DOI QR코드

DOI QR Code

Biochemical mechanisms of fumigant toxicity by ethyl formate towards Myzus persicae nymphs

복숭아혹진딧물(Myzus persicae) 약충에 대한 에틸포메이트 훈증 독성의 생화학적 메커니즘

  • Kim, Kyeongnam (School of Applied Biosciences, Kyungpook National University) ;
  • Lee, Byung-Ho (Department of Plant Medicine, Gyeongsang National University) ;
  • Park, Jeong Sun (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency (APQA)) ;
  • Yang, Jeong Oh (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency (APQA)) ;
  • Lee, Sung-Eun (School of Applied Biosciences, Kyungpook National University)
  • Received : 2017.08.26
  • Accepted : 2017.08.29
  • Published : 2017.09.29

Abstract

Ethyl formate has been used for the control of insect pests by fumigation. However, there were not many reports to show its target site of fumigant toxicity on insect pests since its first use in the agricultural industry. In the present study, we showed the presumable target sites of ethyl formate fumigation in insect pests using Myzus persicae nymphs. After ethyl formate fumigation, the nymphs of this species were collected and the changes at the biochemical and molecular level were determined. The activity of cytochrome c oxidase (COX) was approximately two-fold higher after ethyl formate fumigation. In addition, the expression levels of acetylcholinesterase (AChE) decreased gradually with increasing ethyl formate concentration. These two findings suggested that COX and AChE might be the major target sites of ethyl formate fumigation. In addition to these results, the analysis of lipid content using MALDI-TOF MS/MS identified 9 phospholipids differently generated 2-fold higher in the ethyl formate-treated nymphs than that in the control nymphs, thereby leading to changes in cell membrane composition in M. persicae nymphs. Therefore, the ethyl formate fumigation caused lethal effects on M. persicae nymphs by changing COX activity, AChE gene expression, and phospholipid production.

에틸포메이트는 해충을 방제하기 위한 훈증제로서 사용되어 왔다. 그러나 농산업에서 해충을 박멸하기 위하여 사용된 이 물질이 일으키는 훈증독성의 작용점에 대해서는 많은 연구가 수행되지 않았다. 본 연구에서 저자들은 복숭아혹진딧물 약충에 에틸포메이트를 훈증 처리 하였을 때 추측 가능한 작용점들을 제시하였다. 에틸포메이트 훈증 처리 후 복숭아혹진딧물 약충에 대한 생화학 및 분자적 수준에서의 변화를 측정하였다. Cytochrome c oxidase (COX)의 활성은 에틸포메이트 훈증 처리된 복숭아혹진딧물 약충에서 약 2배 이상 증가하였다. Acetylcholinesterase (AChE)의 경우 에틸포메이트의 훈증 처리 농도가 증가됨과 함께 유전자 발현이 감소되었다. 이 두 발견은 COX와 AChE가 주요한 에틸포메이트 훈증독성의 작용점임을 시사하였다. 이 결과들과 함께 MALDI-TOF MS/MS를 이용하여 지질대사체를 분석한 후 2배 이상 증감을 보인 9종 인지질들을 동정하였고 이들이 세포막 조성에 변화를 유발함을 밝혔다. 결론적으로 복숭아혹진딧물 약충에 대한 에틸포메이트의 훈증독성은 COX 활성 변화, AChE 발현 변화, 그리고 인지질의 생성 변화에 기인하였다.

Keywords

References

  1. Austel N, Schubert J, Gadau S, Jungnickel H, Budnik LT, Luch A (2017) Influence of fumigants on sunflower seeds: Characteristics of fumigant desorption and changes in volatile profiles. J Hazard Mater 337: 138-147 https://doi.org/10.1016/j.jhazmat.2017.04.070
  2. Bass C, Puinean AM, Andrews M, Cutler P, Daniels M, Elias J, Paul VL, Crossthwaite AJ, Denholm I LM, Foster SP, Lind R, Williamson MS, Slater R (2011) Mutation of a nicotinic acetylcholine receptor b subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience 12: 51 https://doi.org/10.1186/1471-2202-12-51
  3. Haritos VS, Dojchinov G (2003) Cytochrome c oxidase inhibition in the rice weevil Sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates. Comp Biochem Physiol C Toxicol Pharmacol 136: 135-142 https://doi.org/10.1016/S1532-0456(03)00173-X
  4. Jeon HJ, Lee YH, Mo HH, Kim MJ, Al-Wabel MI, Kim Y, Cho K, Kim TW, Ok YS, Lee SE (2016) Chlorpyrifos-induced biomarkers in Japanese medaka (Oryzias latipes). Environ Sci Pollut Int 23(2): 1071-1080 https://doi.org/10.1007/s11356-015-4598-0
  5. Kim BS, Park CG, Moon YM, Sung BK, Ren Y, Wylie SJ, Lee BH (2016) Quarantine treatments of imported nursery plants and exported cut flowers by phosphine gas (PH3) as methyl bromide alternative. J Econ Entomol 109: 2334-2340 https://doi.org/10.1093/jee/tow200
  6. Lee BH, Yang JO, Beckett S, Ren Y (2017) Preliminary trials of the ethanedinitrile fumigation of logs for eradication of Bursaphelenchus xylophilus and its vector insect Monochamus alternatus. Pest Manag Sci 73: 1446-1452 https://doi.org/10.1002/ps.4476
  7. Lee SE, Lees EM (2001) Biochemical mechanisms of resistance in strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) resistant to malathion and chlorpyrifos-methyl. J Econ Entomol 94: 706-713 https://doi.org/10.1603/0022-0493-94.3.706
  8. Liang JY, Guo SS, Zhang WJ, Geng ZF, Deng ZW, Du SS, Zhang J (2017) Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests. Nat Prod Res doi: 10.1080/14786419.2017.1331227
  9. Nagami H, Suenaga T, Nakazaki M (2017) Pesticide exposure and subjective symptoms of cut-flower farmers. J Rural Med 12: 7-11 https://doi.org/10.2185/jrm.2922
  10. Nam TH, Jeon HJ, Mo HH, Cho K, Ok YS, Lee SE (2015) Determination of biomarkers for polycyclic aromatic hydrocarbons (PAHs) toxicity to earthworm (Eisenia fetida). Environ Geochem Health 37(6): 943-951 https://doi.org/10.1007/s10653-015-9706-z
  11. Rawat N, Singh R, Sharma PL (2013) Evaluation of some insecticides against the green peach aphid, Myuzs persicae (Sulzer) (Hemiptera: Aphididae). Indian J Entomol 75(2): 113-117
  12. Rosas SB, del Carmen Secco M, Ghittoni NF (1980) Effects of pesticides on the fatty acid and phospholipid composition of Escherichia coli. Appl Environ Microbiol 40(2): 231-234
  13. Silva AX, Jander G, Samaniego H, Ramsey JS, Figueroa CC (2012) Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS ONE 7(6): e36366 https://doi.org/10.1371/journal.pone.0036366
  14. Stewart JK, Aharoni Y (1983) Vacuum fumigation with ethyl formate to control the green peach aphid in packaged head lettuce. J Am Soc Hortic Sci 108: 295-298
  15. Yamashita I, Lino K, Nemoto Y, Yoshikawa S (1977) Studies on flavor development in strawberries. 4. Biosynthesis of volatile alcohol and esters from aldehyde during ripening. J Agric Food Chem 25: 1165-1168 https://doi.org/10.1021/jf60213a027
  16. Yang J, Park Y, Hyun IH, Kim GH, Kim BS, Lee BH, Ren Y (2016) A combination treatment using ethyl formate and phosphine to control Planococcus citri (Hemiptera: Pseudococcidae) on pineapples. J Econ Entomol 109: 2355-2363 https://doi.org/10.1093/jee/tow222

Cited by

  1. Proteomic Evaluation of Insecticidal Action of Phosphine on Green Peach Aphids, Myzus persicae vol.8, pp.10, 2018, https://doi.org/10.3390/app8101764
  2. Susceptibility of the Cigarette Beetle Lasioderma serricorne (Fabricius) to Phosphine, Ethyl Formate and Their Combination, and the Sorption and Desorption of Fumigants on Cured Tobacco Leaves vol.11, pp.9, 2017, https://doi.org/10.3390/insects11090599
  3. Comparative Proteomics Analysis of Phosphine-Resistant and Phosphine-Susceptible Sitophilus oryzae (Coleoptera: Curculionidae) vol.11, pp.9, 2017, https://doi.org/10.3390/app11094163
  4. Synergistic Effects and Toxic Mechanism of Phosphine with Ethyl Formate against Citrus Mealybug (Planococcus citri) vol.11, pp.21, 2017, https://doi.org/10.3390/app11219877