DOI QR코드

DOI QR Code

Anti-inflammatory Effects of Lemon Myrtle (Backhousia citriodora) Leaf Extracts in LPS-induced RAW 264.7 Cells

LPS로 유도된 RAW 264.7 세포에 대한 레몬 머틀 잎 추출물의 항염증 효과

  • Kim, Pan Kil (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Jung, Kyung Im (Department of Food & Nutrition, Silla University) ;
  • Choi, Young Ju (Department of Food & Nutrition, Silla University) ;
  • Gal, Sang Wan (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 김판길 (경남과학기술대학교 제약공학과) ;
  • 정경임 (신라대학교 식품영양학과) ;
  • 최영주 (신라대학교 식품영양학과) ;
  • 갈상완 (경남과학기술대학교 제약공학과)
  • Received : 2017.06.09
  • Accepted : 2017.08.24
  • Published : 2017.09.30

Abstract

Lemon myrtle (Backhousia citriodora) has been identified as one of the plants that are likely to undergo important commercial exploitation. This study was carried out to investigate the anti-inflammatory activities and nitric oxide synthase (iNOS) expression of hot water (LMW) and 80% ethanol (LME) extracts from lemon myrtle leaf in lipopolysaccharide-induced (LPS) RAW 264.7 cells. The total phenol content of LMW and LME was 207.44 and $331.54{\mu}g$ tannic acid equivalents (TAE)/mg, respectively (p<0.01). DPPH radical scavenging activities of LMW and LME were remarkably increased in a dose-dependent manner, and were about 90.69% and 92.50% at 0.5 mg/ml, respectively. Superoxide dismutase (SOD) activities of LMW and LME were 106.22% and 103.58% at 1 mg/ml, respectively. The highest activity (91.03%) of nitrite-scavenging was observed for LME at 1 mg/ml at pH 1.2, while the activity for LMW was about 81.03% under the same conditions (p<0.05). Anti-inflammatory effect was examined in LPS stimulated RAW 264.7 cells. Nitric oxide (NO) production were reduced to 35.41% and 78.39% by addition of LMW and LME at 0.5 mg/ml, respectively (p<0.05). LMW and LME reduced protein expression of inducible nitric oxide synthase (iNOS) in a dose-dependent manner (p<0.05). These results, we conclude that lemon myrtle may be a highly valuable natural product owing to its high-quality functional components as well as its anti-oxidant and anti-inflammatory activities.

본 연구에서는 레몬 머틀 잎 열수 및 에탄올 추출물을 이용하여 항산화 활성과 NO 소거능 및 RAW 264.7 세포에서의 항염증 활성에 미치는 영향을 확인하였다. 레몬 머틀 열수 및 에탄올 추출물의 총 페놀 함량은 각각 207.44와 $331.54{\mu}g\;TAE/mg$이었고, DPPH radical 소거능은 0.5 mg/ml 농도에서 각각 90.69%와 92.50%로 나타났으며, SOD 활성은 1 mg/ml 농도에서 각각 106.22%와 103.58%로 나타났다. 아질산염 소거능 분석에서는 열수와 에탄올 추출물 1 mg/ml 농도, pH 1.2에서 81.06%와 91.03%로 에탄올 추출물의 소거능이 높은 것으로 나타났다. 레몬머틀의 항염증 활성을 측정하기 위하여 대식세포에 LPS를 처리하여 세포 내 NO 생성을 유도한 후 열수 및 에탄올 추출물을 처리하여 각각의 추출물이 NO 활성에 미치는 영향을 분석한 결과 각 추출물 모두 농도 의존적으로 감소하였다. 또한 LPS에 의해 증가된 iNOS 단백질 발현 또한 농도 의존적으로 감소하였다. 이상의 결과에서와 같이 레몬 머틀 잎은 항산화 및 항염증 효과가 있는 것으로 나타났기에 천연물 소재로서의 활용도가 높을 것으로 생각된다.

Keywords

References

  1. Akihisa, T., Kokke, W. C. M. C., Kimura, Y. and Tamura, T. 1993. Isokarounidiol (D-C-Friedooleana-6,8-diene-3-alpha, 29-diol) the first naturally occurring triterpene with a delta-6,8-conjugated diene system-Iodine-mediated dehydrogenation and isomerization of its diacetate. J. Org. Chem. 58, 1959-1962. https://doi.org/10.1021/jo00059a063
  2. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  3. Buchaillot, A., Caffin, N. and Bhandari, B. 2009. Drying of Lemon Myrtle (Backhousia citriodora) Leaves: Retention of volatiles and color. Drying Technol. 27, 445-450. https://doi.org/10.1080/07373930802683740
  4. Bogdan, C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2, 907-916. https://doi.org/10.1038/ni1001-907
  5. Cheon, J. H. 2015. Effects of Backhousia citriodora extracts on antioxidant activity and bone formation. Th.M. dissertation, Silla University, Busan, Korea.
  6. Cho, E. K., Jeong, B. R. and Choi, Y. J. 2010. Physiological activities of hot water extract from pine bud (Pinus densiflora). J. Kor. Soc. Food Sci. Nutr. 39, 1573-1579 https://doi.org/10.3746/jkfn.2010.39.11.1573
  7. Choi, H. J., Lee, W. S., Hwang, S. J., Lee, I. J., Shin, D. H., Kim, H. Y. and Kim, K. U. 2000. Changes in chemical compositions of green tea (Camellia sinensis L.) under the different extraction conditions. J. Life Sci. 10, 202-209.
  8. Choi, S. Y., Lim, S. H., Kim, J. S., Ha, T. Y., Kim, S. R., Kang, K. S. and Hwang, I. K. 2005. Evaluation of the estrogenic and antioxidant activity of some edible and medicinal plants. Kor. Food Sci. Technol. 37, 549-556.
  9. Eun, C. S., Hwang, E. Y., Lee, S. O., Yang, S. A. and Yu, M. H. 2016. Anti-oxidant and anti-inflammatory activities of barley sprout extract. J. Life Sci. 26, 537-544. https://doi.org/10.5352/JLS.2016.26.5.537
  10. Finkel, T. and Holbrook, N. J. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247. https://doi.org/10.1038/35041687
  11. Gray, J. I. and Dugan JR, L. R. 1975. Inhibition of N-nitrosamine formation in model food systems. J. Food Sci. 40, 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  12. Han, J. H., Moon, H. K., Chung, S. K. and Kang, W. W. 2015. Comparison of physiological activities of Radish Bud (Raphanus sativus L.) according to extraction solvent and sprouting period. J. Kor. Soc. Food Sci. Nutr. 44, 549-556. https://doi.org/10.3746/jkfn.2015.44.4.549
  13. Ha, Y. B., Park. J. H., Jang. J. W., Lim. D. W. and Kim, J. E. 2016. Comparative study for anti-inflammatory and anti-obesity effect of fractions from leaf and stem of Sasa borealis. J. Physiol. Pathol. Kor. Med. 30, 229-235. https://doi.org/10.15188/kjopp.2016.08.30.4.229
  14. Hayes, A. J. and Markovic, B. 2002. Toxicity of australian essential oil Backhousia citriodora (Lemon myrtle). Part 1. Antimicrobial activity and in vitro cytotoxicity. Food Chem. Toxicol. 40, 535-543. https://doi.org/10.1016/S0278-6915(01)00103-X
  15. Hayes, A. J. and Markovic, B. 2003. Toxicity of australian essential oil Backhousia citriodora (Lemon myrtle). Part 2. Absorption and histopathology following application to human skin. Food Chem. Toxicol. 41, 1409-1416. https://doi.org/10.1016/S0278-6915(03)00159-5
  16. Hong, T. G., Lee, Y. R., Yim, M. H. and Hyun, C. N. 2004. Physiological functionality and nitrite scavenging ability of fermentation extracts from pine needles. Kor. J. Food Preserv. 11, 94-99.
  17. Hyun, M. R., Lee, Y. S. and Park, Y. H. 2011. Antioxidative activity and flavonoid content of Chrysanthemum zawadskii flowers. Kor. J. Hort. Sci. Technol. 29, 68-73.
  18. Iqbal, S. and Bhanger, M. I. 2006. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J. Food Composition Anal. 19, 544-551. https://doi.org/10.1016/j.jfca.2005.05.001
  19. Jang, M. J., Rhee, S. J., Cho, S. H., Woo, M. H. and Choi, J. H. 2006. A study on the antioxidative, anti-inflammatory and anti-thrombogenic effects of Zanthoxylum piperitum DC. extract. J. Kor. Soc. Food Sci. Nutr. 35, 21-27. https://doi.org/10.3746/jkfn.2006.35.1.021
  20. Jeong, H. R., Sung, M. S., Kim, Y. H., Ham, H. M., Choi, Y. M. and Lee, J. S. 2012. Anti-inflammatory activity of Salvia plebeia R. Br. leaf through heme oxygenase-1 induction in LPS-stimulated RAW264.7 macrophages. J. Kor. Soc. Food Sci. Nutr. 47, 888-894.
  21. Jung, Y. S., Eun, C. S., Jung, Y. T., Kim, H. J. and Yu, M. H. 2013. Anti-inflammatory effects of Picrasma Quassioides (D.DON) BENN leaves extract. J. Life Sci. 23. 629-636. https://doi.org/10.5352/JLS.2013.23.5.629
  22. Kang, H. W. 2012. Antioxidant and anti-inflammatory effect of extracts from Flammulina velutipes (Curtis) singer. J. Kor. Soc. Food Sci. Nutr. 41, 1072-1078. https://doi.org/10.3746/jkfn.2012.41.8.1072
  23. Kang, K. O. 2011. Physiological and antioxidant activities of green, oolong and black tea extracts. J. East Asian Soc. Dietary Life. 21, 243-249.
  24. Kim, H. K., Han, H. S., Lee, G. D. and Kim, K. H. 2005. Physiological activities of fresh Pleurotus eryngii extracts. J. Kor. Soc. Food Sci. Nutr. 34, 439-445. https://doi.org/10.3746/jkfn.2005.34.4.439
  25. Kim, K. M., Park, M. H., Kim, K. H., Im, S. H., Park, Y. H. and Kim, Y. N. 2009. Analysis of chemical composition and in vitro anti-oxidant properties of extracts from Sea Buckthorn (Hippophae rhamnoides). J. Appl. Biol. Chem. 52, 58-64. https://doi.org/10.3839/jabc.2009.011
  26. Kim, S. M., Cho, Y. S. and Sung, S. K. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Kor. J. Food Sci. Technol. 33, 626-632.
  27. Kim, S. M., Cho, Y. S., Sung, S. K., Lee, I. G., Lee, S. H. and Kim, D. G. 2002. Antioxidative and nitrite scavenging activity of pine needle and green tea extracts. Kor. J. Food Sci. Ani. Resour. 22, 13-19.
  28. Kim, Y. S., Joung, M. Y., Ryu, B. S., Park, P. J. and Jeong, J. H. 2016. Anti-inflammatory activities of extracts from fermented Taraxacum platycarpum D. leaves using Hericium erinaceum mycelia. J. Kor. Soc. Food Sci. Nutr. 45, 20-26. https://doi.org/10.3746/jkfn.2016.45.1.020
  29. Kim, Y. S., Lee, S. J., Hwang, J. W., Kim, E. H., Park, P. J. and Jeong, J. H. 2012. Anti-inflammatory effects of extracts from Ligustrum ovalifolium H. leaves on RAW264.7 macrophages. J. Kor. Soc. Food Sci. Nutr. 41, 1205-1210. https://doi.org/10.3746/jkfn.2012.41.9.1205
  30. Kim, Y. W., Zhao, R. J., Park, S. J., Lee, J. R., Cho, I. J., Yang C. H., Kim, S. G. and Kim, S. C. 2008. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-${\kappa}B$-dependent iNOS and proinflammatory cytokines production. Br. J. Pharmacol. 154, 165-173. https://doi.org/10.1038/bjp.2008.79
  31. Konczak, I., Zabaras, D., Dunstan, M. and Aguas, P. 2010. Antioxidant capacity and phenolic compounds in commercially grown native australian herbs and spices. Food Chem. 122, 260-266. https://doi.org/10.1016/j.foodchem.2010.03.004
  32. Lee, B. B., Park, S. R., Han, C. S., Han, D. Y. Park, E. J., Park, H. R. and Lee, S. C. 2008. Antioxidant activity and inhibition activity against ${\alpha}$-amylase and ${\alpha}$-glucosidase of Viola mandshurica extracts. J. Kor. Soc. Food Sci. Nutr. 37, 405-409. https://doi.org/10.3746/jkfn.2008.37.4.405
  33. Lee, C. Y., Kim, K. M. and Son, H. S. 2013. Optimal extraction conditions to produce rosemary extracts with higher phenolic content and antioxidant activity. Kor. J. Food Sci. Technol. 45, 501-507. https://doi.org/10.9721/KJFST.2013.45.4.501
  34. Lee, H. J., Do, J. R., Kwon, J. H. and Kim, H. K. 2010. Physiological activities of Cucurbita moschata Duch. Extracts with different extraction conditions. J. Kor. Soc. Food Sci. Nutr. 39, 165-171. https://doi.org/10.3746/jkfn.2010.39.2.165
  35. Lee, H. J. and Lim, M. H. 2016. Antioxidation effect of lemongrass and maychang essential oil. J. Kor. Soc. Cosm. 22, 319-326.
  36. Leem, H. H., Kim, S. O., Seo, M. J. and Choi, S. W. 2011. Anti inflammatory effects of volatile flavor extract from herbal medicinal prescriptions including Cnidium officinale makino and Angelica gigas nakai. J. Soc. Cosmet. Sci. Korea 37, 199-210.
  37. Lee, S. G., Jeong, H. J., Lee, B. J., Kim, J. B. and Choi, S. W. 2011. Antioxidant and anti-inflammatory activities of ethanol extracts from medicinal herb mixtures. Kor. J. Food Sci. Technol. 43, 200-205. https://doi.org/10.9721/KJFST.2011.43.2.200
  38. Lee, S. J., Chung, M. J., Shin, J. H. and Sung, N. J. 2000. Effect of natural plant components on the nitrite-scavenging. J. Fd. Hyg. Safety 15, 88-94.
  39. Maritim, A. C., Sanders, R. A. and Watkins, J. B. 2003. Diabetes, oxidative stress, and antioxidant: a review. J. Biochem. Mol. Toxicol. 17, 24-38. https://doi.org/10.1002/jbt.10058
  40. Marletta, M. A. 1993. Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268, 12231-12234.
  41. Oh, Y. L., Seo, Y. M. and Yang, H. O. 2011. Effect of rosemary extract on antioxidative activity and melanogenesis in cultured SK-MEL-3 cells. Asian J. Beauty Cosmetol. 9, 247-256.
  42. Park, C. S., Kim, D. H. and Kim, M. L. 2008. Biological activities of extracts from Corni fructus, Astragalus membranaceus and Glycyrrhiza uralensis. Kor. J. Herbology 23, 93-101.
  43. Park, Y. G. 2016. Comparison of volatile components by hydrodistillation and microwave-assisted hydrodistillation extraction from Lemon myrtle (Backhousia citriodora). Th.M. dissertation, Korea University, Seoul, Korea.
  44. Hyon, J. S., Kang, S. M., Senevirathne, M., Koh, W. J., Yang, T. S., Oh, M. C., Oh, C. K., Jeon, Y. J. and Kim, S. H. 2010. Antioxidative activities of extracts from dried Citrus sunki and C. unshiu peels. J. Kor. Soc. Food Sci. Nutr. 39, 1-7. https://doi.org/10.3746/jkfn.2010.39.1.001
  45. Reuter, S., Gupta, S. C., Chaturvedi, M. M. and Aggarwal, B. B. 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  46. Saghazadeh, A., Hafizi, S. and Rezaei, N. 2015. Molecular mechanisms of aging-associated inflammation. Int. Immunopharmacol. 28, 655-665. https://doi.org/10.1016/j.intimp.2015.07.044
  47. Sato, M., Ramarathnam, N., Suzuki, Y., Ohkubo, T., Takeuchi, M. and Ochi, H. 1996. Varietal differences in the phenolic content and superoxide radical savenging potential of wines from different sources. J. Agric. Food Chem. 44, 37-41. https://doi.org/10.1021/jf950190a
  48. Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteau reagent. Methods Enzymol. 299, 152-178.
  49. Uttara, B., Singh, A. V., Zamboni, P. and Mahajan, R. 2009. Oxidative stress and neurodegenerative diseases; a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65-74. https://doi.org/10.2174/157015909787602823
  50. Wilkinson, J. M., Hipwell, M. Ryan, T. and Cavanagh, H. M. A. 2003. Bioactivity of Backhousia citriodora; Antibacterial and antifungal activity. J. Agric. Food Chem. 51, 76-81. https://doi.org/10.1021/jf0258003
  51. Yun, H. Y., Dawson, V. L. and Dawson, T. M. 1996. Neurobiology of nitric oxide. Crit. Rev. Neurobiol. 10, 291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20