DOI QR코드

DOI QR Code

Effect of Powder Synthesis Method on the Microstructure of Oxide Dispersion Strengthened Fe-Cr-Al Based Alloys

Fe-Cr-Al 기 산화물 분산강화 합금의 미세조직에 미치는 분말제조 공정 영향

  • Park, Sung Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 박성현 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2017.08.07
  • Accepted : 2017.09.02
  • Published : 2017.09.27

Abstract

An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of $Y_2O_3$ particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and $1100^{\circ}C$ for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at $1100^{\circ}C$ showed a more homogeneous microstructure. In the case of sintering at $1100^{\circ}C$, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.

Keywords

References

  1. P. Marshall, Austenitic stainless steels: Microstructure and mechanical properties, p. 80, Springer, Netherlands (1984).
  2. C. W. Park, J. M. Byun, J. K. Park and Y. D. Kim, J. Korean Powder Metall. Inst., 23, 61 (2016) (in Korean). https://doi.org/10.4150/KPMI.2016.23.1.61
  3. R. L. Klueh, J. P. Shingledecker, R. W. Swindeman and D. T. Hoelzer, J. Nucl. Mater., 341, 103 (2005). https://doi.org/10.1016/j.jnucmat.2005.01.017
  4. K. Suresh, M. Nagini, R. Vijay, M. Ramakrishna, R. C. Gundakaram, A. V. Reddy and G. Sundararajan, Mater. Design, 110, 519 (2016). https://doi.org/10.1016/j.matdes.2016.08.020
  5. J. H. Schneibel and S. Shim, Mater. Sci. Mater. Sci. Eng. A, 488, 134 (2008). https://doi.org/10.1016/j.msea.2007.10.074
  6. J. S. Benjamin, Metall. Trans., 1, 2943 (1970).
  7. C. Capdevila and H. K. D. H. Bhadeshia, Adv. Eng. Mater., 3, 647 (2001). https://doi.org/10.1002/1527-2648(200109)3:9<647::AID-ADEM647>3.0.CO;2-4
  8. Q. X. Sun, T. Zhang, X. P. Wang, Q. F. Fang, T. Hao and C. S. Liu, J. Nucl. Mater., 424, 279 (2012). https://doi.org/10.1016/j.jnucmat.2011.12.020
  9. J. H. Ahn, H. J. Kim, I. H. Oh and Y. J. Kim, J. Alloys Compd., 483, 247 (2009). https://doi.org/10.1016/j.jallcom.2008.08.138
  10. C. H. Jung, J. S. Jang and S. J. Lee, Met. Mater. Int., 17, 451 (2011). https://doi.org/10.1007/s12540-011-0624-z
  11. Y. I. Lee, N. Y. Kwon and S. T. Oh, Mater. Lett., 197, 135 (2017). https://doi.org/10.1016/j.matlet.2017.03.123
  12. D. M. Yim, J. K. Park and S. T. Oh, Korean J. Mater. Res., 25, 386 (2015) (in Korean). https://doi.org/10.3740/MRSK.2015.25.8.386
  13. C. L. Chen and Y. M. Dong, Mater. Sci. Eng. A, 528, 8374 (2011). https://doi.org/10.1016/j.msea.2011.08.041
  14. S. Yan, J. Yin and E. Zhou, J. Alloys Compd., 450, 417 (2008). https://doi.org/10.1016/j.jallcom.2006.10.144