References
- R. Allen, T. Larson, L. Sheppard, L. Wallace, and L. J. S. Liu, "Use of Real-Time Light Scattering Data to Estimate the Contribution of Infiltrated and Indoor-Generated Particles to Indoor Air," Environmental Science & Technology, Vol.37, No.16, pp.3484-3492, 2003. https://doi.org/10.1021/es021007e
-
H. K. Lai, L. Bayer-Oglesby, R. Colvile, T. Gotschi, M. J. Jantunen, N. Kunzli, E. Kulinskaya, C. Schweizer, and M. J. Nieuwenhuijsen "Determinants of indoor air concentrations of
$PM_{2.5}$ , black smoke and$NO_2$ in six European cities (EXPOLIS study)," Atmos. Environ., Vol.40, No.7, pp.1299-1313, 2006. https://doi.org/10.1016/j.atmosenv.2005.10.030 - S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, Vol.9, Issue 8, pp.1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- A. Temko and N. Climent, "Classification of acousticevents using SVM-based clustering schems," Pattern Recognition, Vol.39, No.4, pp.682-694, 2006. https://doi.org/10.1016/j.patcog.2005.11.005
- T. Zhao and H. Xue. "Regression Analysis and Indoor Air Temperature Model of Greenhouse in Northern Dry and Cold Regions," International Conference on Computer and Computing Technologies in Agriculture, Springer, Berlin, Heidelberg, 2010.
- A. Graves, "Supervised sequence labelling with recurrent neural networks," Springer, Vol.385, 2012.
- Cho Kyunghyun, et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014.
- R. Jozefowicz, W. Zaremba, and I. Sutskever, "An empirical exploration of recurrentnetwork architectures," Proceedings of the 32ndInternational Conference on Machine Learning (ICML-15), 2015.
- R. E. Walpole and R. H. Myers, "Probability and Statistics for Engineers and Scientists," New York: Macmillan, ISBN 10: 0024241709, ISBN 13: 9780024241702, 1985.
- D. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014.
- J. Duchi, E. Hazan, and Y. Singer, "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization," Journal of Machine Learning Research, Vol.12, pp.2121-2159, 2011.