DOI QR코드

DOI QR Code

활성탄 제조공정의 칼륨 재이용을 위한 세척공정 최적화

Optimization of Washing Process for the Recycling of Potassium in the Manufacturing of Activated Carbon

  • 이기쁨 (고등기술연구원 플랜트엔지니어링센터) ;
  • 정희숙 (고등기술연구원 플랜트엔지니어링센터) ;
  • 홍범의 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김석휘 (고등기술연구원 플랜트엔지니어링센터) ;
  • 최석순 (세명대학교 바이오환경공학과)
  • Lee, Gi-bbum (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Jung, Hee-Suk (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Hong, Bum-ui (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Kim, Seokhwi (Center for Plant Engineering, Institute for Advanced Engineering) ;
  • Choi, Suk-soon (Department of Biological and Environmental Engineering, Semyung University)
  • 투고 : 2017.08.21
  • 심사 : 2017.09.07
  • 발행 : 2017.09.30

초록

본 연구에서는 활성탄 제조에 널리 이용되고 있는 KOH 활성화법으로 활성화된 활성탄의 표면적 증가를 위하여 세척시간, 교반속도, 세척횟수 등의 변수들에 대한 활성탄 세척공정 최적화 연구를 수행하였다. 연구결과, 활성탄의 표면적은 세척효율이 증가됨에 따라 뚜렷하게 증가되었는데, 90% 이상의 세척효율을 얻기 위해서는 활성탄의 복잡한 세공구조에 따른 세공 내 확산메커니즘이 제어인자로 작용함을 알 수 있었다. 또한, 세척액의 증발을 통하여 $K_2CO_3$를 얻을 수 있었고 이를 이용한 활성화실험이 이루어졌다. 그 결과, 비표면적 $2,219m^2/g$의 제조가 가능하였다. $K_2CO_3$가 KOH의 효과적인 대안이라는 것을 고려할 때, 활성탄 제조공정에서 폐수 재이용은 무배출 폐기물 공정에 적용 할 수 있음을 보여주었다.

In this study, washing parameters such as washing time, agitation velocity, and cycles were optimized for high surface area of the activated carbon (AC) by KOH activation. Even though AC with high surface area showed at higher washing efficiency, over 90% on washing efficiency was regulated by the intra-particle diffusion due to high tortuosity of the pore structures on AC. In addition, we can obtain $K_2CO_3$ through the evaporation from the wastewater and use it for chemical activation of AC. The AC with $K_2CO_3$ activation has specific surface area values of $2,219m^2/g$ equally that of KOH activation. Considering that $K_2CO_3$ is an effective alternative as a KOH, our results demonstrated that the process by recycling wastewater on AC production could be applicable for near-zero wastes.

키워드

참고문헌

  1. Park, Y. Y., Im, C. G., Kim, Y. T., and Rhee, B., "A determination method of optimum combination ratio of two kind activated carbon with different adsorbability", Korean Chemistry Engineering Research, 49, pp. 454-459. (2011).
  2. MECA (Manufacturers of Emission Controls Association) "Evaporative emission control technologies for gasoline powered vehicles". Arlington, VA. (2010).
  3. Romanos, J., Beckner, M., Rash, T., Firlej, L., Kuchta, B., Yu, P., Suppes, G., Wexler, C. and Pfeifer, P. "Nanospace engineering of KOH activated carbon", Nanotechnology, 23, pp. 1-7. (2012).
  4. Mopoung, S., Moonsri, P., Wanwimon, W. and Khumpai, S. "Characterization and Properties of activated carbon prepared from Tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution", The Scientific World Journal, pp. 1-9. (2015).
  5. Yahya, M.A., Al-Qodah, Z. and Ngah, C.W.Z. "Agricultural bio-waste materials as potential sustainable procursors used for activated carbon production: a review", Renewable and Sustainable Energy Reviews, 46, pp. 218-235. (2015). https://doi.org/10.1016/j.rser.2015.02.051
  6. Moussa, M., Bader, N., Querejeta, N., Duran, I. and Pevida, C. "Toward sustainable hydrogen storage and carbon dioxide capture in post-combustion conditions", Journal of Environmental Chemical Engineering, 5, pp. 1628-1637. (2017). https://doi.org/10.1016/j.jece.2017.03.003
  7. Leyva-Ramos, R. and Geankoplis, C.J. "Diffusion in liquid-filled pores of activated carbon. I. pore volume diffusion", The Canadian Jouranal of Chemical Engineering, 72, pp. 262-271. (1994). https://doi.org/10.1002/cjce.5450720213
  8. Moon, S.Y., Lee, B.H. and Lim, Y.S. "Characterization and fabrication of chemically activated carbon fibers with various drying temperatures using OXI-PAN fibers", Carbon Science, 8, pp. 30-36. (2007).
  9. Hwang, S.H., Park, S.H., Kim, D.W. and Jo, Y.M. "Preparation of activated carbon fiber adsorbent for enhancement of $CO_2$ capture capacity", Journal of Korean Society for Atmospheric Environment, 31, pp. 538-547. (2015). https://doi.org/10.5572/KOSAE.2015.31.6.538
  10. Illingworth, J., Westwood, A., Rand, B. and Williams, P. "Chemical activation of biomass fibres using alkali metal salts", University of Leeds (School of process, Engivernmental and Materials Engineering), pp. 602. (2005).
  11. Hayashi, J., Kazehaya, A., Muroyama, K. and Watkinson, A.P. "Preparation of activated carbon from lignin by chemical activation", Carbon, 38, pp. 1873-1878. (2000). https://doi.org/10.1016/S0008-6223(00)00027-0

피인용 문헌

  1. Impact of the oxygen functional group of nitric acid-treated activated carbon on KOH activation reaction vol.29, pp.3, 2017, https://doi.org/10.1007/s42823-019-00024-0