DOI QR코드

DOI QR Code

Theoretical Protein Structure Prediction of Glucagon-like Peptide 2 Receptor Using Homology Modelling

  • 투고 : 2017.07.31
  • 심사 : 2017.09.25
  • 발행 : 2017.09.30

초록

Glucagon-like peptide 2 receptor, a GPCR, binds with the glucagon-like peptide, GLP-2 and regulates various metabolic functions in the gastrointestinal tract. It plays an important role in the nutrient homeostasis related to nutrient assimilation by regulating mucosal epithelium. GLP-2 receptor affects the cellular response to external injury, by controlling the intestinal crypt cell proliferation. As they are therapeutically attractive towards diseases related with the gastrointestinal tract, it becomes essential to analyse their structural features to study the pathophysiology of the diseases. As the three dimensional structure of the protein is not available, in this study, we have performed the homology modelling of the receptor based on single- and multiple template modeling. The models were subjected to model validation and a reliable model based on the validation statistics was identified. The predicted model could be useful in studying the structural features of GLP-2 receptor and their role in various diseases related to them.

키워드

참고문헌

  1. T. J. Kiefer and J. F. Habener, "The glucagon-like peptides", Endocrine Reviews, Vol. 20, pp. 876-913, 1999. https://doi.org/10.1210/edrv.20.6.0385
  2. D. J. Drucker, "Glucagon-like peptides", Diabetes, Vol. 47, pp. 159-169, 1998. https://doi.org/10.2337/diab.47.2.159
  3. J. L. Estall and D. J. Drucker, "Glucagon and glucagon-like peptide receptors as drug targets", Curr. Pharm. Des., Vol. 12, pp. 1731-1750, 2006. https://doi.org/10.2174/138161206776873671
  4. P. J. Hornby and B. A. Moore, "The therapeutic potential of targeting the glucagon-like peptide-2 receptor in gastrointestinal disease", Expert Opin. Ther. Targets, Vol. 15, pp. 637-646, 2011. https://doi.org/10.1517/14728222.2011.556620
  5. B. Yusta, R. P. Boushey, and D. J. Drucker, "The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway", J. Biol. Chem., Vol. 275, pp. 35345-35352, 2000. https://doi.org/10.1074/jbc.M005510200
  6. D. J. Drucker, P. Erlich, S. L. Asa, and P. L. Brubaker, "Induction of intestinal epithelial proliferation by glucagon-like peptide 2", Proc. Nati. Acad. Sci. U. S. A., Vol. 93, pp. 7911-7916, 1996. https://doi.org/10.1073/pnas.93.15.7911
  7. S. Schlyer and R. Horuk, "I want a new drug: Gprotein-coupled receptors in drug development", Drug Discov. Today, Vol. 11, pp. 481-493, 2006. https://doi.org/10.1016/j.drudis.2006.04.008
  8. G. C. Baker, J. J. Smith, and D. A. Cowan, "Review and re-analysis of domain-specific 16S primers", J. Microbiol. Methods, Vol. 55, pp. 541-555, 2003. https://doi.org/10.1016/j.mimet.2003.08.009
  9. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local alignment search tool", J. Mol. Biol., Vol. 215, pp. 403-410, 1990. https://doi.org/10.1016/S0022-2836(05)80360-2
  10. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, "The protein data bank", Nucleic Acids Res., Vol. 28, pp. 235-242, 2000. https://doi.org/10.1093/nar/28.1.235
  11. S. K. Nagarajan and T Madhavan, "Protein phosphatase 1D (PPM1D) structure prediction using homology modeling", J. Chosun Natural Sci., Vol. 9, pp. 35-40, 2016. https://doi.org/10.13160/ricns.2016.9.1.35
  12. B. Sathya and T. Madhavan, "Homology modeling of cysteinyl leukotriene1 receptor", J. Chosun Natural Sci., Vol. 8, pp. 13-18, 2015. https://doi.org/10.13160/ricns.2015.8.1.13
  13. S. K. Nagarajan, and T. Madhavan, "3D structure prediction of thromboxane A2 receptor by homology modeling", J. Chosun Natural Sci., Vol. 8, pp. 75-79, 2015. https://doi.org/10.13160/ricns.2015.8.1.75
  14. B. K. Kuntal, P. Aparoy, and P. Reddanna, "Easy-Modeller: A graphical interface to MODELLER", BMC Res. Notes, Vol. 3, p. 226, 2010. https://doi.org/10.1186/1756-0500-3-226
  15. A. Roy, A. Kucukural, and Y. Zhang, "I-TASSER: A unified platform for automated protein structure and function prediction", Nat. Protoc., Vol. 5, pp. 725-738, 2010. https://doi.org/10.1038/nprot.2010.5
  16. N. Eswar, M. A. Marti-Renom, B. Webb, M. S. Madhusudhan, D. Eramian, M. Shen, U. Pieper, and A. Sali, "Comparative protein structure modeling with MODELLER", Current Protocols in Bioinformatics, suppl. 15, New York: John Wiley & Sons, Inc., pp. 1-30, 2006.
  17. J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, "The I-TASSER suite: Protein structure and function prediction", Nat. Methods, Vol. 12, pp. 7-8, 2015. https://doi.org/10.1038/nmeth.3213
  18. S. C. Lovell, I. W. Davis, W. B. Arendall III, P. I. W. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson, "Structure validation by $C{\alpha}$ geometry: ${\phi}$,${\psi}$ and $C{\beta}$ deviation", Proteins, Vol. 50, pp. 437-450, 2002.
  19. G. Studer, M. Biasini, and T. Schwede, "Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane)", Bioinformatics, Vol. 30 pp. i505-i511, 2014. https://doi.org/10.1093/bioinformatics/btu457
  20. C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of nonbonded atomic interactions", Protein Sci., Vol. 2, pp. 1511-1519, 1993. https://doi.org/10.1002/pro.5560020916

피인용 문헌

  1. Computational Analysis of Human Chemokine Receptor Type 6 vol.11, pp.2, 2017, https://doi.org/10.13160/ricns.2018.11.2.121
  2. 3D Structure Prediction of Human 5-Hydroxytryptamine Receptor 7 (5-HT7R) vol.11, pp.2, 2017, https://doi.org/10.13160/ricns.2018.11.2.87