된 전기저항으로 부터 산정한 전기전도도는 납의 농도가 증가함에 따라 연속적으로 증가하는 것으로 나타났으므로 전기저항으로부터 산정한 전기전도도가 오염정도를 파악하기 위해 사용될 수 있는 것으로 나타났다. 또한 시간영역반사법으로부터 산정한 전기전도도의 경우 저농도에서의 납의 농도 변화에도 전기전도도가 변화하지만, 납의 농도가 증가함에 따라 변화 정도는 점차 감소하는 것으로 나타났다. 즉, 시간영역반사법은 중금속 누출여부를 조사하는데 적합한 것으로 평가되었다. 본 연구는 전기저항과 시간영역반사법의 상호보완적인 특성을 활용한다면 해안 및 해양환경에서도 중금속의 누출 및 오염을 감지할 수 있음을 보여준다.

Keywords

References

  1. Abu-Hassanein, Z. S., Benson, C. H. and Blotz, L. R. (1996), Electrical resistivity of compacted clays, Journal of Geotechnical Engineering, Vol. 122, No. 5, pp. 397-406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  2. Archie, G. E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME, Vol. 146, No. 1, pp. 54-62. https://doi.org/10.2118/942054-G
  3. Benson, C. H. and Bosscher, P. (1999), Time-domain reflectometry in geotechnics: A review, nondestructive and automated testing for soil and rock properties, STP 1350, ASTM, W. Marr and C. Fairhurst, Eds., pp. 113-136.
  4. Bonaparte, R. and Gross, B. A. (1990), Field behavior of double-liner systems, Waste containment systems: Construction, regulation, and performance, ASCE Geotechnical Special Publication No. 26, pp. 52-83.
  5. Clement, R., Descloitres, M., Gunther, T., Oxarango, L., Morra, C., Laurent, J. P. and Gourc, J. P. (2010), Improvement of electrical resistivity tomography for leachate injection monitoring, Waste Management, Vol. 30, No. 3, pp. 452-464. https://doi.org/10.1016/j.wasman.2009.10.002
  6. Isaac Eneji Evinemi., Adekunle Abraham Adepelumi. and Olasupo Adebayo. (2016), Canal structure subsidence investigation using ground penetrating radar and geotechnical techniques, International Journal of Geo-Engineering, Vol. 7, No. 9, DOI 10.1186/s40703-016-0023-x.
  7. Fellner-Feldegg, H. (1969), Measurement of dielectrics in the time domain, The Journal of Physical Chemistry, Vol. 73, No. 3, pp. 616-623. https://doi.org/10.1021/j100723a023
  8. Fujiyasu, Y., Pierce, C. E., Fan, L. and Wong, C. P. (2004), High dielectric insulation coating for time domain reflectometry soil moisture sensor, Water resources research, Vol. 40, W04602, doi:10.1029/2003WR002460.
  9. Giese, K. and Tiemann, R. (1975), Determination of the complex permittivity from thin-sample time domain reflectometry improved analysis of the step response waveform, Advances in Molecular Relaxation Processes, Vol. 7, No. 1, pp. 45-59. https://doi.org/10.1016/0001-8716(75)80013-7
  10. Gondouin, M., Tixier, M. P. and Simard, G. L. (1957), An experimental study on the influence of the chemical composition of electrolytes on the SP curve, Petroleum Transactions, American Institute of Mining Engineers, Vol. 210, pp. 58-72.
  11. Hong, W. T., Jung, Y. S., Lee, J. S. and Byun, Y. H. (2015), Development and application of TDR penetrometer for evaluation of soil water content of subsoil, Journal of the Korean Geotechnical Society, Vol. 31, No. 2, pp. 39-46 (in Korean). https://doi.org/10.7843/KGS.2015.31.2.39
  12. Jones, S. B., Wraith, J. M. and Or, D. (2002), Time domain reflectometry measurement principles and applications, Hydrological processes, Vol. 16, No. 1, pp. 141-153. https://doi.org/10.1002/hyp.513
  13. Jung, S. H., Yoon, H. K. and Lee, J. S. (2011), Temperaturecompensated resistivity probe - development and application, Journal of the Korean Geo-Environmental Society, Vol. 12, No. 1, pp. 51-60 (in Korean).
  14. Kaya, A. and Fang, H. Y. (1997), Identification of contaminated soils by dielectric constant and electrical conductivity, Journal of Environmental Engineering, Vol. 123, No. 2, pp. 169-177. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(169)
  15. Kim, D. J., Baek, D. S. and Park, M. S. (1999), Predicting migration of a heavy metal in a sandy soil using time domain reflectometry, Journal of the Korean Society of Soil and Groundwater Environment, Vol. 4, No. 1, pp. 109-118 (in Korean).
  16. Kim, J. H., Yoon, H. K., Jung, S. H. and Lee, J. S. (2009), Development and verification of 4-electrode resistivity probe, Journal of the Korean Society of Civil Engineers, Vol. 29, No. 3, pp. 127-136 (in Korean).
  17. Klein, K. and Santamarina, J. C. (1997), Methods for broadband dielectric permittivity measurements (soil-water mixtures, 5 Hz to 1.3 GHz), Geotechnical Testing Journal, GTJODJ, Vol. 20, No. 2, June 1997, pp. 168-178. https://doi.org/10.1520/GTJ10736J
  18. Lee, G. F. and Jones-Lee, A. (1996), Detection of the failure of landfill liner systems, Report of G. Fred Lee & Associates, El Macero, CA, 13p.
  19. Noborio, K. (2001), Measurement of soil water content and electrical conductivity by time domain reflectometry: a review, Computers and Electronics in Agriculture, Vol. 31, No. 3, pp. 213-237. https://doi.org/10.1016/S0168-1699(00)00184-8
  20. O'Connor, K. M. and Dowding, C. H. (1999), GeoMeasurements by pulsing TDR cables and probes, CRC Press, 402p.
  21. Oh, M. H., Park, J. B., Kim, Y. J., Hong, S. W. and Lee, Y. H. (2001), Development of contaminant leakage detection system using electrical resistance measurement: I. variation of electrical properties of subsurface due to contaminants, Journal of the Korean Geotechnical Society, Vol. 17, No. 6, pp. 215-224 (in Korean).
  22. Park, J. B., Bang, S. Y. and Oh, M. H. (2003), Complex dielectric constant of unsaturated sand contaminated by heavy metals, Proceedings of 2003 Spring Conference on the Korean Society of Environmental Engineers, Deajeon, pp. 1420-1427 (in Korean).
  23. Salako, A. O. and Adepelumi, A. A. (2016), Evaluation of hydraulic conductivity of subsoil using electrical resistivity and ground penetrating radar data: example from Southwestern Nigeria, International Journal of Geo-Engineering, Vol. 7, No. 5, DOI 10.1186/s40703-016-0018-7.
  24. Santamarina, J. C., Klein, K. A. and Fam, M. A. (2001), Soils and waves-particulate materials behavior, Characterization and Process Monitoring, John Wiley and Sons, NY, 448p.
  25. Sawyer, C. N., McCarth, P. L. and Parkin, G. F. (1994), Chemistry for environmental engineering, 4th Ed McGRAW-Hill, 768p.
  26. Shang, J. Q., Ding, W., Rowe, R. K. and Josic, L. (2004), Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks, Canadian Geotechnical Journal, Vol. 41, No. 6, pp. 1054-1067. https://doi.org/10.1139/t04-051
  27. Smith, S. S. and Arulanandan, K. (1981), Relationship of electrical dispersion to soil properties, Journal of Geotechnical and Geoenvironmental Engineering, ASCE Vol. 107, No. 5, pp. 591-604.
  28. Topp, G. C., Davis, J. C. and Annan, A. P. (1980), Electromanetic determination of soil water content : Measurements in coaxial transmission lines, Water Resources Research, Vol. 16, No. 3, pp. 574-582. https://doi.org/10.1029/WR016i003p00574
  29. Thitimakorn, Thanop., Kampananon, Natamon., Jongjaiwanichkit, Napassapong. and Kupongsak, Sasikan. (2016), Subsurface void detection under the road surface using ground penetrating radar (GPR), a case study in the Bangkok metropolitan area, Thailand, International Journal of Geo-Engineering, Vol. 7, No. 2, DOI 10.1186/s40703-016-0017-8.