참고문헌
- Ahn, Y., Sung, N. C. and Lee, Y. C. 2015. Introduction to pollution and purification of soil environment. Goomibook. Korea.
- Ahn, Y. and Park, J. Y. 2016. Removal of Escherichia coli in river water introduced in saturated-zone soil: Laboratoryscale column test. J. Kor. Soc. Env. Tech. 17, 493-500.
- Amann, R. I., Ludwing, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
- Baker, M. A., Valett, H. M. and Dahm, C. N. 2000. Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81, 3133-3148. https://doi.org/10.1890/0012-9658(2000)081[3133:OCSAMI]2.0.CO;2
- Balkwill, D. L. and Ghiorse, W. C. 1985. Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl. Environ. Microbiol. 50, 580-588.
- Batiot, C., Emblanch, C. and Blavoux, B. 2003. Total organic carbon (TOC) and magnesium (Mg): two complementary tracers of residence time in karstic systems. Comptes. Rendus. Geosci. 335, 205-214. https://doi.org/10.1016/S1631-0713(03)00027-0
- Bloomfield, J. P., Gaus, I. and Wade, S. D. 2003. A method for investigating the potential impacts of climate-change scenarios on annual minimum groundwater levels. Water Environ. J. 17, 86-91. https://doi.org/10.1111/j.1747-6593.2003.tb00439.x
- Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N. and Guha, P. 2006. Impacts of climate change on the fate and behavior of pesticides in surface and groundwater-A UK perspective. Sci. Total Environ. 369, 163-177. https://doi.org/10.1016/j.scitotenv.2006.05.019
- Bone, T. L. and Balkwill, D. L. 1988. Morphological and cultural comparison of microorganisms in surface soil and subsurface sediments at a pristine study site in Oklahoma. Microb. Ecol. 16, 49-64. https://doi.org/10.1007/BF02097404
- Boyd, E. C., Cummings, D. E. and Geesey, G. G. 2007. Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microb. Ecol. 54, 170-182. https://doi.org/10.1007/s00248-006-9187-9
- Cho, J. C. and Kim, S. J. 2000. Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl. Environ. Microbiol. 66, 956-965. https://doi.org/10.1128/AEM.66.3.956-965.2000
- Diaz-Cruz, M. S. and Barcelo, D. 2008. Trace organic chemicals contamination in ground water recharge. Chemosphere 72, 333-342. https://doi.org/10.1016/j.chemosphere.2008.02.031
- Dillon, P. J. 2005. Future management of aquifer recharge. Hydrogeol. J. 13, 313-316. https://doi.org/10.1007/s10040-004-0413-6
- Dowideit, K., Scholz-Muramatsu, H., Miethling-Graff, R., Dohrmann, A. B. and Tebbe, C. C. 2010. Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiol. Ecol. 71, 444-459. https://doi.org/10.1111/j.1574-6941.2009.00820.x
- Fahy, A., Lethbridge, G., Earle, R., Ball, A. S., Timmis, K. N. and McGenity, T. J. 2005. Effects of long-term benzene pollution on bacterial diversity and community structure in groundwater. Environ. Microbiol. 7, 1192-1199. https://doi.org/10.1111/j.1462-2920.2005.00799.x
- Fahy, A., Ball, A. S., Lethbridge, G., McGenity, T. J. and Timmis, K. N. 2008. High benzene concentrations can favor Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol. Ecol. 65, 526-533. https://doi.org/10.1111/j.1574-6941.2008.00518.x
- Farnsworth, C. E. and Hering, J. G. 2011. Inorganic geochemistry and redox dynamics in bank filtration settings. Environ. Sci. Technol. 45, 5079-5087. https://doi.org/10.1021/es2001612
- Findlay, S. E., Sinsabaugh, R. L., Sobczak, W. V. and Hoostal, M. 2003. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol. Oceanogr. 48, 1608-1617. https://doi.org/10.4319/lo.2003.48.4.1608
- Flynn, T. M, Sanford, R. A. and Bethke, C. M. 2008. Attached and suspended microbial communities in a pristine confined aquifer. Water Resour. Res. 44, W07425.
- Flynn, T. M., Sanford, R. A., Ryu, H., Bethke, C. M., Levine, A. D., Ashbolt, N. J. and Santo Domingo, J. W. 2013. Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol. 13, 146. https://doi.org/10.1186/1471-2180-13-146
- Gavrieli, I., Burg, A. and Guttman, J. 2002. Transition from confined to phreatic conditions as the factor controlling salinization and change in redox state, Upper subaquifer of the Judea Group, Israel. Hydrogeol. J. 10, 483-494. https://doi.org/10.1007/s10040-002-0206-8
- Goldscheider, N., Hunkeler, D. and Rossi, P. 2006. Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol. J. 14, 926-941. https://doi.org/10.1007/s10040-005-0009-9
- Gooddy, D. C., Hughes, A. G., Williams, A. T., Armstrong, A. C., Nicholson, R. J. and Williams, J. R. 2001. Field and modelling studies to assess the risk to UK groundwater from earth-based stores for livestock manure. Soil Use Manage. 17, 128-137.
- Gregory, S. P., Maurice, L. D., West, J. M. and Gooddy, D. C. 2014. Microbial communities in UK aquifers: current understanding and future research needs. Q. J. Eng. Geol. Hydrogeol. 47, 145-157. https://doi.org/10.1144/qjegh2013-059
- Griebler, C., Mindl, B., Slezak, D. and Geiger-Kaiser, M. 2002. Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat. Microb. Ecol. 28, 117-129. https://doi.org/10.3354/ame028117
- Griebler, C. and Lueders, T. 2009. Microbial biodiversity in groundwater ecosystems. Freshw. Biol. 54, 649-677. https://doi.org/10.1111/j.1365-2427.2008.02013.x
- Haack, S. K., Fogarty, L. R., West, T. G., Alm, E. W., McGuire, J. T., Long, D. T., Hyndman, W. and Forney, L. J. 2004. Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environ. Microbiol. 6, 439-448.
- Haveman, S. A., Swanson, E. W. A., Voordouw, G. and Al, T. A. 2005. Microbial populations of the river-recharged Fredericton aquifer. Geomicrobiol. J. 22, 311-324. https://doi.org/10.1080/01490450500184769
- Hendrickx, B., Dejonghe, W., Boenne, W., Brennerova, M., Cernik, M., Lederer, T., Bucheli-Witschel, M., Bastiaens, L., Verstraete, W., Top, E. M., Diels, L. and Springael, D. 2005. Dynamics of an oligotrophic bacterial aquifer community during contact with a groundwater plume contaminated with benzene, toluene, ethylbenzene, and xylenes: An in situ mesocosm study. Appl. Environ. Microbiol. 71, 3815-3825. https://doi.org/10.1128/AEM.71.7.3815-3825.2005
- Hery, M., Volant, A., Garing, C., Herndl, G. J. and Jurgens, K. 2014. Diversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion. FEMS Microbiol. Ecol. 90, 922-934. https://doi.org/10.1111/1574-6941.12445
- Hillewaert, H. 2007. Schematic aquifer cross section. U.S. Geological Survey circular 1186.
- Humphreys, W. F. 2009. Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeol. J. 17, 5-21. https://doi.org/10.1007/s10040-008-0349-3
- Im, H., Yeo, I., Maeng, S. K. and Choi, H. 2015. Removal of organic matter and pharmaceuticals in wastewater effluent through managed aquifer recharge. J. Kor. Soc. Environ. 37, 182-190. https://doi.org/10.4491/KSEE.2015.37.3.182
- Johnson, A., Llewellyn, N., Smith, J., van der Gast, C., Lilley, A., Singer, A. and Thompson, I. 2004. The role of microbial community composition and groundwater chemistry in determining isoproturon degradation potential in UK aquifers. FEMS Microbiol. Ecol. 49, 71-82. https://doi.org/10.1016/j.femsec.2004.03.015
- Kim, Y. and Kim, Y. 2009. Artificial groundwater technology for climate change. J. Korea Water Resour. Assoc. 42, 58-65.
- Kim, Y. and Kim, Y. 2010. A review on the state of the art in the management of aquifer recharge. J. Geo. Soc. Korea 46, 521-533.
- Kolehmainen, R. E., Tiirola, M. A. and Puhakka, J. A. 2008. Spatial and temporal changes in Actinobacterial dominance in experimental artificial groundwater recharge. Water Res. 42, 4525-4537. https://doi.org/10.1016/j.watres.2008.07.039
- Kross, B. C., Ayebo, A. D. and Fuortes, L. J. 1992. Methemoglobinemia: nitrate toxicity in rural America. Am. Fam. Physician 46, 183-188.
- Langmark, J., Storey, M. V., Ashbolt, N. J. and Stenstrom, T. A. 2004. Artificial groundwater treatment: biofilm activity and organic carbon removal performance. Water Res. 38, 740-748. https://doi.org/10.1016/j.watres.2003.10.021
- Lapworth, D. J., Baran, N., Stuart, M. E. and Ward, R. S. 2012. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 163, 287-303. https://doi.org/10.1016/j.envpol.2011.12.034
- Leenheer, J. A. and Croue, J. P. 2003. Characterizing aquatic dissolved organic matter. Environ. Sci. Technol. 37, 18-26. https://doi.org/10.1021/es032333c
- Li, D., Sharp, J. O., Saikaly, P. E., Ali, S., Alidina, M., Alarawi, M. S., Keller, S., Hoppe-Jones, C. and Drewes, J. E. 2012. Dissolved organic carbon influences microbial community. Appl. Environ. Microbiol. 78, 6819-6828. https://doi.org/10.1128/AEM.01223-12
- Lopez-Archilla, A. I., Moreira, D., Velasco, S., Lopez-Garcia, P. 2007. Archaeal and bacterial community composition of a pristine coastal aquifer in Donana National Park, Spain. Aquat. Microb. Ecol. 47, 123-139. https://doi.org/10.3354/ame047123
- Ministry of Land, Infrastructure and Transport. 2017. Groundwater survey annual report No.11635.
- Morris, B., Darling, W., Cronin, A., Rueedi, J., Whitehead, E. and Gooddy, D. 2006. Assessing the impact of modern recharge on a sandstone aquifer beneath a suburb of Doncaster, UK. Hydrogeol. J. 14, 979-997. https://doi.org/10.1007/s10040-006-0028-1
- National Institute of Environmental Research. 2014. Safe groundwater management manual from norovirus and microbial contamination for private and small water supply user. Korea.
- Park, J. Y. and Ahn, Y. 2014. Removal of nitrate in river water by microorganisms in saturated-zone soil: Laboratoryscale column test. J. Life Sci. 24, 543-548. https://doi.org/10.5352/JLS.2014.24.5.543
- Park, N. S., Jung, E. T. and Nam, B. H. 2016. Aquifer storage and water quality enhancement of surface water. Kor. Soc. Civ. Eng. 64, 25-31.
- Powell, K. L., Cronin, A. A., Pedley, S. and Barrett, M. H. 2002. Microbiological quality of groundwater in UK urban aquifers: Do we know enough? pp. 91-96 In: Thornton S. F., and Oswald, S. E. (eds), Groundwater Quality: natural and enhanced restoration of groundwater pollution. IAHS publication 275. International Association of Hydrological Sciences Publishing, Sheffield, UK.
- Powell, K. L., Taylor, R. G., Cronin, A. A., Barrett, M. H., Pedley, S., Sellwood, J., Trowsdale, S. A. and Lerner, D. N. 2003. Microbial contamination of two urban sandstone aquifers in the UK. Water Res. 37, 339-352. https://doi.org/10.1016/S0043-1354(02)00280-4
- Rogers, J. R. and Bennett, P. C. 2004. Mineral stimulation of subsurface microorganism: release of limiting nutrients from silicates. Chem. Geol. 203, 91-108. https://doi.org/10.1016/j.chemgeo.2003.09.001
- Schulze-Makuch, D. 2009. Advection, Dispersion, Sorption, Degradation, Attenuation, pp. 55-68. In: Groundwater - Vol. II. EOLSS Publications, USA.
- Shi, Y., Zwolinski, M. D., Schreiber, M. E., Bahr, J. M., Sewell, G. W. and Hickey, W. J. 1999. Molecular analysis of microbial community structures in pristine and contaminated aquifers: Field and laboratory microcosm experiments. Appl. Environ. Microbiol. 65, 2143-2150.
- Sirisena, K. A., Daughney, C. J., Moreau-Fournier, M., Ryan, K. G. and Chambers, G. K. 2013. National survey of molecular bacterial diversity of New Zealand groundwater: Relationships between biodiversity, groundwater chemistry and aquifer characteristics. FEMS Microbiol. Ecol. 86, 490-504. https://doi.org/10.1111/1574-6941.12176
- Smith, R. J., Jeffries, T. C., Roudnew, B., Fitch, A. J., Seymour, J. R., Delpin, M. W., Newton, K., Brown, M. H. and Mitchell, J. G. 2012. Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environ. Microbiol. 14, 240-253. https://doi.org/10.1111/j.1462-2920.2011.02614.x
- Sorensen, J. P. R., Maurice, L., Edwards, F. K., Lapworth, D. J., Read, D. S., Allen, D., Butcher, A. S., Newbold, L. K., Townsend, B. R. and Williams, P. J. 2013. Using boreholes as windows into groundwater ecosystems. PLoS ONE 8, e70264. https://doi.org/10.1371/journal.pone.0070264
- Stuart, M., Gooddy, D., Bloomfield, J. and Williams, A. 2011. A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Sci. Total Environ. 409, 2859-2873. https://doi.org/10.1016/j.scitotenv.2011.04.016
- Toze, S., Bekele, E., Page, D., Sidhu, J. and Shackleton, M. 2010. Use of static quantitative microbial risk assessment to determine pathogen risks in an unconfined carbonate aquifer used for managed aquifer recharge. Water Res. 44, 1038-1049. https://doi.org/10.1016/j.watres.2009.08.028
- Unno, T., Kim, J., Kim, Y., Nguyen, S. G., Guevarra, R. B., Kim, G. P., Lee, J. H. and Sadowsky, M. J. 2015. Influence of seawater intrusion on microbial communities in groundwater. Sci. Total Environ. 532, 337-343. https://doi.org/10.1016/j.scitotenv.2015.05.111
- Urenda, F. R. 2009. Groundwater contamination, protection and remediation. pp. 16-52. In: Groundwater - Vol. III. EOLSS Publications, USA.
- Uroz, S., Calvaruso, C., Turpault, M. P. and Frey Klett, P. 2009. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 17, 378-387. https://doi.org/10.1016/j.tim.2009.05.004
- Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51, 221-271.
- Younger, P. L. 2007. Groundwater in the environment: an introduction, pp. 1-25, 1st ed., Blackwell publishing Ltd. Victoria, Australia.
- Zhou, Y., Kellermann, C. and Griebler, C. 2012. Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiol. Ecol. 81, 230-242. https://doi.org/10.1111/j.1574-6941.2012.01371.x