DOI QR코드

DOI QR Code

SOME FRACTIONAL INTEGRAL FORMULAS INVOLVING THE PRODUCT OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Kim, Yongsup (Department of Mathematics Education Wonkwang University)
  • Received : 2017.08.07
  • Accepted : 2017.09.15
  • Published : 2017.09.25

Abstract

Very recently, Agarwal gave remakably a scads of fractional integral formulas involving various special functions. Using the same technique, we obtain certain(presumably) new fractional integral formulas involving the product of confluent hypergeometric functions. Some interesting special cases of our two main results are considered.

Keywords

References

  1. P. Agarwal, Further results on fractional calculus of Saigo operators, Applications and Applied Mathematics, 2(2)(2012), 585-594.
  2. P. Agarwal and Jain, Further results on fractional calculus of Srivasta polynomials, Bulletin of Mathematical Analysis and Applications, 3(2)(2011), 167-174.
  3. P. Agarwal and J. Choi, Fractional calculus operators and their image formulas, Journal of Korean Math. Soc., 53(6)(2016), 1183-1210. https://doi.org/10.4134/JKMS.j150458
  4. P. Agarwal and S. D. Purohit, The unified pathway frctional integral formulae, Journal of fractional calculus and applications, 4(1)(2013), 105-112.
  5. D. Baleanu and P. Agarwal, On generalized fractional integral operators and the generalized Gauss hypergeometric functions, Abstact and Applied Analysis,2014, Article ID 630840, 5 pages, http://dx.doi. org/10.1155/2014/630840.
  6. D. Baleanu, P. Agarwal and S. D. Purohit, Certain fractional integral formulas involving the product of generalized Bessel functions, The Scientific World Journal, 2013, http://dx.doi.org/10.1155/2013/567132.
  7. D. Baleanu, O. G. Mustafa, and D. O'Regan, A uniqueness criterion for fractional differential equations with Caputo derivative, Nonlinear Dynamics, 71(4)(2013), 635-640. https://doi.org/10.1007/s11071-012-0449-4
  8. J. Choi and P. Agarwal, Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions, Abstract and Applied Analysis, Article ID 735946, 7 pages, http://dx.doi.org/10.1155/2014/735946.
  9. V. Kiryakova, On two Saigo's fractional integral operators in the class of univalent functions, Fract. Calc. Appl. Anal., 9 (2)(2006), 159-176.
  10. O. I. Marichev, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izvestiya Akademii Nauk SSSR, 1(1974), 128-129 (Russian).
  11. O. I. Marichev and V. K. Tuan, The problems of definitions and symbols of G- and H- functions of several variables, Rev. Tecn. Fac. Ing. Univ. Zulia, Special Edition 6(1983), 144-151.
  12. S. D. Purohit, S. L. Kalla and D.L. Suthar,Fractional integral operators and the multiindex Mittag-Leer functions, Scientia A, 21(2011), 87-96.
  13. S. D. Purohit, D.L. Suthar and S. L. Kalla, Some results on fractional calculus operators associated with the M-function, Hardronic Journal, 33(3)(2010), 225-236.
  14. S. D. Purohit, D.L. Suthar and S. L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel function, Le Mathematiche, 67(1)(2012), 21-32.
  15. M. Saigo, A remark on integral operators involving Gauss hypergeometric functions, Mathematical Reports of Kyushu University, 11, 135-143.
  16. M. Saigo,On generalized fractional calculus operators, in proceeding of the international workshop held at Kuwait University : Recent Advances in Applied Mathematics, Kuwait University(1996), 441-450.
  17. M. Saigo and N. Maeda, More generalization of fractional calculus, Transform methods and special functions, Varna 96(1998), 386-400, Sopia : Bulgarian Academy of Sciences.
  18. H. M. Srivastava and P. Agarwal, Certain fractional integral operators and the generalized incomplete hypergeometric functions, Applications and Applied Mathematics, 8(2)(2013), 333-345.
  19. H. M. Srivastava and Monocha,A treatise on generating functions, Ellis Horwood Limited, 1984.
  20. D.L. Suthar and S. Agarwal, Fractional integral formulas involving generalized hypergeometric functions and general class of multivariable polynomial, International Bulletin of Mathematical Research, 3(2), 28-34.