DOI QR코드

DOI QR Code

Selective Removal of Al(III) from Rare Earth Solutions Using Peas-based Activated Carbon

  • An, Fu-Qiang (Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China) ;
  • Wu, Rui-Yan (Chemical Department, North University of China) ;
  • Li, Min (Chemical Department, North University of China) ;
  • Yuan, Zhi-Guo (Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China) ;
  • Hu, Tuo-Ping (Chemical Department, North University of China) ;
  • Gao, Jian-Feng (Chemical Department, North University of China)
  • Received : 2017.01.05
  • Accepted : 2017.07.28
  • Published : 2017.10.20

Abstract

Efficiently removing Al(III) from rare earth is very significant because even trace amount of Al(III) can cause serious harm to the rare earth materials. In this paper, a nitrogen-containing activated carbon, AC-P700, was synthesized using peas as raw materials. The AC-P700 was characterized by surface area analyzer, FT-IR, and XPS methods. The adsorption and recognition properties of AC-P700 towards Al(III) were investigated, and the recognition mechanism was also analyzed. The BET special surface area of AC-P700 was $1277.1m^2{\cdot}g^{-1}$, and the average pore diameter was 1.90 nm. The AC-P700 possesses strong adsorption affinity and excellent recognition selectivity towards Al(III). The adsorption capacity for Al(III) could reach to $0.53mmol{\cdot}g^{-1}$, and relative selectivity coefficients relative to La(III) and Ce(III) is 9.6 and 8.7, respectively. Besides, AC-P700 possesses better regeneration ability and reusability.

Keywords

References

  1. Hosny, N. M.; Sayed, E.; Morsy, E.; Sherif, Y. E. J. Rare Earth. 2015, 33, 758. https://doi.org/10.1016/S1002-0721(14)60482-8
  2. Rodrigues, I.; Xue, T. Y.; Roussel, P.; Visseaux, M. J. Organomet. Chem. 2013, 743, 139. https://doi.org/10.1016/j.jorganchem.2013.06.035
  3. Wang, Z.; Fongarland, P.; Lu, G. Z.; Essayem, N. J. Catal. 2014, 318, 108. https://doi.org/10.1016/j.jcat.2014.07.006
  4. Wang, W. S.; Li, Y. B.; Gao, B. J.; Huang, X. W.; Zhang, Y. Q.; Xu, Y.; An, F. Q. Chem. Eng. Res. Des. 2013, 91, 2759. https://doi.org/10.1016/j.cherd.2013.05.006
  5. An, F. Q.; Gao, B. J.; Huang, X. W.; Zhang, Y. Q.; Li, Y. B.; Xu, Y.; Chen, Z. P.; Gao, J. F. Desalin. Water Treat. 2013, 51, 5566. https://doi.org/10.1080/19443994.2013.774295
  6. An, F. Q.; Gao, B. J.; Huang, X. W.; Zhang, Y. Q.;. Li, Y. B; Xu, Y.; Zhang, Z. G.; Gao, J. F.; Chen, Z. P. React. Funct. Polym. 2013, 73, 60. https://doi.org/10.1016/j.reactfunctpolym.2012.08.022
  7. Sui, N.; Huang, K.; Lin, J. Y.; Li, X. P.; Wang, X. Q.; Xiao, C. X.; Liu, H. Z. Sep. Purif. Technol. 2014, 127, 97. https://doi.org/10.1016/j.seppur.2014.02.035
  8. Han, X.; Lin, H. F.; Zheng, Y. J. Hazard. Mater. 2015, 297, 217. https://doi.org/10.1016/j.jhazmat.2015.04.056
  9. Zhou, Y.; Apul, O. G.; Karanfil, T. Water Res. 2015, 79, 57. https://doi.org/10.1016/j.watres.2015.04.017
  10. Jain, A.; Balasubramanian, R.; Srinivasan, M. P. Chem. Eng. J. 2015, 273, 622. https://doi.org/10.1016/j.cej.2015.03.111
  11. Tao, H. C.; Zhang, H. R.; Li, J. B.; Ding, W. Y. Bioresource Technol. 2015, 192, 611. https://doi.org/10.1016/j.biortech.2015.06.006
  12. Yun, Y. S.; Kim, D.; Park, H. H.; Tak, Y.; Jin, H. J. Synthetic Met. 2012, 162, 2337. https://doi.org/10.1016/j.synthmet.2012.11.005
  13. Kim, J. H.; Cho, S.; Bae, T. S.; Lee, Y. S. Sensor. Actuat. B-Chem. 2014, 197, 20. https://doi.org/10.1016/j.snb.2014.02.054
  14. Pietrzak, R. Fuel 2009, 88, 1871. https://doi.org/10.1016/j.fuel.2009.04.017
  15. Cai, X. L.; Riedl, B.; Wan, H.; Zhang, S. Y.; Wang, X. M. Compos. Part A-Appl. 2010, 41, 604. https://doi.org/10.1016/j.compositesa.2010.01.007
  16. Liu, Z.; Du, Z. Y.; Song, H.; Wang, C. Y. Subhan, F.; Xing, W.; Yan, Z. J. Colloid Interf. Sci. 2014, 416, 124. https://doi.org/10.1016/j.jcis.2013.10.061
  17. Vukcevic, M.; Pejic, B.; Kalijadis, A.; Pajic-Lijakovic, I.; Kostic, M.; Lausevic, Z.; Lausevic, M. Chem. Eng. J. 2014, 235, 284. https://doi.org/10.1016/j.cej.2013.09.047
  18. Shrestha, R. M.; Varga, I.; Bajtai, J.; Varga, M.; Microchem. J. 2013, 108, 224. https://doi.org/10.1016/j.microc.2012.11.002
  19. Trevino-Cordero, H.;Juarez-Aguilar, L. G.; Mendoza- Castillo, D. I. ; Hernandez-Montoya, V.; Bonilla-Petriciolet, A.; Montes-Moran, M. A. Ind. Crop. Prod. 2013, 42, 315. https://doi.org/10.1016/j.indcrop.2012.05.029
  20. Depci, T.; Kulb, A. R.; Onal, Y. Chem. Eng. J. 2012, 200-202, 224. https://doi.org/10.1016/j.cej.2012.06.077
  21. Tofighy, M. A.; Mohammadi, T. J. Hazard. Mater. 2011,185, 140. https://doi.org/10.1016/j.jhazmat.2010.09.008
  22. Anirudhan, T. S. ; Sreekumari, S. S. J. Environ. Sci. 2011,23, 1989. https://doi.org/10.1016/S1001-0742(10)60515-3
  23. Lalhruaitluanga, H.; Prasad, M. N. V.; Radha, K. Desalination2011, 271, 301. https://doi.org/10.1016/j.desal.2010.12.055
  24. Rouquerol, J.; Avnir, D.; Fairbridge, C. W.; Everett, D.H.; Haynes, J. M.; Pernicone, N.; Ramsay, J. D. F.; Sing,K. S. W.; Unger, K. K. Pure Appl. Chem. 1994, 66, 1739. https://doi.org/10.1351/pac199466081739

Cited by

  1. Selective adsorption and removal ability of pine needle-based activated carbon towards Al(III) from La(III) pp.1532-2351, 2019, https://doi.org/10.1080/01932691.2018.1464933