DOI QR코드

DOI QR Code

Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock

  • Xiong, Qi-lin (Department of Mechanics, Huazhong University of Science & Technology) ;
  • Tian, Xin (School of Mechanical Engineering, Xi'an Jiaotong University)
  • Received : 2016.06.18
  • Accepted : 2017.07.03
  • Published : 2017.10.10

Abstract

In this work, transient thermo-piezo-elastic responses of an infinite functionally graded piezoelectric (FGPE) plate whose upper surface suffers time-dependent thermal shock are investigated in the context of different thermo-piezo-elastic theories. The thermal and mechanical properties of functionally graded piezoelectric plate under consideration are expressed as power functions of plate thickness variable. The solution of problem is obtained by solving the corresponding finite element governing equations in time domain directly. Transient thermo-piezo-elastic responses of the FGPE plate, including temperature, stress, displacement, electric intensity and electric potential are presented graphically and analyzed carefully to show multi-field coupling behaviors between them. In addition, the effects of functionally graded parameters on transient thermo-piezo-elastic responses are also investigated to provide a theoretical basis for the application of the FGPE materials.

Keywords

Acknowledgement

Supported by : National Science Foundation of China, Natural Science Foundation of Hubei Province in China

References

  1. Aouadi, M. (2006), "Generalized thermo-piezoelectric problems with temperature-dependent properties", Int. J. Solids. Struct., 43(21), 6347-6358. https://doi.org/10.1016/j.ijsolstr.2005.09.003
  2. Arefi, M. (2015), "The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers", Smart Struct. Syst., Int. J., 15(5), 1345-1362. https://doi.org/10.12989/sss.2015.15.5.1345
  3. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart Struct. Syst., Int. J., 13(1), 398-415.
  4. Babaei, M.H. and Chen, Z.T. (2008), "Dynamic response of a thermopiezoelectric rod due to a moving heat source", Smart. Mater. Struct., 18(2), 025003. https://doi.org/10.1088/0964-1726/18/2/025003
  5. Bidgoli, M.R., Karimi, M.S. and Arani, A.G. (2015), "Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers", Steel Compos. Struct., Int. J., 19(3), 713-733. https://doi.org/10.12989/scs.2015.19.3.713
  6. Chandrasekharaiah, D.S. (1988), "A generalized linear thermoelasticity theory for piezoelectric media", Acta. Mech., 71(1-4), 39-49. https://doi.org/10.1007/BF01173936
  7. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. https://doi.org/10.1007/BF00045689
  8. He, T., Cao, L. and Li, S. (2007), "Dynamic response of a piezoelectric rod with thermal relaxation", J. Sound. Vib., 306(3), 897-907. https://doi.org/10.1016/j.jsv.2007.06.018
  9. Heydarpour, Y. and Aghdam, M.M. (2016), "Transient analysis of rotating functionally graded truncated conical shells based on the Lord-Shulman model", Thin-Wall. Struct., 104, 168-184. https://doi.org/10.1016/j.tws.2016.03.016
  10. Khoshgoftar, M.J., Ghorbanpour, A.A. and Arefi, M. (2009), "Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material", Smart Struct. Syst., 18(11), 115007. https://doi.org/10.1088/0964-1726/18/11/115007
  11. Lin, S., Xu, J. and Cao, H. (2016), "Analysis on the Ring-Type Piezoelectric Ceramic Transformer in Radial Vibration", IEEE. T. Power. Electr., 31(7), 5079-5088. https://doi.org/10.1109/TPEL.2015.2482990
  12. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  13. Ma, Y. and He, T. (2016), "Dynamic response of a generalized piezoelectric-thermoelastic problem under fractional order theory of thermoelasticity", Mech. Adv. Mater. Struct., 23(10), 1173-1180. https://doi.org/10.1080/15376494.2015.1068397
  14. Mallik, S.H. and Kanoria, M. (2007), "Generalized thermoelastic functionally graded solid with a periodically varying heat source", Int. J. Solids. Struct., 44(22), 7633-7645. https://doi.org/10.1016/j.ijsolstr.2007.05.001
  15. Mindlin, R.D. (1961), "On the equations of motion of piezoelectric crystals", Problems Continuum Mech., 282-290.
  16. Mindlin, R.D. (1974), "Equations of high frequency vibrations of thermopiezoelectric crystal plates", Int. J. Solids. Struct., 10(6), 625-637. https://doi.org/10.1016/0020-7683(74)90047-X
  17. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electroelastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel. Compos. Struct., Int. J., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513
  18. Muralt, P. (2008), "Recent progress in materials issues for piezoelectric MEMS", J. Am. Ceram. Soc., 91(5), 1385-1396. https://doi.org/10.1111/j.1551-2916.2008.02421.x
  19. Schwab, C. (1998), p-and hp-finite element methods: Theory and applications in solid and fluid mechanics. Oxford University Press, Oxford, United Kingdom.
  20. Shen, Y. and Tian, X. (2014), "Piezothermoelasticity with Finite Wave Speeds", In: Encyclopedia of Thermal Stresses, Springer Netherlands, New Delhi, India, pp. 3873-3883.
  21. Starr, M.B. and Wang, X. (2015), "Coupling of piezoelectric effect with electrochemical processes", Nano Energy., 14, 296-311. https://doi.org/10.1016/j.nanoen.2015.01.035
  22. Tian, X. and Shen, Y. (2005), "Study on generalized magnetothermoelastic problems by FEM in time domain", Acta. Mech. Sinica., 21(4), 380-387. https://doi.org/10.1007/s10409-005-0046-6
  23. Tian, X., Shen, Y., Chen, C. and He, T. (2006), "A direct finite element method study of generalized thermoelastic problems", Int. J. Solids. Struct., 43(7), 2050-2063. https://doi.org/10.1016/j.ijsolstr.2005.06.071
  24. Tian, X., Zhang, J., Shen, Y. and Lu, T.J. (2007), "Finite element method for generalized piezothermoelastic problems", Int. J. Solids Struct., 44(18), 6330-6339. https://doi.org/10.1016/j.ijsolstr.2007.02.035
  25. Tianhu, H., Xiaogeng, T. and Yapeng, S. (2002), "Twodimensional generalized thermal shock problem of a thick piezoelectric plate of infinite extent", Int. J. Eng. Sci., 40(20), 2249-2264. https://doi.org/10.1016/S0020-7225(02)00137-4
  26. Tianhu, H., Xiaogeng, T. and Yapeng, S. (2003), "Onedimensional generalized thermal shock problem for a semiinfinite piezoelectric rod", Acta. Mech. Sinica., 35(2), 158-165.
  27. Vedavarz, A., Kumar, S. and Moallemi, M.K. (1994), "Significance of non-Fourier heat waves in conduction", J. Heat. Trans.-T. ASME, 116(1), 221-224. https://doi.org/10.1115/1.2910859
  28. Xiong, Q.L. and Tian, X.G. (2012), "Thermoelastic study of an infinite functionally graded body with a cylindrical cavity using the Green-Naghdi model", J. Therm. Stresses., 35(8), 718-732 https://doi.org/10.1080/01495739.2012.688668

Cited by

  1. Effectiveness of piezoelectric fiber reinforced composite laminate in active damping for smart structures vol.31, pp.4, 2017, https://doi.org/10.12989/scs.2019.31.4.387