APPLICATIONS OF TOPOLOLOGICAL METHODS TO THE SEMILINEAR BIHARMONIC PROBLEM WITH DIFFERENT POWERS

Tacksun Jung ${ }^{\dagger}$ and Q-Heung Choi*

Abstract

We prove the existence of multiple solutions for the fourth order nonlinear elliptic problem with fully nonlinear term. Our method is based on the critical point theory; the variation of linking method and category theory.

1. Introduction

Let Ω be a bounded domain in R^{n} with smooth boundary $\partial \Omega$ and let $b \in R$ be a constant. Let $\lambda_{k}(k=1,2, \cdots)$ denote the eigenvalues and $\phi_{k}(k=1,2, \cdots)$ the corresponding eigenfunctions, suitably normalized with respect to $L^{2}(\Omega)$ inner product, of the eigenvalue problem $\Delta u+$ $\lambda u=0$ in Ω with $u=0$ on $\partial \Omega$, where each eigenvalue λ_{k} is repeated as often as its multiplicity. We recall that $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \ldots \rightarrow+\infty$, and that $\phi_{1}(x)>0$ for $x \in \Omega$.

We investigate the existence of the nontrivial solutions for the following fourth order semilinear elliptic equation with fully nonlinear term

$$
\begin{equation*}
\Delta^{2} u+c \Delta u+b u^{+}=\left(u^{+}\right)^{p-1}-\left(u^{-}\right)^{q-1} \quad \text { in } \Omega, \tag{1.1}
\end{equation*}
$$

Received July 1, 2017. Revised September 3, 2017. Accepted September 4, 2017. 2010 Mathematics Subject Classification: 35J20, 35J25.
Key words and phrases: Fourth order elliptic boundary value problem, fully nonlinear term, critical point theory, variation of linking method.
(c) The Kangwon-Kyungki Mathematical Society, 2017.

* Corresponding author.
\dagger This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2017R1A2B4005883).

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

$$
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega
$$

where $c \in R, u^{+}=\max \{u, 0\}$ and $p, q>2(p \neq q)$.
Jung and Choi [4] investigated, by a linking argument, the existence and the multiplicity of the solutions for the following fourth order semilinear elliptic equation with Dirichlet boundary condition

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=b\left((u+1)^{+}-1\right) \quad \text { in } \Omega \tag{1.2}\\
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

where $c \in R$ and $u^{+}=\max \{u, 0\}$.
Tarantello [8] studied problem (1.2) when $c<\lambda_{1}$ and $b \geq \lambda_{1}\left(\lambda_{1}-c\right)$. She showed that (1.2) has at least two solutions, one of which is a negative solution. She obtained this result by the degree theory. Micheletti and Pistoia [6] also proved that if $c<\lambda_{1}$ and $b \geq \lambda_{2}\left(\lambda_{2}-c\right)$, then (1.2) has at least three solutions by the Leray-Schauder degree theory. Choi and Jung [2] showed that the problem

$$
\begin{gather*}
\Delta^{2} u+c \Delta u=b u^{+}+s \quad \text { in } \Omega, \tag{1.3}\\
u=0, \quad \Delta u=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

has at least two nontrivial solutions when $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<$ $\lambda_{2}\left(\lambda_{2}-c\right)$ and, $s<0$ or when $\lambda_{1}<c<\lambda_{2}, b<\lambda_{1}\left(\lambda_{1}-c\right)$ and $s>0$. The authors obtained these results by using the variational reduction method. The authors [5] also proved that when $c<\lambda_{1}, \lambda_{1}\left(\lambda_{1}-c\right)<b<\lambda_{2}\left(\lambda_{2}-c\right)$ and $s<0,(1.2)$ has at least three nontrivial solutions by using degree theory.

The eigenvalue problem $\Delta^{2} u+c \Delta u=\mu u$ in Ω with $u=0, \quad \Delta u=0$ on $\partial \Omega$ has also infinitely many eigenvalues $\mu_{k}=\lambda_{k}\left(\lambda_{k}-c\right), k \geq 1$ and corresponding eigenfunctions $\phi_{k}, k \geq 1$. We note that $\lambda_{1}\left(\lambda_{1}-c\right)<$ $\lambda_{2}\left(\lambda_{2}-c\right) \leq \lambda_{3}\left(\lambda_{3}-c\right)<\cdots$.

We suppose that $\lambda_{1}<\lambda_{2}<\lambda_{3} \ldots \rightarrow+\infty$, and that $\lambda_{2}<c<\lambda_{3}$. Then

$$
\lambda_{1}\left(\lambda_{1}-c\right)<\lambda_{2}\left(\lambda_{2}-c\right)<0<\lambda_{3}\left(\lambda_{3}-c\right)<\cdots
$$

Jung and Choi [4] showed that: (i) Let $\lambda_{k}<c<\lambda_{k+1}$ and $\lambda_{k}\left(\lambda_{k}-c\right)<$ $0, b<\lambda_{k+1}\left(\lambda_{k+1}-c\right)$. Then (1.2) has a unique solution.
(ii) Let $\lambda_{k}<c<\lambda_{k+1}$ and $\lambda_{k}\left(\lambda_{k}-c\right)<0<\lambda_{k+1}\left(\lambda_{k+1}-c\right)<\cdots<$ $\lambda_{k+n}\left(\lambda_{k+n}-c\right)<b<\lambda_{k+n+1}\left(\lambda_{k+n+1}-c\right), k \geq 1, n \geq 1$. Then (1.2) has at least two nontrivial solutions.

In section 2, we introduce the Hilbert space and prove (P.S. $)_{\gamma^{-}}^{*}$ condition for the energy functional. In section 3, we state the existence
result for two solutions and prove it by using the critical point theory and variation of linking method. In section 4 , we state the existence result for three solutions and prove it by using the category theory.

2. Preliminaries

We assume that $\lambda_{k}<c<\lambda_{k+1}$. Let H be a subspace of $L^{2}(\Omega)$ defined by

$$
H_{c}(\Omega)=\left\{u \in L^{2}(\Omega)\left|\sum\right| \lambda_{k}\left(\lambda_{k}-c\right) \mid h_{k}^{2}<\infty\right\}
$$

where $u=\sum h_{k} \phi_{k} \in L^{2}(\Omega)$ with $\sum h_{k}^{2}<\infty$. Then this is a complete normed space with a norm

$$
\|u\|=\left[\sum\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| h_{k}^{2}\right]^{\frac{1}{2}} .
$$

Here after we set $H_{c}(\Omega)=H$. Since $\lambda_{k}\left(\lambda_{k}-c\right) \rightarrow+\infty$ and c is fixed, we have
(i) $\Delta^{2} u+c \Delta u \in H$ implies $u \in H$.
(ii) $\|u\| \geq C\|u\|_{L^{2}(\Omega)}$, for some $C>0$.
(iii) $\|u\|_{L^{2}(\Omega)}=0$ if and only if $\|u\|=0$.

For the proof of the above results we refer [1].
Lemma 2.1. Assume that c is not an eigenvalue of $-\Delta, b \neq \lambda_{k}\left(\lambda_{k}-\right.$ c). If $u \in L^{2}(\Omega)$ and $\left(u^{+}\right)^{p-1}-\left(u^{-}\right)^{q-1} \in L^{2}(\Omega)$, then all solutions of

$$
\Delta^{2} u+c \Delta u+b u^{+}=\left(u^{+}\right)^{p-1}-\left(u^{-}\right)^{q-1} \quad \text { in } \quad L^{2}(\Omega)
$$

belong to H, where $p, q>2$ and $p \neq q$.
Proof. Let $u \in L^{2}(\Omega)$ and $\left(u^{+}\right)^{p-1}-\left(u^{-}\right)^{q-1} \in L^{2}(\Omega)$. Then $b u^{+} \in$ $L^{2}(\Omega)$ and we put $-b u^{+}+\left(u^{+}\right)^{p-1}-\left(u^{-}\right)^{q-1}=\sum h_{k} \phi_{k} \in L^{2}(\Omega)$.

$$
\begin{gathered}
u=\left(\Delta^{2}+c \Delta\right)^{-1}\left(-b u^{+}+\left(u^{+}\right)^{p-1}-\left(u^{-}\right)^{q-1}\right)=\sum \frac{1}{\lambda_{k}\left(\lambda_{k}-c\right)} h_{k} \phi_{k} \in L^{2}(\Omega) . \\
\|u\|=\sum\left|\lambda_{k}\left(\lambda_{k}-c\right)\right| \frac{1}{\left(\lambda_{k}\left(\lambda_{k}-c\right)\right)^{2}} h_{k}^{2} \leq C \sum h_{k}^{2}=C\|u\|_{L^{2}(\omega)}^{2}<\infty
\end{gathered}
$$

for some $C>0$. Thus $u \in H$.
With the aid of Lemma 2.1 it is enough that we investigate the existence of the solutions of (1.1) in the subspace H of $L^{2}(\Omega)$.

Assume that $k \geq 1$ and $\lambda_{k}<c<\lambda_{k+1}$. We denote by $\left(\Lambda_{i}^{-}\right)_{i \geq 1}$ the sequence of the negative eigenvalues of $\Delta^{2}+c \Delta$, by $\left(\Lambda_{i}^{+}\right)_{i \geq 1}$ the sequence of the positive ones, so that

$$
\begin{gathered}
\Lambda_{k}^{-}=\lambda_{1}\left(\lambda_{1}-c\right)<\cdots<\Lambda_{1}^{-}=\lambda_{k}\left(\lambda_{k}-c\right)<0 \\
<\Lambda_{1}^{+}=\lambda_{k+1}\left(\lambda_{k+1}-c\right)<\Lambda_{2}^{+}=\lambda_{k+1}\left(\lambda_{k+1}-c\right)<\cdots .
\end{gathered}
$$

We consider an orthonormal system of eigenfunctions $\left\{e_{i}^{-}, e_{i}^{+}, i \geq 1\right\}$ associated with the eigenvalues $\left\{\Lambda_{i}^{-}, \Lambda_{i}^{+}, i \geq 1\right\}$. We set

$$
\begin{aligned}
H^{+} & =\text {closure of } \operatorname{span}\{\text { eigenfunctions with eigenvalue } \geq 0\}, \\
H^{-} & =\text {closure of } \operatorname{span}\{\text { eigenfunctions with eigenvalue } \leq 0\} .
\end{aligned}
$$

We define the linear projections $P^{-}: H \rightarrow H^{-}, P^{+}: H \rightarrow H^{+}$.
We also introduce two linear operators $R: H \rightarrow H^{+}, S: H \rightarrow H^{-}$by

$$
S(u)=\sum_{i=1}^{\infty} \frac{a_{i}^{-} e_{i}^{-}}{\sqrt{-\Lambda_{i}^{-}}}, R(u)=\sum_{i=1}^{\infty} \frac{a_{i}^{+} e_{i}^{+}}{\sqrt{\Lambda_{i}^{+}}}
$$

if

$$
u=\sum_{i=1}^{\infty} a_{i}^{-} e_{i}^{-}+\sum_{i=1}^{\infty} a_{i}^{+} e_{i}^{+} .
$$

It is clear that S and R are compact and self adjoint on H.
Definition 2.1. Let $I_{b}: H \rightarrow R$ be defined by

$$
I_{b}(u)=\frac{1}{2}\left\|P^{+} u\right\|^{2}-\frac{1}{2}\left\|P^{-} u\right\|^{2}+\frac{b}{2}\left\|[A u]^{+}\right\|^{2}-\int_{\Omega} F(A u) d x
$$

where $A=R+S$ and $F(s)=\int_{0}^{s} f(x, \tau) d \tau, f(x, \tau)=\left(\tau^{+}\right)^{2}-\left(\tau^{-}\right)^{3}$.
It is straightforward that

$$
\nabla I_{b}(u)=P^{+} u-P^{-} u+b A(A u)^{+}-A f(A u) .
$$

Following the idea of Hofer [3] one can show that
Proposition 2.2. $\quad I_{b} \in C^{1,1}(H, R)$. Moreover $\nabla I_{b}(u)=0$ if and only if $w=(R+S)(u)$ is a weak solution of (1.1), that is,
$\int_{\Omega}\left(w\left(v_{t t}+v_{x x x x}\right)+b[w]^{+} v\right) d x d t=\int_{\Omega} f(w) v d x d t$ for all smooth $v \in H$.
In this section, we suppose $b>0$. Under this assumption, we have a concern with multiplicity of solutions of equation (1.1). Here we suppose that f is defined by equation $f(x, \tau)=\left(\tau^{+}\right)^{p-1}-\left(\tau^{-}\right)^{q-1}$.

In the following, we consider the following sequence of subspaces of $L^{2}\left(R^{N}\right)$:

$$
H_{n}=\left(\oplus_{i=1}^{n} H_{\Lambda_{i}^{-}}\right) \oplus\left(\oplus_{i=1}^{n} H_{\Lambda_{i}^{+}}\right)
$$

where H_{Λ} is the eigenspace associated to Λ and $H_{\Lambda_{i}^{-}}=\phi$ if $i>k$.
Lemma 2.5. The functional I_{b} satisfies (P.S. $)_{\gamma}^{*}$ condition, with respect to $\left(H_{n}\right)$, for all γ.

Proof. Let $\left(k_{n}\right)$ be any sequence in N with $k_{n} \rightarrow \infty$. And let $\left(u_{n}\right)$ be any sequence in H such that $u_{n} \in H_{n}$ for all $n, I_{b}\left(u_{n}\right) \rightarrow \gamma$ and $\left.\nabla\left(I_{b}\right)\right|_{H_{k_{n}}}\left(u_{n}\right) \rightarrow 0$.

First, we prove that $\left(u_{n}\right)$ is bounded. By contradiction let $t_{n}=$ $\left\|u_{n}\right\| \rightarrow \infty$ and set $\hat{u_{n}}=u_{n} / t_{n}$. Up to a subsequence $\hat{u_{n}} \rightharpoonup \hat{u}$ in H for some \hat{u} in H. Moreover

$$
\begin{aligned}
0 & \leftarrow<\nabla\left(I_{b}\right)_{H_{k_{n}}}\left(u_{n}\right), \hat{u_{n}}>-\frac{2}{t_{n}} I_{b}\left(u_{n}\right) \\
& =\frac{2}{t_{n}} \int_{\Omega} F\left(A u_{n}\right) d x-\frac{1}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A u_{n} d x \\
& =\int_{\Omega}-\frac{p-2}{p}\left(t_{n}\right)^{p-1}\left[\left(A \hat{u_{n}}\right)^{+}\right]^{p}+\frac{q+2}{q}\left(t_{n}\right)^{q-1}\left[\left(A \hat{u_{n}}\right)^{-}\right]^{q} d x .
\end{aligned}
$$

Since $t_{n} \rightarrow \infty,\left(A \hat{u_{n}}\right)^{+} \rightarrow 0$ and $\left(A \hat{u_{n}}\right)^{-} \rightarrow 0$. This implies $A \hat{u}=0$ and $\hat{u}=0$, a contradiction.

So $\left(u_{n}\right)$ is bounded and we can suppose $u_{n} \rightharpoonup u$ for some $u \in H$. We know that

$$
\nabla\left(I_{b}\right)_{H_{k_{n}}}\left(u_{n}\right)=P^{+} u_{n}-P^{-} u_{n}+b A\left(A u_{n}\right)^{+}-A f\left(A u_{n}\right) .
$$

Since A is the compact operator, $P^{+} u_{n}-P^{-} u_{n}$ converges strongly, hence $u_{n} \rightarrow u$ strongly and $\nabla I_{b}(u)=0$.

3. An Application of Linking Theory

Fixed Λ_{i}^{-}and $\Lambda_{i}^{-}<-b<\Lambda_{i-1}^{-}$. We prove the Theorem via a linking argument.

First of all, we introduce a suitable splitting of the space H. Let

$$
Z_{1}=\oplus_{j=i+1}^{\infty} H_{\Lambda_{j}^{-}}, Z_{2}=H_{\Lambda_{i}^{-}}, Z_{3}=\oplus_{j=1}^{i-1} H_{\Lambda_{j}^{-}} \oplus H^{+}
$$

where $H_{\Lambda_{j}^{-}}=\phi$ if $j>k$.
Lemma 3.1. There exists R such that $\sup _{v \in Z_{1} \oplus Z_{2},\|v\|=R} I_{b}(v) \leq 0$.

Proof. If $v \in Z_{1} \oplus Z_{2}$ then

$$
I_{b}(v)=-\frac{1}{2}\|v\|^{2}+\frac{b}{2}\left\|[S v]^{+}\right\|^{2}-\int_{\Omega} F(S v) d x .
$$

Since
$\frac{b}{2}\left\|[S v]^{+}\right\|^{2}-\int_{\Omega} F(S v) d x=\int_{\Omega} \frac{b}{2}\left([S v]^{+}\right)^{2}-\frac{1}{p}\left([S v]^{+}\right)^{p}-\frac{1}{q}\left([S v]^{-}\right)^{q} d x$,
there exists R such that $\frac{b}{2}\left\|[S v]^{+}\right\|^{2}-\int_{\Omega} F(S v) d x \leq 0$ for all $\|v\|=R$. Hence

$$
I_{b}(v) \leq-\frac{1}{2}\|v\|^{2} \leq 0
$$

Lemma 3.2. There exists ρ such that $\inf _{u \in Z_{2} \oplus Z_{3},\|u\|=\rho} I_{b}(u)>0$.
Proof. Let $\sigma \in[0,1]$. We consider the functional $I_{b, \sigma}: Z_{2} \oplus Z_{3} \rightarrow R$ defined by

$$
I_{b, \sigma}(u)=\frac{1}{2}\left\|P^{+} u\right\|^{2}-\frac{1}{2}\left\|P^{-} u\right\|^{2}+\frac{b}{2}\left\|[A u]^{+}\right\|^{2}-\sigma \int_{\Omega} F(A u) d x .
$$

We claim that there exists a ball $B_{\rho}=\left\{u \in Z_{2} \oplus Z_{3} \mid\|u\|<\rho\right\}$ such that

1. $I_{b, \sigma}$ are continuous with respect to σ,
2. $I_{b, \sigma}$ satisfies (P.S) condition,
3. 0 is a minimum for $I_{b, 0}$ in B_{ρ},
4. 0 is the unique critical point of $I_{b, \sigma}$ in B_{ρ}.

Then by a continuation argument of Li-Szulkin's [5], it can be shown that 0 is a local minimum for $\left.I_{b}\right|_{Z_{2} \oplus Z_{3}}=I_{b, 1}$ and Lemma is proved.

The continuity in σ and the fact that 0 is a local minimum for $I_{b, 0}$ are straightforward. To prove (P.S.) condition one can argue as in the previous Lemma, when dealing with I_{b}.

To prove that 0 is isolated we argue by contradiction and suppose that there exists a sequence $\left(\sigma_{n}\right)$ in $[0,1]$ and sequence $\left(u_{n}\right)$ in $Z_{2} \oplus Z_{3}$ such that $\nabla I_{b, \sigma_{n}}\left(u_{n}\right)=0$ for all $n, u_{n} \neq 0$, and $u_{n} \rightarrow 0$. Set $t_{n}=\left\|u_{n}\right\|$ and $\hat{u_{n}}=u_{n} / t_{n}$ then $t_{n} \rightarrow 0$. Let $\hat{v_{n}}=P^{-} \hat{u_{n}}$ and $\hat{w_{n}}=P^{+} \hat{u_{n}}$. Since $\hat{v_{n}}$ varies in a finite dimensional space, we can suppose that $\hat{v_{n}} \rightarrow \hat{v}$ for some \hat{v}. We get

$$
\begin{equation*}
\frac{1}{t_{n}} \nabla I_{b, \sigma}\left(u_{n}\right)=\hat{w}_{n}-\hat{v_{n}}+\frac{b}{t_{n}} A\left(A u_{n}\right)^{+}-\frac{\sigma_{n}}{t_{n}} A f\left(A u_{n}\right)=0 . \tag{1}
\end{equation*}
$$

Multiplying by \hat{w}_{n} yields

$$
\left\|\hat{w}_{n}\right\|^{2}=\frac{\sigma_{n}}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A \hat{w}_{n} d x-\frac{b}{t_{n}} \int_{\Omega}\left(A u_{n}\right)^{+} A \hat{w}_{n} d x .
$$

We know that

$$
\begin{aligned}
\int_{\Omega}\left(A u_{n}\right)^{+} A \hat{w}_{n} d x & =\int_{\Omega} P^{+}\left(A u_{n}\right)^{+} A \hat{u_{n}} d x \\
& =\int_{\Omega} P^{+}\left(A u_{n}\right)^{+}\left(A \hat{u_{n}}\right)^{+} d x
\end{aligned}
$$

Since $b>0$, there exists a sequence $\left(\epsilon_{n}\right)$ such that $\epsilon_{n} \rightarrow 0$ and $0<\epsilon_{n}<b$ for all n. That is

$$
\frac{b}{t_{n}} \int_{\Omega}\left(A u_{n}\right)^{+} A \hat{w}_{n} d x \geq \frac{\epsilon_{n}}{t_{n}} \int_{\Omega} P^{+}\left(A u_{n}\right)^{+}\left(A \hat{u_{n}}\right)^{+} d x
$$

Then

$$
\begin{aligned}
\left\|\hat{w}_{n}\right\|^{2} & \leq \frac{1}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A \hat{w}_{n} d x-\frac{\epsilon_{n}}{t_{n}} \int_{\Omega} P^{+}\left(A u_{n}\right)^{+}\left(A \hat{u}_{n}\right)^{+} d x \\
& \leq \int_{\Omega} \frac{\left|f\left(A u_{n}\right)\right|}{t_{n}}\left|A \hat{w}_{n}\right| d x+\epsilon_{n} \int_{\Omega}\left|P^{+}\left(A \hat{u_{n}}\right)^{+} \|\left(A \hat{u_{n}}\right)^{+}\right| d x .
\end{aligned}
$$

Since A is a compact operator

$$
\begin{aligned}
\left|f\left(A u_{n}\right)\right| & =\left|\left\{\left(\left[t_{n} A \hat{u_{n}}\right]^{+}\right)^{p-1}-\left(\left[t_{n} A \hat{u_{n}}\right]^{-}\right)^{q-1}\right\}\right| \\
& \leq t_{n}{ }^{p-1}\left|\left[A \hat{u_{n}}\right]^{+}\right|^{p-1}+t_{n}{ }^{q-1}\left|\left[A \hat{u_{n}}\right]^{-}\right|^{q-1} \\
& \leq t_{n}{ }^{m}\left(M_{1}+t_{n}{ }^{M-m} M_{2}\right)
\end{aligned}
$$

for some M_{1} and M_{2} where $m=\min \{p-1, q-1\}$ and $M=\max \{p-$ $1, q-1\}$. We get that

$$
\int_{\Omega} \frac{\left|f\left(A u_{n}\right)\right|}{t_{n}}\left|A \hat{w}_{n}\right| d x \leq t_{n}^{m}\left(M_{1}+t_{n}^{M-m} M_{2}\right) \int_{\Omega}\left|A \hat{w}_{n}\right| d x \leq o(1) .
$$

Hence

$$
\begin{equation*}
\left\|\hat{w}_{n}\right\|^{2} \leq o(1)+\epsilon_{n} \int_{\Omega}\left|P^{+}\left(A \hat{u_{n}}\right)^{+} \|\left(A \hat{u_{n}}\right)^{+}\right| d x \tag{2}
\end{equation*}
$$

Since $\int_{\Omega}\left|P^{+}\left(A \hat{u_{n}}\right)^{+} \|\left(A \hat{u_{n}}\right)^{+}\right| d x$ is bounded and equation (7) holds for every $\epsilon_{n}, \hat{w}_{n} \rightarrow 0$ and so $\left(\hat{u_{n}}\right)$ converges. Since $\left|f\left(A u_{n}\right)\right| \leq t_{n}{ }^{m}\left(M_{1}+\right.$ $t_{n}{ }^{M-m} M_{2}$), we get

$$
\frac{\sigma_{n}}{t_{n}}\left|f\left(A u_{n}\right)\right| \leq \frac{1}{t_{n}}\left|f\left(A u_{n}\right)\right| \leq t_{n}{ }^{m-1}\left(\mid M_{1}+t_{n}{ }^{M-m} M_{2}\right) \leq o(1) .
$$

Then $\frac{\sigma_{n}}{t_{n}} A f\left(A u_{n}\right) \rightarrow 0$. From equation (6), ($\left.\hat{v_{n}}\right)$ converges to zero, but this is impossible if $\left.\| \hat{(} u_{n}\right) \|=1$.

We give the definitions for the next step:
Definition 3.3. Let H be an Hilbert space, $Y \subset H, \rho>0$ and $e \in H \backslash Y, e \neq 0$. Set:

$$
\begin{aligned}
B_{\rho}(Y) & =\{x \in Y \mid\|x\| \leq \rho\}, \\
S_{\rho}(Y) & =\{x \in Y \mid\|x\|=\rho\}, \\
\triangle_{\rho}(e, Y) & =\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\| \leq \rho\}, \\
\Sigma_{\rho}(e, Y) & =\{\sigma e+v \mid \sigma \geq 0, v \in Y,\|\sigma e+v\|=\rho\} \cup\{v \mid v \in Y,\|v\| \leq \rho\} .
\end{aligned}
$$

Theorem 3.4. If $\Lambda_{i}^{-} \leq-b(i=1,2, \cdots, k)$, then problem (1.1) has at least one nontrivial solution.

Proof. Let $e \in Z_{2}$. By Lemma 3.1 and Lemma 3.2, for a suitable large R and a suitable small ρ, we have the linking inequality

$$
\begin{equation*}
\sup I_{b}\left(\Sigma_{R}\left(e, Z_{1}\right)\right)<\inf I_{b}\left(S_{\rho}\left(Z_{2} \oplus Z_{3}\right)\right) . \tag{3}
\end{equation*}
$$

Moreover (P.S.)* holds. By standard linking arguments, it follows that there exists a critical point u for I_{b} with $\alpha \leq I_{b}(u) \leq \beta$, where $\alpha=$ $\inf I_{b}\left(S_{\rho}\left(Z_{2} \oplus Z_{3}\right)\right)$ and $\beta=\sup I_{b}\left(\Delta_{R}\left(e, Z_{1}\right)\right)$. Since $\alpha>0$, then $u \neq$ 0 .

We assume in this section that $i \geq 2$ and we set

$$
W_{1}=\oplus_{j=i}^{\infty} H_{\Lambda_{j}^{-}}, W_{2}=\oplus_{j=1}^{i-1} H_{\Lambda_{j}^{-}}, W_{3}=H^{+}
$$

Notice that $W_{1}=Z_{1} \oplus Z_{2}$ and $W_{2} \oplus W_{3}=Z_{3}$.
LEmMA 3.5. $\quad \liminf \inf _{\|u\| \rightarrow+\infty, u \in W_{1} \oplus W_{2}} I_{b}(u) \leq 0$.
Proof. Let $\left(u_{n}\right)_{n}$ be a sequence in $W_{1} \oplus W_{2}$ such that $\left\|u_{n}\right\| \rightarrow \infty$. We set $t_{n}=\left\|u_{n}\right\|$ and $\hat{u_{n}}=u_{n} / t_{n}$. Since S is a compact operator,

$$
\begin{aligned}
\frac{b\left\|\left[S u_{n}\right]^{+}\right\|^{2}}{t_{n}^{2}} & -\int_{\Omega} \frac{F\left(S u_{n}\right)}{t_{n}^{2}} d x \\
& =\int_{\Omega} \frac{b}{2}\left(\left[S \hat{u_{n}}\right]^{+}\right)^{2}-\frac{t_{n}{ }^{p-2}}{p}\left(\left[S \hat{u_{n}}\right]^{+}\right)^{p}-\frac{t_{n}^{q-2}}{q}\left(\left[S \hat{u_{n}}\right]^{-}\right)^{q} d x \\
& \rightarrow-\infty .
\end{aligned}
$$

Then

$$
\frac{I_{b}\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}}=-\frac{1}{2}+\frac{b}{2} \frac{\left\|\left[S u_{n}\right]^{+}\right\|^{2}}{t_{n}^{2}}-\int_{\Omega} \frac{F\left(S u_{n}\right)}{t_{n}^{2}} d x \rightarrow-\infty .
$$

Hence

$$
\liminf _{\|u\| \rightarrow+\infty, u \in W_{1} \oplus W_{2}} I_{b}(u) \leq 0 .
$$

Lemma 3.6. There exists $\hat{\rho}$ such that $\inf I_{b}\left(S_{\hat{\rho}}\left(W_{2} \oplus W_{3}\right)\right)>0$.
Proof. Repeating the same arguments used in Lemma 3.2, we get the conclusion.

Theorem 3.7. Assume that $\lambda_{k}<c<\lambda_{k+1}$. Let $k \geq i \geq 2$. If $\Lambda_{i}^{-} \leq-b$, then problem (1.1) has at least two nontrivial solution.

Proof. Using the conclusion of Theorem 3.4, we have that there exist a nontrivial critical point u with

$$
I_{b}(u) \leq \sup I_{b}\left(\Delta_{R}\left(e, Z_{1}\right)\right)
$$

where e, R were given in Lemma 3.1 and 3.2. We can choose that $\hat{R} \geq R$. Take any \hat{e} in W_{2}, then we have a second linking inequality,

$$
\sup I_{b}\left(\Sigma_{\hat{R}}\left(\hat{e}, W_{1}\right)\right) \leq \inf I_{b}\left(S_{\hat{\rho}}\left(W_{2} \oplus W_{3}\right)\right)
$$

Since (P.S. $)_{\gamma}^{*}$ holds, there exists a critical point \hat{u} such that

$$
\inf I_{b}\left(S_{\hat{\rho}}\left(W_{2} \oplus W_{3}\right)\right) \leq I_{b}(\hat{u}) \leq \sup I_{b}\left(\Delta_{\hat{R}}\left(\hat{e}, W_{1}\right)\right)
$$

Since $\hat{R} \geq R$ and $Z_{1} \oplus Z_{2}=W_{1}$,

$$
\Delta_{R}\left(e, Z_{1}\right) \subset B_{\hat{R}}\left(W_{1}\right) \subset \Sigma_{\hat{R}}\left(\hat{e}, W_{1}\right) .
$$

Then

$$
\begin{aligned}
I_{b}(u) & \leq \sup I_{b}\left(\Delta_{R}\left(e, Z_{1}\right)\right) \\
& \leq \sup I_{b}\left(\Sigma_{\hat{R}}\left(\hat{e}, W_{1}\right)\right)<\inf I_{b}\left(S_{\hat{\rho}}\left(W_{2} \oplus W_{3}\right)\right) \leq I_{b}(\hat{u}) .
\end{aligned}
$$

Hence $u \neq \hat{u}$.

4. An Application of Category Theory

We define the map $\Psi: H \backslash\left(Z_{1} \oplus Z_{3}\right) \rightarrow H$ by

$$
\Psi(u)=u-\frac{P_{Z_{2}} u}{\left\|P_{Z_{2}} u\right\|}=P_{Z_{1} \oplus Z_{3}} u+\left(1-\frac{1}{\left\|P_{z_{2}} u\right\|}\right) P_{z_{2}} u .
$$

We have

$$
\begin{aligned}
\Psi^{\prime}(u)(v) & =v-\frac{P_{Z_{2}} v}{\left\|P_{Z_{2}} u\right\|}+<\frac{P_{Z_{2}} u}{\left\|P_{Z_{2}} u\right\|}, P_{Z_{2}} v>\frac{P_{Z_{2}} u}{\left\|P_{Z_{2}} u\right\|} \frac{1}{\left\|P_{Z_{2}} u\right\|} \\
& =v-\frac{1}{\left\|P_{z_{2}} u\right\|}\left(P_{z_{2}} v-<\frac{P_{Z_{2}} u}{\left\|P_{Z_{2}} u\right\|}, P_{Z_{2}} v>\frac{P_{Z_{2}} u}{\left\|P_{Z_{2}} u\right\|}\right) .
\end{aligned}
$$

Moreover, we introduce the smooth manifold with boundary

$$
C=\left\{u \in H \mid\left\|P_{Z_{2}} u\right\| \geq 1\right\}
$$

and the constrained functional $\tilde{I}_{b}: C \rightarrow R$ defined by $\tilde{I}_{b}=I_{b} \circ \Psi$ which is of class $C_{l o c}^{1,1}$.

In particular the lower gradient of \tilde{I}_{b} at a point \tilde{u} is
$\operatorname{grad}_{\bar{C}} \tilde{I}_{b}(\tilde{u})=\left\{\begin{array}{l}P_{Z_{1} \oplus Z_{3}}\left(\nabla I_{b}\right)(u)+\left(1-\frac{1}{\left\|P_{Z_{2}} \tilde{u}\right\|}\right) P_{Z_{2}}\left(\nabla I_{b}\right)(u) \quad \text { if } \tilde{u} \in \operatorname{int}(C) \\ P_{Z_{1} \oplus Z_{3}}\left(\nabla I_{b}\right)(u)-\left[<\nabla I_{b}(u), P_{Z_{2}} \tilde{u}>\right]^{+} P_{Z_{2}} \tilde{u} \quad \text { if } \tilde{u} \in \partial C,\end{array}\right.$ where $u=\Psi(\tilde{u})$.

We can prove the following result.
Lemma 4.1. We set $C_{n}=C \cap H_{n}$ for all n. Then the functional \tilde{I}_{b} satisfies (P.S.) γ_{γ}^{*} condition, with respect to $\left(C_{n}\right)$, for all γ.

Proof. Let $\left(k_{n}\right)_{n}$ and $\left(u_{n}\right)_{n}$ and γ be such that $k_{n} \rightarrow \infty, \tilde{u_{n}} \in C_{k_{n}}$ for all $n, \tilde{I}_{b}\left(\tilde{u_{n}}\right) \rightarrow \gamma$ and $\operatorname{grad}_{\overline{k_{k}}} \tilde{I}_{b} \tilde{u}_{n} \rightarrow 0$. Apply the Definition of the lower gradient of \tilde{I}_{b},

$$
\begin{equation*}
\operatorname{grad}_{C_{k_{n}}^{-}} \tilde{I}_{b} \tilde{u}_{n}=P_{H_{k_{n}}} \operatorname{grad}_{\bar{C}} \tilde{I}_{b} \tilde{u}_{n} \rightarrow 0 \tag{5}
\end{equation*}
$$

We set $u_{n}=\Psi\left(\tilde{u_{n}}\right)$ and $u_{n, 1}=P_{Z_{1}} u_{n}, u_{n, 2}=P_{Z_{2}} u_{n}, u_{n, 3}=P_{Z_{3}} u_{n}$.
Case 1. $\inf \left\|P_{Z_{2}} \tilde{u_{n}}\right\|>1$.
In this case, $P_{H_{k_{n}}} \nabla I_{b}\left(u_{n}\right) \rightarrow 0$, so by the (P.S. $)_{\gamma}^{*}$ condition for $I_{b},\left(u_{n}\right)$ has converging subsequence $\left(u_{n_{j}}\right)$ which converges to a point u which is a critical point for I_{b} and $u \notin Z_{1} \oplus Z_{3}$. Since Ψ is a diffeomorphism in a neighborhood of $u,\left(\tilde{u_{j}}\right)$ converges to $\tilde{u}=\Psi^{-1}(u)$ and \tilde{u} is critical for \tilde{I}_{b}.

Case 2. $\inf \left\|P_{Z_{2}} \tilde{u_{n}}\right\|=1$.

We can suppose that $P_{Z_{2}} u_{n} \rightarrow 0$. We claim that $\left(u_{n}\right)$ is bounded. If not we can suppose $t_{n}=\left\|u_{n}\right\| \rightarrow \infty$. We take $\hat{u_{n}}=u_{n} /\left\|u_{n}\right\|, \hat{u_{n, i}}=$ $u_{n, 1} /\left\|u_{n}\right\|$ for $i=1,2,3$.

Applying $P_{Z_{1} \oplus Z_{3}}$ to equation (10) and using equation (9), we get

$$
P^{+} \hat{u_{n, 3}}-\hat{u_{n, 1}}-P^{-} \hat{u_{n, 3}}+P_{H_{k_{n}}} P_{Z_{1} \oplus Z_{3}} \frac{b A\left(A u_{n}\right)^{+}-A f\left(A u_{n}\right)}{t_{n}} \rightarrow 0 .
$$

Multiplying by $\hat{u_{n, 3}}$ and integrating over Ω yields

$$
\begin{aligned}
\left\|P^{+} \hat{u_{n, 3}}\right\|^{2} & -\left\|P^{-} \hat{u_{n, 3}}\right\|^{2} \\
& +P_{H_{k_{n}}}\left[\frac{b}{t_{n}} \int_{\Omega}\left(A u_{n}\right)^{+} A \hat{u_{n, 3}} d x-\frac{1}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A \hat{u_{n, 3}} d x\right] \rightarrow 0 .
\end{aligned}
$$

We know that there exists a sequence $\left(\epsilon_{n}\right)$ such that $\epsilon_{n} \rightarrow 0$ and $0<$ $\epsilon_{n}<b$ for all n, that is,

$$
\begin{aligned}
-\frac{b}{t_{n}} \int_{\Omega}\left(A u_{n}\right)^{+} A \hat{u_{n, 3}} d x & \leq-\frac{\epsilon_{n}}{t_{n}} \int_{\Omega} P_{Z_{3}}\left(A u_{n}\right)^{+}\left(A \hat{u_{n}}\right)^{+} d x \\
& \leq \epsilon_{n} \int_{\Omega}\left|P_{Z_{3}}\left(A u_{n}\right)^{+}\right|\left|\left(A \hat{u_{n}}\right)^{+}\right| d x
\end{aligned}
$$

And we know that

$$
\begin{aligned}
\frac{1}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A \hat{u_{n, 3}} d x & \leq \int_{\Omega} \frac{\left|f\left(A u_{n}\right)\right|}{t_{n}}\left|A \hat{u_{n, 3}}\right| d x \\
& \leq t_{n}{ }^{m-1}\left(M_{1}+t_{n}{ }^{M-m} M_{2}\right) \int_{\Omega}\left|A \hat{u_{n, 3}}\right| d x \leq o(1)
\end{aligned}
$$

Hence

$$
-\frac{b}{t_{n}} \int_{\Omega}\left(A u_{n}\right)^{+} A \hat{u_{n, 3}} d x+\frac{1}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A \hat{u_{n, 3}} d x \rightarrow 0
$$

and $\hat{u_{n, 3}} \rightarrow 0$.
Similarly, $\hat{u_{n, 1}} \rightarrow 0$. Since $\hat{u_{n, 2}} \rightarrow 0, \hat{u_{n}} \rightarrow 0$ which is impossible.
Since $\left(u_{n}\right)_{n}$ is bounded, we can suppose $u_{n, 1} \rightharpoonup u_{1}, u_{n, 2} \rightarrow 0$ and $u_{n, 3} \rightharpoonup u_{3}$ for suitable u_{i} in $Z_{i}, i=1,2,3$.

Let $z_{n}=P^{-} u_{n}$ and $v_{n}=P^{+} u_{n}$. Applying P^{+}to equation (9)

$$
\begin{equation*}
v_{n}+P^{+} P_{H_{k_{n}}}\left(b A\left(A u_{n}\right)^{+}-A f\left(A u_{n}\right)\right) \rightarrow 0 . \tag{6}
\end{equation*}
$$

Since A is compact and $\left(u_{n}\right)_{n}$ is bounded, $A u_{n} \rightarrow A u$. Hence $b A\left(A u_{n}\right)^{+}-$ $A f\left(A u_{n}\right) \rightarrow b A(A u)^{+}-A f(A u)$ strongly and by equation (11), v_{n} converges strongly to v. Similarly Z_{n} converges strongly to z. Since $P_{Z_{2}} u_{n} \rightarrow 0, u_{n} \rightarrow u=v+z$ where $v=P^{+} u$ and $z=P^{-} u$. Since $u_{n, 1} \rightarrow$
u_{1} and $u_{n, 3} \rightarrow u_{3}, P_{Z_{1}} \tilde{u_{n}} \rightarrow \Psi^{-1}\left(u_{1}\right)=u_{1}$ and $P_{Z_{3}} \tilde{u}_{n} \rightarrow \Psi^{-1}\left(u_{3}\right)=u_{3}$. Since $P_{Z_{2}} \tilde{u}_{n}$ is in a finite dimensional space, $P_{Z_{2}} \tilde{u_{n}}$ converges to a point $\tilde{u_{2}}$.

Hence $\tilde{u_{n}}$ converges to $\tilde{u}=u_{1}+\tilde{u_{2}}+u_{3}$ and \tilde{u} is critical for \tilde{I}_{b}.
Lemma 4.2. The functional $\left.I_{b}\right|_{Z_{1} \oplus Z_{3}}$ has no critical points u such that $I_{b}(u)<0$.

Proof. By contradiction, let (u_{n}) be a sequence such that $u_{n} \in Z_{1} \oplus Z_{3}$, $I_{b}\left(u_{n}\right)<0$ for all $n, I_{b}\left(u_{n}\right) \rightarrow 0$, and $P_{Z_{1} \oplus Z_{3}} \nabla I_{b}\left(u_{n}\right)=0$.

Arguing as in the proof of Lemma 2.5, up to a subsequence, $\left(u_{n}\right)$ converges to some u such that $I_{b}(u)=0$ and $P_{Z_{1} \oplus Z_{3}} \nabla I_{b}(u)=0$. Then

$$
\begin{aligned}
0 & =<P_{Z_{1} \oplus Z_{3}} \nabla I_{b}(u), u>-2 I_{b}(u) \\
& =\int_{\Omega}[2 F(A u)-f(A u) A u] d x \\
& =-\int_{\Omega} \frac{p-2}{p}\left[(A u)^{+}\right]^{p}+\frac{q-2}{q}\left[(A u)^{-}\right]^{q} d x .
\end{aligned}
$$

Hence $A u=0$ and $u=0$.
Let $\hat{u_{n}}=u_{n} /\left\|u_{n}\right\|$ and $t_{n}=\left\|u_{n}\right\|$. We have

$$
\begin{equation*}
t_{n} P^{+} \hat{u_{n}}-t_{n} P^{-} \hat{u_{n}}+b A\left(A u_{n}\right)^{+}-A f\left(A u_{n}\right)=0 \tag{7}
\end{equation*}
$$

Multiplying equation (12) by P^{+}, we get

$$
\begin{equation*}
\hat{v}_{n}+b A\left(A u_{n}\right)^{+}-\frac{1}{t_{n}} A f\left(A u_{n}\right)=0 \tag{8}
\end{equation*}
$$

Multiplying equation (13) by $\hat{v_{n}}$ and integrating over Ω,

$$
\left\|\hat{v_{n}}\right\|^{2}=\frac{1}{t_{n}} \int_{\Omega} f\left(A u_{n}\right) A \hat{v_{n}} d x-b \int_{\Omega}\left(A \hat{u_{n}}\right)^{+} A \hat{v_{n}} d x
$$

Arguing as in the proof of Lemma 3.2, $\hat{v_{n}} \rightarrow 0$.
Similarly, $\hat{z_{n}} \rightarrow 0$ and then $\hat{u_{n}}$, which gives a contradiction.
Theorem 4.1. Assume that $\lambda_{k}<c<\lambda_{k+1}$. Let $k \geq i \geq 2$. Then problem (1.1) has at least three nontrivial solutions.

Proof. We claim that there exists two critical points u_{i} for I_{b} such that, for $i=1,2$

$$
\begin{equation*}
\inf I_{b}\left(S_{\rho}\left(Z_{2} \oplus Z_{3}\right)\right) \leq I_{b}\left(u_{i}\right) \leq \sup I_{b}\left(\Delta_{R}\left(S_{1}\left(Z_{2}\right), Z_{1}\right)\right) \tag{9}
\end{equation*}
$$

where ρ and R are as Theorem 3.4. By specify which theorem, we know that the critical point \hat{u} is distinguished from u_{1} and u_{2}.

To prove the claim, we consider the functional \tilde{I}_{b}. If we set

$$
\tilde{S}=\Psi^{-1}\left(S_{\rho}\left(Z_{2} \oplus Z_{3}\right)\right), \tilde{\Sigma}=\Psi^{-1}\left(\Sigma_{R}\left(S_{1}\left(Z_{2}\right), Z_{1}\right)\right), \tilde{\Delta}=\Psi^{-1}\left(\Delta_{R}\left(S_{1}\left(Z_{2}\right), Z_{1}\right)\right)
$$

By equation (9) and the definition of Ψ,

$$
\sup \tilde{I}_{b}(\tilde{\Sigma})<\inf \tilde{I}_{b}(\tilde{S})
$$

Due to Lemma 3.1,

$$
\inf \tilde{I}_{b}(\tilde{S})<\sup \tilde{I}_{b}(\tilde{\Delta}) \leq 0
$$

Since the (P.S. $)_{\gamma}^{*}$ condition holds for \tilde{I}_{b} using the Theorem 3.7 in Section 3.2, there exists two critical points $\tilde{u}_{i}, i=1,2$ for \tilde{I}_{b} such that

$$
\begin{equation*}
\inf \tilde{I}_{b}(\tilde{S}) \leq \tilde{I}_{b}\left(\tilde{u}_{i}\right) \leq \sup \tilde{I}_{b}(\tilde{\Delta}) \tag{10}
\end{equation*}
$$

We claim that $\tilde{u_{i}} \notin \partial C$. Suppose that $\tilde{u_{i}} \in \partial C$. Since

$$
0=\operatorname{grad}_{\bar{C}} \tilde{I}_{b}\left(\tilde{u}_{i}\right)=P_{Z_{1} \oplus Z_{3}}\left(\nabla I_{b}\right)\left(u_{i}\right)-\left[<\nabla I_{b}\left(u_{i}\right), P_{Z_{2}} \tilde{u}_{i}>\right]^{+} P_{Z_{2}} \tilde{u_{i}},
$$

$P_{Z_{1} \oplus Z_{3}}\left(\nabla I_{b}\right)\left(u_{i}\right)=0$ where $u_{i}=\Psi\left(\tilde{u_{i}}\right)$. Then u_{i} are critical for $\left.I_{b}\right|_{Z_{1} \oplus Z_{3}}$. By equation (14) and equation (15), $I_{b}\left(u_{i}\right)<0$, but this contradicts Lemma 4.2.

So $\tilde{u}_{i} \notin \partial C$, since Ψ is a diffeomorphism in a neighborhood of $\tilde{u_{n}}$, then $\nabla I_{b}\left(u_{i}\right)=0$ where $\left.u_{i}=\Psi(\tilde{u})^{\prime}\right), i=1,2$.

References

[1] Choi, Q. H. and Jung, T., Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation, Acta Mathematica Scientia 19 (4) (1999), 361374.
[2] Choi, Q. H. and Jung, T., Multiplicity results on nonlinear biharmonic operator, Rocky Mountain J. Math. 29 (1) (1999), 141-164.
[3] Hofer, H., On strongly indefinite functionals with applications, Trans. Amer. Math. Soc. 275 (1983), 185-214.
[4] Jung, T. S. and Choi, Q. H., Multiplicity results on a nonlinear biharmonic equation, Nonlinear Analysis, Theory, Methods and Applications 30 (8) (1997), 5083-5092.
[5] Jung, T. S. and Choi, Q. H., A Variation of Linking for the Semilinear Biharmonic Problem, Preprint.
[6] Li, S. and Squlkin, A., Periodic solutions of an asymptotically linear wave equation, Nonlinear Analysis, Theory, Methods and Applications 1 (1993), 211-230.
[7] Micheletti, A. M. and Pistoia, A., Multiplicity results for a fourth-order semilinear elliptic problem, Nonlinear Analysis, TMA, 31 (7) (1998), 895-908.
[8] Tarantello, A note on a semilinear elliptic problem, Diff. Integ. Equat. 5 (3) (1992), 561-565.

Tacksun Jung
Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail: tsjung@kunsan.ac.kr
Q-Heung Choi
Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail: qheung@inha.ac.kr

