DOI QR코드

DOI QR Code

Indoor Air Condition Measurement and Regression Analysis System Through Sensor Measurement Device and Gated Recurrent Unit

센서 측정기와 회로형 순환 유닛(GRU)을 이용한 실내 공기 품질 측정 및 추세 예측 시스템

  • Received : 2017.05.30
  • Accepted : 2017.07.25
  • Published : 2017.09.30

Abstract

Indoor air quality analysis is conducted to understand abnormal atmospheric phenomena and the external factor affecting indoor air quality. By recording indoor air quality measurements periodically, we are able to observe patterns in air quality. However, it difficult to predict the number of potential parameters, set parameters for a given observation and find the coefficients. Moreover, the results are time-dependent. Thus to address these issues, we introduce a microchip capable of periodically recording indoor air quality and a model that estimates atmospheric changes based on time series data.

실내 공기 품질 측정은 측정 대상 공간의 대기 상태 유지, 외부 변인으로 인한 대기 이상 현상을 검출하려는 방법이다. 실내 공기 품질을 주기적으로 기록하면서 변인에 따른 공기 변화에 특정 패턴이 발생함을 관측할 수 있었으나, 파라미터를 설정하고 계수를 찾아 나가기엔 파라미터의 개수나 그 영향력을 추산하기 어렵고 결과가 시간에 의존적이라는 문제가 있다. 따라서 본 실험은 이것을 공식화하는 대신, 측정 주기마다 추이를 예측하는 관측치 중심의 기계 학습 모델을 개발하는 것을 목표로 한다. 본 논문은 실내 대기 품질을 주기적으로 전송 및 저장하는 측정기의 기록 데이터로 공기 품질 변화를 예측하는 모델을 설명하고 시계열 분석 모델을 구축한다.

Keywords

References

  1. R. Allen, T. Larson, L. Sheppard, L. Wallace, and L. J. S. Liu, "Use of Real-Time Light Scattering Data to Estimate the Contribution of Infiltrated and Indoor-Generated Particles to Indoor Air," Environmental Science & Technology, Vol.37, No.16, pp.3484-3492, 2003. https://doi.org/10.1021/es021007e
  2. H. K. Lai, L. Bayer-Oglesby, R. Colvile, T. Gotschi, M. J. Jantunen, N. Kunzli, E. Kulinskaya, C. Schweizer, and M. J. Nieuwenhuijsen "Determinants of indoor air concentrations of $PM_{2.5}$, black smoke and $NO_2$ in six European cities (EXPOLIS study)," Atmos. Environ., Vol.40, No.7, pp.1299-1313, 2006. https://doi.org/10.1016/j.atmosenv.2005.10.030
  3. S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, Vol.9, Issue 8, pp.1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
  4. A. Temko and N. Climent, "Classification of acousticevents using SVM-based clustering schems," Pattern Recognition, Vol.39, No.4, pp.682-694, 2006. https://doi.org/10.1016/j.patcog.2005.11.005
  5. T. Zhao and H. Xue. "Regression Analysis and Indoor Air Temperature Model of Greenhouse in Northern Dry and Cold Regions," International Conference on Computer and Computing Technologies in Agriculture, Springer, Berlin, Heidelberg, 2010.
  6. A. Graves, "Supervised sequence labelling with recurrent neural networks," Springer, Vol.385, 2012.
  7. Cho Kyunghyun, et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.
  8. R. Jozefowicz, W. Zaremba, and I. Sutskever, "An empirical exploration of recurrentnetwork architectures," Proceedings of the 32ndInternational Conference on Machine Learning (ICML-15), 2015.
  9. R. E. Walpole and R. H. Myers, "Probability and Statistics for Engineers and Scientists," New York: Macmillan, ISBN 10: 0024241709, ISBN 13: 9780024241702, 1985.
  10. D. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
  11. J. Duchi, E. Hazan, and Y. Singer, "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization," Journal of Machine Learning Research, Vol.12, pp.2121-2159, 2011.