DOI QR코드

DOI QR Code

오메가-3 지방산에 의한 COX-2/MMPs/VEGF 억제에 따른 대장암세포의 종양 형성 및 침윤 억제

ω3-Polyunsaturated Fatty Acids-induced Inhibition of Tumorigenicity and Invasion by Suppression of COX-2/MMPs/VEGF through NF-kB in Colon Cancer Cells

  • 신소연 (충남대학교 의과대학 생화학교실) ;
  • 김용조 (충남대학교 의과대학 생화학교실) ;
  • 한승현 (충남대학교 의과대학 생화학교실) ;
  • 프라산타 (충남대학교 의과대학 생화학교실) ;
  • 허준영 (충남대학교 의과대학 생화학교실) ;
  • 전영주 (충남대학교 의과대학 생화학교실) ;
  • 박승길 (충남대학교 의과대학 생화학교실) ;
  • 권기량 (충남대학교 의과대학 생화학교실) ;
  • 박종일 (충남대학교 의과대학 생화학교실) ;
  • 임규 (충남대학교 의과대학 생화학교실)
  • Shin, Soyeon (Department of Biochemistry, Chungnam National University) ;
  • Kim, Yong-Jo (Department of Biochemistry, Chungnam National University) ;
  • Han, Seung-Hyeon (Department of Biochemistry, Chungnam National University) ;
  • Silwal, Prashanta (Department of Biochemistry, Chungnam National University) ;
  • Heo, Jun-Young (Department of Biochemistry, Chungnam National University) ;
  • Jeon, Young-Joo (Department of Biochemistry, Chungnam National University) ;
  • Park, Seung-Kiel (Department of Biochemistry, Chungnam National University) ;
  • Kweon, Gi-Ryang (Department of Biochemistry, Chungnam National University) ;
  • Park, Jong-Il (Department of Biochemistry, Chungnam National University) ;
  • Lim, Kyu (Department of Biochemistry, Chungnam National University)
  • 투고 : 2017.06.07
  • 심사 : 2017.07.24
  • 발행 : 2017.09.30

초록

대장암은 미국 등 서양 국가뿐만 아니라 국내에서도 2번째로 많이 발병이 되는 암으로 알려져 있다. 역학조사에 의하면 오메가-3를 많이 섭취한 인종에서 대장암 발생빈도가 감소하고 최근 오메가-3는 수종의 암에 대해 항암작용을 나타낸다고 한다. 이에 본 연구에서는 대장암에서 DHA의 항침윤, 항혈관 신생 및 항종양 형성능 억제의 기전을 규명하여 다음과 같은 결과를 얻었다. DHA는 인체 대장암 세포주 HT29 의 증식을 농도 의존적으로 억제하였으나 AA는 거의 영향이 없었다. FACS 분석에서 DHA 처리했을 때 Sub G1 phase의 세포가 DHA의 농도 의존적으로 증가 하였다. DHA 처리 후 cleaved PARP가 증가하고, uncelaved caspase-3가 감소 하였다. HT29 세포의 침윤능은 DHA 처리에 의해 억제 되었다. DHA 처리 후 MMP-9 및 MMP-2 mRNA양이 감소 되었을 뿐만 아니라 그 promoter의 reporter 활성도 억제하였으며 VEGF promoter 활성도 DHA에 의해 억제 되었다. NF-kB promoter 활성 및 핵으로의 이동도 DHA에 의해 억제 되었다. In vivo 동물실험에서 생쥐 대장암 세포주인 MCA38에 대한 Fat-1 transgenic mice에서의 종양 형성능은 현저히 억제 되었다. 면역형광염색법을 이용한 Fat-1 transgenic mice의 종양 조직에서의 TUNEL 양성세포는 wild type mice에 비해 현저히 증가하였으나 CD31의 형광강도는 감소 되었다. 이상의 결과로 오메가-3는 대장암 세포에서 NF-kB 억제에 따른 COX-2, MMP-2 및 MMP-9 등 matrix matalloproteinase의 억제를 통한 침윤능의 억제, VEGF 억제를 통한 혈관신생의 억제등 복합적 기전에 의해 항암작용을 나타내리라 생각되며, 따라서 오메가-3는 대장암의 예방 및 치료에 유용하게 사용될 수 있으리라 생각된다.

Epidemiology studies have reported a reduced incidence of colon cancer among populations that consume a large quantity of ${\omega}3-polyunsaturated$ fatty acids (${\omega}3-PUFAs$) of marine origin. Herein, we demonstrated a mechanism of anticancer action of ${\omega}3-PUFAs$, showing that they suppressed invasion and tumorigenicity in colon cancer cells. Docosahexaenoic acids (DHA) inhibited the cell growth of HT29 cells. This action likely involved apoptosis, given that the DHA treatment increased the cleaved form of PARP and sub G1 cells. Moreover, the invasiveness of HT29 cells was inhibited following DHA treatment, whereas arachidonic acid (AA) had no effect. The levels of Matrix-metalloproteinase-9 (MMP-9) and MMP-2 mRNA decreased after DHA pretreatment. DHA treatment inhibited MMP-9 and MMP-2 promoter activities and reduced VEGF promoter activity. DHA pretreatment also inhibited the activities of prostaglandin-2 (PGE2)-induced MMPs and the VEGF promoter. Cyclooxygenase-2 (COX-2) overexpression increased the activity of MMPs and that of the Vascular endotherial growth factor (VEGF) promoter in HT29 cells, and DHA inhibited NF-kB and COX-2 promoter reporter activities. As shown by in vivo experiments, when mouse colon cancer cells (MCA38) were implanted into Fat-1 and wild-type mice, both the tumoral size and volume were dramatically inhibited in Fat-1 transgenic mice. Furthermore, TUNEL-positive cells increased in tumors from Fat-1 mice compared with wild mice. In immunohistochemistry, the intensity of CD31 in Fat-1 tumors was weaker. These findings suggest that ${\omega}3-PUFAs$ may inhibit tumorigenicity and angiogenesis as well as cancer cell invasion by suppression of COX-2, MMPs and VEGF via the reduction of NF-kB in colon cancer.

키워드

참고문헌

  1. Berquin, I. M., Min, Y., Wu, R., Wu, J., Perry, D., Cline, J. M., Thomas, M. J., Thornburg, T., Kulik, G., Smith, A., Edwards, I. J., D'Agostino, R., Zhang, H., Wu, H., Kang, J. X. and Chen, Y. Q. 2007. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J. Clin. Invest. 117, 1866-1875. https://doi.org/10.1172/JCI31494
  2. Bond, M., Chase, A. J., Baker, A. H. and Newby, A. C. 2001. Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc. Res. 50, 556-565. https://doi.org/10.1016/S0008-6363(01)00220-6
  3. Boudreau, M. D., Sohn, K. H., Rhee, S. H., Lee, S. W., Hunt, J. D. and Hwang, D. H. 2001. Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenaseindependent pathways. Cancer Res. 61, 1386-1391.
  4. Bours, V., Bentires-Alj, M., Hellin, A. C., Viatour, P., Robe, P., Delhalle, S., Benoit, V. and Merville, M. P. 2000. Nuclear factor-kappa B, cancer, and apoptosis. Biochem. Pharmacol. 60, 1085-1089. https://doi.org/10.1016/S0006-2952(00)00391-9
  5. Bresalier, R. S., Boland, C. R. and Kim, Y. S. 1984. Characteristics of colorectal carcinoma cells with high metastatic potential. Gastroenterology 87, 115-122.
  6. Brown, M. D., Hart, C. A., Gazi, E., Bagley, S. and Clarke, N. W. 2006. Promotion of prostatic metastatic migration towards human bone marrow stoma by Omega 6 and its inhibition by Omega 3 PUFAs. Br. J. Cancer 94, 842-853. https://doi.org/10.1038/sj.bjc.6603030
  7. Byers, T. 1996. Nutrition and cancer among American Indians and Alaska Natives. Cancer 78, 1612-1616. https://doi.org/10.1002/(SICI)1097-0142(19961001)78:7<1612::AID-CNCR43>3.0.CO;2-#
  8. Calviello, G., Di Nicuolo, F., Gragnoli, S., Piccioni, E., Serini, S., Maggiano, N., Tringali, G., Navarra, P., Ranelletti, F. O. and Palozza, P. 2004. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 25, 2303-2310. https://doi.org/10.1093/carcin/bgh265
  9. Calviello, G., Serini, S. and Piccioni, E. 2007. n-3 polyunsaturated fatty acids and the prevention of colorectal cancer: molecular mechanisms involved. Curr. Med. Chem. 14, 3059-3069. https://doi.org/10.2174/092986707782793934
  10. Charalambous, M. P., Lightfoot, T., Speirs, V., Horgan, K. and Gooderham, N. J. 2009. Expression of COX-2, NF-kappaB-p65, NF-kappaB-p50 and IKKalpha in malignant and adjacent normal human colorectal tissue. Br. J. Cancer. 101, 106-115. https://doi.org/10.1038/sj.bjc.6605120
  11. Eberhardt, W., Huwiler, A., Beck, K. F., Walpen, S. and Pfeilschifter, J. 2000. Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J. Immunol. 165, 5788-5797. https://doi.org/10.4049/jimmunol.165.10.5788
  12. Eeckhout, Y. and Vaes, G. 1977. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J. 166, 21-31. https://doi.org/10.1042/bj1660021
  13. Gago-Dominguez, M., Yuan, J. M., Sun, C. L., Lee, H. P. and Yu, M. C. 2003. Opposing effects of dietary n-3 and n-6 fatty acids on mammary carcinogenesis: The Singapore Chinese Health Study. Br. J. Cancer 89, 1686-1692. https://doi.org/10.1038/sj.bjc.6601340
  14. Hardman, W. E. 2004. (n-3) fatty acids and cancer therapy. J. Nutr. 134, 3427S-3430S. https://doi.org/10.1093/jn/134.12.3427S
  15. Jeong, S., Jing, K., Kim, N., Shin, S., Kim, S., Song, K. S., Heo, J. Y., Park, J. H., Seo, K. S., Han, J., Wu, T., Kweon, G. R., Park, S. K., Park, J. I. and Lim, K. 2014. Docosahexaenoic acid-induced apoptosis is mediated by activation of mitogen-activated protein kinases in human cancer cells. BMC Cancer 14, 481. https://doi.org/10.1186/1471-2407-14-481
  16. Jing, K. and Lim, K. 2013. Chapter 15. Potent Anticancer Actions of Omega-3 Polyunsaturated Fatty acids of Marine Nutraceuticals, In: Kim SK, ed. Marine Nutrceuticals-Prospects and Perspectives-. CRC Press/Taylor Francis Group LLC. 199-232.
  17. Jing, K., Shin, S., Jeong, S., Kim, S., Song, K. S., Park, J. H., Heo, J. Y., Seo, K. S., Park, S. K., Kweon, G. R., Wu, T., Park, J. I. and Lim, K. 2014. Docosahexaenoic acid induces the degradation of HPV E6/E7 oncoproteins by activating the ubiquitin-proteasome system. Cell Death Dis. 5, e1524. https://doi.org/10.1038/cddis.2014.477
  18. Jing, K., Song, K. S., Shin, S., Kim, N., Jeong, S., Oh, H. R., Park, J. H., Seo, K. S., Heo, J. Y., Han, J., Park, J. I., Han, C., Wu, T., Kweon, G. R., Park, S. K., Yoon, W. H., Hwang, B. D. and Lim, K. 2011. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 7, 1348-1358. https://doi.org/10.4161/auto.7.11.16658
  19. Jing, K., Wu, T. and Lim, K. 2013. Omega-3 polyunsaturated fatty acids and cancer. Anticancer Agents Med. Chem. 13, 1162-1177. https://doi.org/10.2174/18715206113139990319
  20. Kang, J. X., Wang, J., Wu, L. and Kang, Z. B. 2004. Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 427, 504. https://doi.org/10.1038/427504a
  21. Kobayashi, N., Barnard, R. J., Henning, S. M., Elashoff, D., Reddy, S. T., Cohen, P., Leung, P., Hong-Gonzalez, J., Freedland, S. J., Said, J., Gui, D., Seeram, N. P., Popoviciu, L. M., Bagga, D., Heber, D., Glaspy, J. A. and Aronson, W. J. 2006. Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin. Cancer Res. 12, 4662-4670. https://doi.org/10.1158/1078-0432.CCR-06-0459
  22. Kolonel, L. N., Altshuler, D. and Henderson, B. E. 2004. The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nat. Rev. Cancer 4, 519-527. https://doi.org/10.1038/nrc1389
  23. Larkins, T. L., Nowell, M., Singh, S. and Sanford, G. L. 2006. Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer 6, 181. https://doi.org/10.1186/1471-2407-6-181
  24. Lim, K., Han, C., Dai, Y., Shen, M. and Wu, T. 2009. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Mol. Cancer Ther. 8, 3046-3055. https://doi.org/10.1158/1535-7163.MCT-09-0551
  25. Lim, K., Han, C., Xu, L., Isse, K., Demetris, A. J. and Wu, T. 2008. Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. Cancer Res. 68, 553-560. https://doi.org/10.1158/0008-5472.CAN-07-2295
  26. Liotta, L. A. 1984. Tumor invasion and metastases: role of the basement membrane. Warner-Lambert Parke-Davis Award lecture. Am. J. Pathol. 117, 339-348.
  27. Liu, G., Bibus, D. M., Bode, A. M., Ma, W. Y., Holman, R. T. and Dong, Z. 2001. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proc. Natl. Acad. Sci. USA 98, 7510-7515. https://doi.org/10.1073/pnas.131195198
  28. Maillard, V., Bougnoux, P., Ferrari, P., Jourdan, M. L., Pinault, M., Lavillonniere, F., Body, G., Le Floch, O. and Chajes, V. 2002. N-3 and N-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. Int. J. Cancer 98, 78-83. https://doi.org/10.1002/ijc.10130
  29. Nagase, H. and Woessner, J. F. Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274, 21491-21494. https://doi.org/10.1074/jbc.274.31.21491
  30. Okada, Y., Gonoji, Y., Naka, K., Tomita, K., Nakanishi, I., Iwata, K., Yamashita, K. and Hayakawa, T. 1992. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J. Biol. Chem. 267, 21712-21719.
  31. Pavlovic, S., Du, B., Sakamoto, K., Khan, K. M., Natarajan, C., Breyer, R. M., Dannenberg, A. J. and Falcone, D. J. 2006. Targeting prostaglandin E2 receptors as an alternative strategy to block cyclooxygenase-2-dependent extracellular matrix-induced matrix metalloproteinase-9 expression by macrophages. J. Biol. Chem. 281, 3321-3328. https://doi.org/10.1074/jbc.M506846200
  32. Rose, D. P. and Connolly, J. M. 2000. Regulation of tumor angiogenesis by dietary fatty acids and eicosanoids. Nutr. Cancer 37, 119-127. https://doi.org/10.1207/S15327914NC372_1
  33. Roynette, C. E., Calder, P. C., Dupertuis, Y. M. and Pichard, C. 2004. n-3 polyunsaturated fatty acids and colon cancer prevention. Clin. Nutr. 23, 139-151. https://doi.org/10.1016/j.clnu.2003.07.005
  34. Schwartz, S. A., Hernandez, A. and Mark Evers, B. 1999. The role of NF-kappaB/IkappaB proteins in cancer: implications for novel treatment strategies. Surg. Oncol. 8, 143-153. https://doi.org/10.1016/S0960-7404(00)00012-8
  35. Siegel, R. L., Miller, K. D. and Jemal, A. 2017. Cancer Statistics, 2017. CA. Cancer J. Clin. 67, 7-30. https://doi.org/10.3322/caac.21387
  36. Simopoulos, A. P. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365-379. https://doi.org/10.1016/S0753-3322(02)00253-6
  37. Song, K. S., Jing, K., Kim, J. S., Yun, E. J., Shin, S., Seo, K. S., Park, J. H., Heo, J. Y., Kang, J. X., Suh, K. S., Wu, T., Park, J. I., Kweon, G. R., Yoon, W. H., Hwang, B. D. and Lim, K. 2011. Omega-3-polyunsaturated fatty acids suppress pancreatic cancer cell growth in vitro and in vivo via downregulation of Wnt/Beta-catenin signaling. Pancreatology 11, 574-584. https://doi.org/10.1159/000334468
  38. Suzuki, K., Enghild, J. J., Morodomi, T., Salvesen, G. and Nagase, H. 1990. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry 29, 10261-10270. https://doi.org/10.1021/bi00496a016
  39. Szymczak, M., Murray, M. and Petrovic, N. 2008. Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood 111, 3514-3521. https://doi.org/10.1182/blood-2007-08-109934
  40. Tong, Q., Zheng, L., Lin, L., Li, B., Wang, D., Huang, C., Matuschak, G. M. and Li, D. 2006. Participation of the PI-3K/Akt-NF-kappa B signaling pathways in hypoxia-induced mitogenic factor-stimulated Flk-1 expression in endothelial cells. Respir. Res. 7, 101. https://doi.org/10.1186/1465-9921-7-101
  41. Toomey, D. P., Murphy, J. F. and Conlon, K. C. 2009. COX-2, VEGF and tumour angiogenesis. Surgeon 7, 174-180. https://doi.org/10.1016/S1479-666X(09)80042-5
  42. Weldon, S. M., Mullen, A. C., Loscher, C. E., Hurley, L. A., and Roche, H. M. 2007. Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J. Nutr. Biochem. 18, 250-258. https://doi.org/10.1016/j.jnutbio.2006.04.003
  43. Xia, S., Lu, Y., Wang, J., He, C., Hong, S., Serhan, C. N. and Kang, J. X. 2006. Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proc. Natl. Acad. Sci. USA 103, 12499-12504. https://doi.org/10.1073/pnas.0605394103
  44. Xia, S. H., Wang, J. and Kang, J. X. 2005. Decreased n-6/n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasionrelated genes. Carcinogenesis 26, 779-784. https://doi.org/10.1093/carcin/bgi019
  45. Yoon, W. H., Jung, Y. J., Kim, T. D., Li, G., Park, B. J., Kim, J. Y., Lee, Y. C., Kim, J. M., Park, J. I., Park, H. D., No, Z. S., Lim, K., Hwang, B. D. and Kim, Y. S. 2004. Gabexate mesilate inhibits colon cancer growth, invasion, and metastasis by reducing matrix metalloproteinases and angiogenesis. Clin. Cancer. Res. 10, 4517-4526. https://doi.org/10.1158/1078-0432.CCR-04-0084
  46. Yun, E. J., Song, K. S., Shin, S., Kim, S., Heo, J. Y., Kweon, G. R., Wu, T., Park, J. I. and Lim, K. 2016. Docosahexaenoic acid suppresses breast cancer cell metastasis by targeting matrix-metalloproteinases. Oncotarget 7, 49961-49971. https://doi.org/10.18632/oncotarget.10266
  47. Zhao, Y., Joshi-Barve, S., Barve, S. and Chen, L. H. 2004. Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J. Am. Coll. Nutr. 23, 71-78. https://doi.org/10.1080/07315724.2004.10719345