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DIMENSION REDUCTION FOR APPROXIMATION OF

ADVANCED RETRIAL QUEUES : TUTORIAL AND REVIEW†

YANG WOO SHIN

Abstract. Retrial queues have been widely used to model the many prac-
tical situations arising from telephone systems, telecommunication net-
works and call centers. An approximation method for a simple Markovian

retrial queue by reducing the two dimensional problem to one dimensional
problem was presented by Fredericks and Reisner in 1979. The method
seems to be a promising approach to approximate the retrial queues with
complex structure, but the method has not been attracted a lot of atten-

tion for about thirty years. In this paper, we exposit the method in detail
and show the usefulness of the method by presenting the recent results
for approximating the retrial queues with complex structure such as multi-

server retrial queues with phase type distribution of retrial time, impatient
customers with general persistent function and/or multiclass customers,
etc.
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1. Introduction

Retrial queue is a queueing system with returning customers and it consists
of service facility and a virtual buffer called orbit as depicted in Figure 1. The
service facility behaves as a queueing system with finite buffer. Customers arrive
from outside to the service facility and demand independent and identically
distributed service. If there are available servers or available positions in waiting
space upon arrival, the customer joins the service facility. On the other hand, if
an arriving customer finds that all servers are busy and all the waiting positions
are occupied, the customer leaves the system forever or try to get service again
after random amount of time. Those customers who will come back and try to
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Figure 1. Schematic diagram of retrial queue

get service later are said to be in the virtual space called orbit. Unless otherwise
mentioned, the capacity of orbit is assumed to be infinite. The customers in
orbit retry independently to get service and are treated same as the primary
customers that arrive from outside. That is, if a retrial customer finds free
servers or waiting position available, the customer receives service immediately
or joins the waiting space for service, otherwise, the customer leaves the system
without service or joins orbit again. The time interval between retrials of a
customer from orbit is called retrial time. The retrial times of a customer are
assumed to be independent and identically distributed.

We denote the retrial queue by using the notation for usual queueing sys-
tem. For example, M/G/c/K retrial queue has a service facility with c identical
servers in parallel and the capacity of service facility is K that includes the num-
ber of servers and waiting positions, the external arrival occurs according to a
Poisson process and the service time of each server has general distribution. If
there are no extra waiting positions in service facility, that is, K = c, then we
omit the K and denote the system by M/G/c retrial queue instead of M/G/c/c
retrial queue.

Retrial queues have been widely used to model the many practical situations
arising from telephone systems, telecommunication networks and call centers.
There are extensive literature about retrial queues. For details of application
area, an overview and bibliographies of retrial queues, readers can refer to the
survey papers [66, 17, 33, 10, 29], the survey of bibliographies [2, 3, 4, 22] and
the books [19, 5].

Falin [17] divides the retrial queues into three large groups so called single
server systems, multi-server (fully available) systems and structurally complex
systems based on the nature of results obtained, methods of analysis and areas
of applications. This classification is simplified by two groups main models and
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advanced models in [19]. The retrial queueing systems with exponential retrial
time, no-loss system and the system with single class of customers are contained
in the main model. On the other hand, the retrial queues with phase type
(PH) distribution of retrial time, impatient customers, multi-class of customers,
multi-server retrial queue with general distribution of interarrival time and/or
the service time, and the server vacation are contained in the group of advanced
models or structurally complex systems. In almost all the literature for retrial
queues, analytic solutions have focused on single server system with Poisson
arrival and computational or approximation methods have been developed for
the main multi-server models. The monograph [19] presents details of analytical
results for single server system and computational and approximation methods
for multi-server system. The computational approaches are emphasized in the
book [5] where various computational methods for single-server system and main
M/M/c retrial queues and matrix analytic method for the system with the
structure of quasi-birth-and-death (QBD) process or the Markov chain ofM/G/1
type are presented.

There are a few qualitative approach for the multi-server retrial queues in
the third class, e.g. a stability condition for BMAP/PH/s/s+K retrial queue
with PH retrial time [25], a stability condition forMAP/PH/s/K retrial queue
with PH retrial time and server vacation [49] and GI/G/c retrial queue with
exponential retrial time [39] and the monotonicity forM/G/1 retrial queue with
general retrial time [36] and for AX/B/c/K retrial queue with exponential re-
trial times [44]. The retrial queues with structurally complex structure have
been known to be difficult for mathematical analysis because the joint queue
length process is a random walk on the multidimensional integer lattice even it
is modelled by a Markov chain. So, the explicit or computational approaches
for these models are very limited. The truncation method or matrix analytic
method in [19, 5] do not seem to be useful to obtain the performance measures
about the multi-server retrial queue in advanced models.

Fredericks and Reisner [20] present an approximation method for multi-server
retrial queue. The method reduces the two dimensional problem to one dimen-
sional problem and makes the computation of stationary distribution become
simpler and more efficient. The method has been also introduced as a method
of reducing dimension [66], an approximation with the help of a loss model [19,
Section 2.8.1] and Fredericks and Reisner approximation [5, Section 3.4.4]. How-
ever, the method has not been attracted a lot of attention until Shin and Moon
[52] used it for an approximation of M/M/c retrial queue with phase type dis-
tribution of retrial time. Here, we denote the Fredericks and Reisner’s approach
by dimension reduction method.

Recently, Shin and Moon present approximation results of the performance
characteristics indicated in [17] for the complex systems by using the dimension
reduction method in a series of papers [52, 53, 56, 58, 59, 60]. The objective this
paper is to exposit the dimension reduction method and show the usefulness of
the method by presenting the recent results of the authors.
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The paper is organized as follows. In Section 2, the dimension reduction
method is described with numerical results by approximating the simpleM/M/c
retrial queue. Approximation of PH/PH/c retrial queue with PH retrial times
and its application to GI/G/c retrial queue with general retrial time are pre-
sented in Section 3. Approximation of M/M/c/K retrial queue with impatient
customers and M/M/c with multi-class of customers are presented in Sections
4 and 5, respectively. Approximations of M/M/c retrial queue with server va-
cations in which the retrial times and vacation times are of PH distributions is
proposed in Section 6. Concluding remarks are given in Section 7.

2. Dimension reduction method

2.1. Model and preliminary results. Consider the main M/M/c retrial
queue with arrival rate λ, the service rate µ of each server and retrial rate γ.

Let X0(t) be the number of customers at service facility and X1(t) be the
number of customers in orbit at time t. Then XXX = {(X0(t), X1(t)), t ≥ 0} is a
continuous time Markov chain with state space S = {0, 1, · · · , c} × Z+, where
Z+ = {0, 1, 2, · · · }. For stability of the system we assume that ρ = λ

cµ < 1 [19].

Let (X0, X1) be the stationary version of XXX and P (j, n) = P (X0 = j,X1 = n)
for (j, n) ∈ S and P (j, n) = 0 otherwise. Following the standard procedure, the
balance equations for the Markov chain XXX are easily obtained as follows: for
(j, n) ∈ S with 0 ≤ k < c,

(λ+ µj + nγ)P (j, n) = λP (j− 1, n)+µj+1P (j+1, n)+ (n+1)γP (j− 1, n+1),
(1)

where µj = jµ and for j = c,

(λ+ cµ)P (c, n) = λP (c− 1, n) + λP (c, n− 1) + (n+ 1)γP (c− 1, n+ 1). (2)

Let πj = P (X0 = j), j = 0, 1, · · · , c. Summing over n in (1) yields that

(λj + µj)πj = λj−1πj−1 + µj+1πj+1, 0 ≤ j < c, (3)

where

λj = λ+ γLj , j = 0, 1, · · · , c− 1 (4)

and Lj = E[X1|X0 = j]. We can see from (3) that

µi+1πi+1 = λiπi, 0 ≤ i < c (5)

and hence

πj = π0

j∏
i=1

(
λi−1

µi

)
, j = 1, 2, · · · , c

with

π0 =

1 + c∑
j=1

j∏
i=1

(
λi−1

µi

)−1

.
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Furthermore, summing over i in both sides of (5), we have that

µE[X0] =

c−1∑
i=0

λiπi = λ(1− πc) + γ(L− Lcπc) = λ

and

E[X0] =
λ

µ
(6)

which is consistent with Little’s law.
Note that πj is expressed in terms of unknown λj . We need some preliminaries

to determine unknowns. Let Pn = P (X1 = n), n = 0, 1, 2, · · · . Summing over j
in (1) and (2) yields that

(n+ 1)γPn+1 − nγPn = λ(P (c, n)− P (c, n− 1))

+ γ((n+ 1)P (c, n+ 1)− nP (c, n))

and hence

γnPn = λP (c, n− 1) + γnP (c, n)

Thus the mean number L = E[X1] of customers in orbit is given by

L = λcπcmr, (7)

where mr =
1
γ is the mean retrial time and λc = λ+ γLc.

Let Rj be the proportion of returning customers from orbit who find the
service facility in state j, that is, (e.g. see [64, page 370], [5, page 78], [19, page
169])

Rj =
γE[X11{X0=j}]

γE[X1]
=
Ljπj
L

, j = 0, 1, · · · , c. (8)

It follows from (7) and (8) that γLj =
λcπc

πj
Rj and hence

λc =
λ

1−Rc
. (9)

Combining (7) and (9), we have that

L = mr
λπc

1−Rc
(10)

Summarizing the results above with (4), we have that

λj = λ+ λ

 c∏
i=j+1

λi−1

µi

 Rj
1−Rc

, 0 ≤ j < c. (11)
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2.2. Approximation. Note that the equation (3) is the same as the balance
equation of the birth-and-death process with birth rates λj and death rates µj .
The λj represents the sum of the arrival rate λ from outside and the arrival rate
γLj from orbit to the service facility under the condition X0 = j. It can be seen

that {λj}c−1
j=0 in (4) have already reflected the external arrival and retrials and

{µj}cj=1 are independent of retrials. Based on this observation, we adopt the
following approximation assumption about the behavior of service facility for an
approximation of λj .

Assumption M. The service facility behaves like a birth and death process
with birth rates λi, 0 ≤ i ≤ c in (4) and death rates µj, 0 ≤ j ≤ c and is
independent of the retrials.

Let Q be the infinitesimal generator of the birth and death process {ξ(t), t ≥
0} with birth rates λi, 0 ≤ i ≤ c− 1 and death rates µj , 1 ≤ j ≤ c on the state
space {0, 1, · · · , c} and qij(t) = P (ξ(t) = j | ξ(0) = i). Assume that a customer is
blocked to enter the service facility and joins orbit at time t = 0. This customer
returns after exponential retrial time with rate γ and Rj is aproximated by the
probability that the returning customer finds the service facility of state j under
the Assumption M, that is,

Rj ≈
∫ ∞

0

qcj(t)γe
−γt dt = γ[(γI −Q)−1]cj , j = 0, 1, 2, · · · , c. (12)

where [A]ij is the (i, j)-component of the matrix A and I is the identity matrix.
The following iteration algorithm is for computing λλλ = (λ0, · · · , λc). We write

Q as Q(λλλ) to highlight the dependence of λλλ.

Algorithm M

Step 0. [Initial step] Set λ
(0)
j = λ, j = 0, 1, · · · , c− 1.

Step 1. [Repeating step]. Repeat the following for n = 1, 2, · · ·
1. Let Q(n−1) = Q(λλλ(n−1)) and compute R

(n−1)
j using (12)

2. Update λλλ(n) using (11) until

TOL = ||λλλ(n) − λλλ(n−1)|| < ϵ

for a given tolerance ϵ > 0.

Although the convergence of the iteration scheme is not proved analyti-
cally, extensive numerical experiments show the convergence of the sequence

{λλλ(n)}∞n=0.

2.3. Performance measures and numerical results. As indicated in Falin
[17] ( see also [19]), the most important characteristics of the quality of service
of customers in retrial queueing systems are stationary blocking probability PB =
P (X0 = c), mean number L = E[X1] of customers in orbit and the mean number
E[X0] of busy servers from the practical point of view.
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Table 1. PB and σ0 in M/M/5 retrial queue

PB σ0
ρ mr Exact Appr. Err(%) Exact Appr. Err(%)
0.4 0.1 0.0554 0.0545 1.67 1.364 1.363 0.13

1.0 0.0469 0.0460 1.90 1.341 1.338 0.25
5.0 0.0432 0.0429 0.72 1.326 1.324 0.13
10.0 0.0425 0.0424 0.40 1.322 1.321 0.07
20.0 0.0422 0.0421 0.21 1.321 1.320 0.04

0.8 0.1 0.5215 0.4912 5.80 1.291 1.243 3.67
1.0 0.4553 0.4299 5.59 1.170 1.113 4.86
5.0 0.4263 0.4181 1.91 1.105 1.086 1.77
10.0 0.4210 0.4166 1.04 1.092 1.082 0.97
20.0 0.4181 0.4158 0.54 1.086 1.080 0.51

Table 2. L in M/M/5 retrial queue with ρ = 0.6

mr 0.0 0.1 1.0 5.0 10.0 20.0
Exact 0.3542 0.4287 0.9820 3.2953 6.1727 11.9247
Appr. 0.1417∗ 0.2429 0.8078 3.1192 5.9962 11.7481
Error 0.2125 0.1858 0.1742 0.1761 0.1765 0.1766
Err(%) 43.3 17.7 5.3 2.9 1.5

∗ Approximation results are for m1 = 10−4

The blocking probability PB and E[X0] are immediately obtained from {πj}
and L is given by (10). In Tables 1 - 3, numerical results are presented for the
performance of approximations for M/M/5 retrial queue with µ = 1.0 and the
arrival rate λ = 5ρ. Numerical experiments provide that approximations for
E[X0] is the same as the exact results (6). In Table 1, approximation results

for PB and the standard deviation σ0 =
√
Var[X0] of X0 are compared with

the exact one, where the exact results are in fact calculated by the generalized
truncation method, see [5, 19, 41]. The relative error is given by Err(%) =
(Exact−Appr.)

Exact × 100. Table 1 shows that the approximation works well especially

for large mean retrial time mr = 1
γ and the approximation underestimates the

exact one.
In Table 2, the exact results formr = 0 are for the ordinaryM/M/5 queue and

the corresponding approximation results are for mr = 10−4. We can see from
Table 2 that the approximation of L does not provide satisfactory accuracy for
small value of mr. For example, in case of mr = 0.1, the relative error Err(%) is
43.3%. However, the differences Error(mr) = L(mr)−LAppr(mr) between exact
one L(mr) and approximation result LAppr(mr) for L with mr slowly change as
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Table 3. L̂ and L in M/M/5 retrial queue

ρ = 0.4 ρ = 0.8
mr Exact Appr. Err(%) Exact Appr. Err(%)
0.1 0.0509 0.0532 4.72 2.567 2.702 5.26
1.0 0.1345 0.1399 4.05 5.261 5.317 1.05
5.0 0.4851 0.4920 1.41 16.672 16.663 0.06
10.0 0.9213 0.9285 0.78 30.871 30.849 0.07
20.0 1.7933 1.8007 0.41 59.253 59.224 0.05

mr increases. We propose a modified formula for L(mr) by

L̂(mr) = LAppr(mr) + (LM/M/c − LAppr(m
∗
r)), (13)

where LM/M/c is the mean number of customers in queue for the ordinary

M/M/c queue and m∗
r is sufficiently small value, e.g. m∗

r = 10−4. Approxi-

mation results L̂ with (13) are compared with exact ones in Table 3.

2.4. Bibliographical notes. Greenberg and Wolff [23] present an approxi-
mation for the stationary distribution of the number of customers in service
facility in the M/M/c/K retrial queue under the assumption that retrials see
time averages (RTA). The approximation using RTA assumption does not reflect
the retrial rate and works well only for small value of retrial rate. The dimen-
sion reduction method reflects the retrial rate and it provides more accurate
approximation results than RTA approximation as the retrial rate increases.

3. PH/PH/c retrial queue with PH retrial time

In this section, we apply the dimension reduction method to the retrial queue
with phase type (PH) distribution of retrial times. The results of this section
are from [53, 58].

3.1. The model. Consider the PH/PH/c retrial queue with PH retrial time.
The interarrival time, service time and retrial time are of PH-distributions
with representation PH(ααα,TTT ) (interarrival time), PH(βββ,SSS) (service time) and
PH(θθθ,UUU) (retrial time), where ααα = (α1, · · · , αl), βββ = (β1, · · · , βm) and θθθ =
(θ1, · · · , θν) are row vectors of size l, m and ν, respectively and TTT = (tij),
SSS = (sij) and UUU = (uij) are the square matrices of size l, m and ν, respec-
tively. The mean interarrival time, mean service time and mean retrial time are
given by ma = ααα(−TTT )−1e, ms = βββ(−SSS)−1e and mr = θθθ(−UUU)−1e, respectively,
where e is the column vector of appropriate size whose components are all 1.
For details of the PH-distribution and PH-renewal process, see [40, Chapter 2].
The stability condition of the system is ρ = ms

cma
< 1 [25, 49]. Let λλλ = −TTTe,

µµµ = −SSSe and γγγ = −UUUe and denote the jth component of λλλ, µµµ and γγγ by λj , µj
and γj , respectively. Let ttt = (t1, · · · , tl) with ti = −tii and similarly denote by
sss = (s1, · · · , sm) and uuu = (u1, · · · , uν) with si = −sii and ui = −uii. For later
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use, define some notation for vectors xxx = (x1, · · · , xn) and yyy = (y1, · · · , yn) by
|xxx| =

∑n
i=1 xi, xxx · yyy =

∑n
i=1 xiyi. Let ei be the vector of appropriate size whose

ith component is 1 and others are all 0 and denote the (k, k′)-component of the
matrix M by [M ]k,k′ .

3.2. Stationary equations. Let J(t) be the phase of arrival process, Xi(t) the
number of customers at service facility whose service phase is of i and Yj(t) be
the number of customers in orbit whose retrial phase is of j at time t andXXX(t) =
(X1(t), · · · , Xm(t)), YYY (t) = (Y1(t), · · · , Yν(t)). ThenΨΨΨ = {(J(t),XXX(t),YYY (t)), t ≥
0} is a continuous time Markov chain on the state space S = {1, · · · , l}×K×Zν+,
where K = ∪ci=0K(i) and K(i) = {(k1, · · · , km) ∈ Zm+ :

∑m
j=1 kj = i}.

Let (J,XXX,YYY ) be the stationary version of (J(t),XXX(t),YYY (t)). Following the
usual arguments, one can see that the balance equations for P (j,kkk,nnn) = P (J =
j,XXX = kkk,YYY = nnn) from which the marginal distribution of (J,XXX) are obtained as
the following Propositions 3.1 and 3.2.

Proposition 3.1. Let π(j,kkk) = P (J = j,XXX = kkk) and

a(j,kkk) =

ν∑
i=1

γiLi(j,kkk), 1 ≤ j ≤ l, kkk ∈ K,

where
Li(j,kkk) = E[Yi|J = j,XXX = kkk].

Then πππ = (π(j,kkk), j = 1, · · · , l, kkk ∈ K) satisfies πππQPH = 0, where

QPH =


B0 A0

C1 B1 A1

. . .
. . .

. . .

Cc−1 Bc−1 Ac−1

Cc Bc

 .

The matrix Bk = (Bk(i, j))1≤i,j≤l is a square matrix of size l
(
m+k−1
m−1

)
, where

the block component Bk(i, j) is a square matrix of size
(
m+k−1
m−1

)
, k = 0, 1, · · · , c

whose components are as follows:

Bk(i, j) =

{
tijI, i ̸= j, 0 ≤ k ≤ c− 1
(tij + λiαj)I, i ̸= j, k = c,

[Bk(i, i)]kkkkkk =

{
− (ti + a(i,kkk) + kkk · sss) , 0 ≤ k ≤ c− 1
− (ti − λiαi + kkk · sss) , k = c,

[Bk(i, i)]kkkkkk′ =

{
khshj , kkk′ = kkk + ej − eh, 0 ≤ k ≤ c,
0, otherwise,

kkk′ ̸= kkk.

The block matrix components of the matrices Ak = (Ak(i, j))1≤i,j≤l and Ck =
(Ck(i, j))1≤i,j≤l are as follows:

[Ak(i, j)]kkkkkk′ =

{
(λiαj + a(i,kkk)δij)βh, kkk′ = kkk + eh, 0 ≤ k ≤ c− 1
0, otherwise,
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[Ck(i, j)]kkkkkk′ =

{
khµhδij , kkk′ = kkk − eh, 1 ≤ k ≤ c,
0, otherwise,

where δij = 1 for i = j and 0 otherwise. Note that the matrices of Ak(i, j) and

Ck(i, j) are of size
(
m+k−1
m−1

)
×
(
m+k
m−1

)
and

(
m+k−1
m−1

)
×
(
m+k−2
m−1

)
, respectively.

Proposition 3.2. Let π(j,K(c)) = P (J = j,XXX ∈ K(c)) and

Λ =

l∑
j=1

λjπ(j,K(c)) +

ν∑
i=1

γiE[Yi1{XXX∈K(c)}].

Then the vector LLL = (L1, · · · , Lν) with Li = E[Yi] is given by

LLL = Λθθθ(−UUU)−1,

L =
ν∑
i=1

Li = Λmr.

Note that a(j,kkk) is the mean retrial rate from orbit given that the arrival
process and service facility is in state (j,kkk) and Λ is the total arrival rate to
orbit. It follows from Proposition 3.1 that the service facility behaves like a
PH/PH/c/c loss system with extra arrivals from orbit with rate a(j,kkk) that
depends on the state in stationary state.

Remark 3.1. For theM/M/c retrial queue with PH-retrial time, the generator
QPH is the same as that of birth and death process with birth rates

λj = λ+
ν∑
i=1

γiE[Yi |X0 = j], j = 0, 1, · · · , c− 1

and death rate µj = jµ, j = 1, 2, · · · , c, where µ is the service rate and it can
be easily seen that L0 =

∑m
i=1 E[Xi] =

ms

ma
, see [53].

Proposition 3.3. Let R(i,kkk) be the proportion of returning customers from
orbit who find the arrival phase and service facility in state (i,kkk), that is,

R(j,kkk) =

∑ν
i=1 γiE[Yi1{J=j,XXX=kkk}]∑ν

i=1 γiLi
.

Then

a(j,kkk) = ΛR(j,kkk)/π(j,kkk), kkk ∈ K, 1 ≤ j ≤ l,

Λ =
λ∗P oB
1−RB

,

where the proportion RB that returning customers are blocked and the probability
P oB that an arriving customer is blocked are as follows

RB =

l∑
j=1

∑
kkk∈K(c)

R(j,kkk),
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P oB =
1

λ∗

l∑
j=1

λjπ(j,K(c)),

where λ∗ = 1
ma

is the arrival rate.

3.3. Approximations. Based on the formula of QPH , we adopt the following
approximation assumption about the behavior of service facility.

Assumption PH. The service facility behaves like a level dependent quasi-
birth-and-death process with generator QPH and is independent of the retrials.

In order to approximate R(j,kkk), we classify the customers in orbit into two
types. Let the customers who have experienced no retrial be of type 0 and the
customers who have experienced one or more retrials be of type 1. Let Ri(j,kkk),
i = 0, 1 be the probability that a type i customer finds the system in (j,kkk)

upon retrial. The portion of type 0 customers in orbit is
λ∗P o

B

Λ = 1 − RB. We
approximate R(j,kkk) by

R(j,kkk) ≈ (1−RB)R0(j,kkk) +RBR1(j,kkk), 1 ≤ j ≤ l, kkk ∈ K. (14)

Assume that an arriving customer from outside is blocked at time t = 0 and
the customer returns after PH(θθθ,UUU) time. Under the Assumption PH, R0(j,kkk)
is approximated by the probability that this customer finds the system in (j,kkk)
upon retrial as follows:

R0(j,kkk) ≈
1

P oB

l∑
i=1

∑
kkk′∈K(c)

λiπ(i,kkk
′)

λ∗

[∫ ∞

0

exp(QPHt)θθθe
UUUtγγγdt

]
(i,kkk′),(j,kkk)

.

Similarly, R1(j,kkk) is approximated by

R1(j,kkk) ≈
1

PB

l∑
i=1

∑
kkk′∈K(c)

π(i,kkk′)

[∫ ∞

0

exp(QPHt)θθθe
UUUtγγγdt

]
(i,kkk′),(j,kkk)

.

Remark 3.2. If the arrival process is a Poisson process with rate λ, then it can
be seen that

P oB = P (XXX ∈ K(c)) = PB

and the proportion of returning customers from orbit who find the service facility
in state kkk is approximated by

R(kkk) ≈ 1

PB

l∑
i=1

∑
kkk′∈K(c)

π(i,kkk′)

[∫ ∞

0

exp(QPHt)θθθe
UUUtγγγdt

]
(i,kkk′),(j,kkk)

.

The following algorithm is for computing a(j,kkk) and π(j,kkk). Let aaa = (a(j,kkk), 1 ≤
j ≤ l, kkk ∈ K) and we write QPH as QPH(aaa) to highlight the dependence of aaa.

Algorithm PH
Repeat the following steps starting with aaa(0) = 0 and Q(0) = QPH(aaa(0));
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for n = 0, 1, 2, · · ·
1. Compute the stationary distribution πππ(n) of Q(n)

2. Compute R(n)(j,kkk) using (14) and then Λ(n)

3. Update Q(n+1) = QPH(aaa(n+1)) with aaa(n+1) = Λ(n)R(n)(j,kkk)/π(n)(j,kkk)
until

||aaa(n+1) − aaa(n)|| < ϵ.

Remark 3.3. 1. Once a(j,kkk) are determined, the stationary distribution πππ of
QPH can be computed by the well known algorithm (e.g. see [45])

π(K(n)) = π(000)R1 · · ·Rn, k = 1, 2, · · · , c

where

π(000) =

(
1 +

c∑
n=1

R1 · · ·Rne

)−1

and πππ(K(n)) = (π(j,kkk), (j,kkk) ∈ {1, 2, · · · , l} × K(n)). The matrices Rn of size(
m+n−2
m−1

)
×
(
m+n−1
m−1

)
are calculated recursively as

Rc = (−Bc)−1Ac−1,

Rn = An−1[−(Bn +Rn+1Cn+1)]
−1, n = c− 1, c− 2, · · · , 1.

2. The integration in R0(j,kkk) can be computed using the method in [53] as

follows. Note that the Laplace-Stieltjes transform (LST) F̃ (ω) = θθθ(ωI −UUU)−1γγγ
of the retrial time distribution F (t) is a rational function and the probability
density function f(t) of F (t) can be expressed by a linear combination of the
function of the form tke−ηt [62, Appendix E]. Thus R(j,kkk) is the linear combi-
nation of

H(k, η) =

∫ ∞

0

exp(QPHt)t
ke−ηt dt.

It can be easily seen that

H(k, η) = k![(ηI −QPH)−1]k+1, k = 0, 1, · · · .

One can use the algorithm in [45] for computing the inverse matrix (ηI−QPH)−1.
3. Computing procedure can be interpreted as follows. Setting aaa(0) = 0

denotes that the retrial phenomena is ignored and Q(0) is the generator of or-

dinary PH/PH/c/c loss system. Since a(n)(j,kkk) =
∑ν
i=1 γiL

(n−1)
i (j,kkk) denotes

the arrival rate from the group of blocking customers in the system Q(n−1), the
system Q(n) is the ordinary PH/PH/c/c loss system with extra arrival rates
a(n)(j,kkk). The convergence of Algorithm PH has not been proved analytically,
but [58] reported the the convergence of the sequence {aaa(n)}∞n=0 through exten-
sive numerical experiments.
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3.4. Performance measures. The performance measures such as blocking
probability PB = P (XXX ∈ K(c)), mean number of busy servers L0 =

∑m
i=1 E[Xi]

and the mean number of customers in orbit L =
∑ν
i=1 E[Yi] can be obtained

from the approximation results of Λ and π(j,kkk). By Little’s law it can be easily
seen that L0 = ms/ma. In order to improve the accuracy of approximation for
L, a modified formula [58]

L̂(mr) = LApp(mr) + (LPH/PH/c − LAppr(m
∗
r))

can be used, where L(mr) and LApp(mr) are the exact and approximation of L
as a function of mr, and LPH/PH/c is the mean number of customers in queue
for the ordinary PH/PH/c queue and m∗

r is chosen to be small enough so that
the variation of LApp(mr) is negligible for mr ≤ m∗

r . Approximation formulae
for the distribution of the number NR of retrials made by a customer during
its sojourn time in the system and LST of the sojourn time W during which a
customer stays in the system until the customer leaves the system are given [58].
Here, we present the means of them as

E[NR] =
P oB

1−RB
,

E[W ] = ms +
P oB

1−RB
mr =

1

ma
(L0 + L).

Extensive numerical experiments in [53, 58] show that the approximation
provides satisfactory accuracy when the squared coefficient of variation of retrial
time C2

r ≤ 1 or C2
r > 1 with H = m1m3

3m2
2/2

> 1, where mk, k = 1, 2, 3 is the kth

moment of retrial time. In the case of C2
r > 1 and H < 1, the performance of

approximation for PB , σ0 seems to be good, but the approximation L̂ of L can
be worse as ρ and C2

r increase.

Remark 3.4. 1. It is well known that the set of PH-distributions is dense
(in the sense of weak convergence) in the set of all probability distributions on
(0, ∞) (e.g. see [6, page 84]). There are many moment matching methods for
fitting the general distribution by the PH distributions e.g. [7, 26, 42, 62, 63].

One can use PH/PH/c retrial queue for GI/G/c retrial queue by approximat-
ing the distribution of interarrival time and service time with PH distributions
based on the result. In order to choose an appropriate PH distribution, the
sensitivity of the performance measures with respect to the moments of inter-
arrival time, service time and retrial time is investigated in [54, 57]. Shin and
Moon [58] choose PH/PH/c retrial queue as an approximate model of GI/G/c
retrial queue by fitting the first three moments of interarrival time, service time
and retrial time with PH distributions. Then, they approximate the PH/PH/c
retrial queue by using the dimension reduction method described in the previous
section.

2. One should note the following comments in [57] when one uses the PH/PH/c
retrial queue for approximating GI/G/c retrial queue. The matrix analytic
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method requires long computation time and large size of memory when both of
the number of phases in PH distribution and the number c of servers are large.
So the method is limited to small values of c and to PH distribution of lower
order. The method to approximate the multi-server queue by fitting the gen-
eral distribution with PH distributions is not free from the restriction of matrix
analytic method, e.g. [55].

3.5. Bibliographical notes. The literature about the retrial queues with non-
exponential retrial time is very limited. The order relation for GI/G/1 retrial
queue with PH-retrial time is considered in [37]. The stability condition for
BMAP/PH/c/K retrial queue with PH-retrial times are presented by [25].
Breuer et al. [9] indicate that the proof of the sufficient condition for K = c
is not correct. However, Shin [49] showed that the result of [25] is correct .
Approximation methods for the system with non-exponential retrial times are
developed for M/G/1 retrial queue with general retrial time [67], for M/G/1
retrial queue with mixture of Erlang retrial time [35] and for M/PH/1 retrial
queue with PH-retrial time [15]. Algorithmic solution for M/M/c retrial queue
with PH2 retrial time is developed in [46].

4. M/M/c retrial queue with impatient customers

4.1. The model and preliminaries. Consider an M/M/c/K retrial queue
with arrival rate λ and the service rate µ of each server, where the customers are
impatient. The impatience of customers is governed by the persistence function
{Hk, k = 1, 2, · · · }, where Hk is the probability that a customer will join orbit
after kth fail to enter the service facility. For a technical reason, we assume that
the number of retrials of a customer from orbit is limited by m, that is, Hk = 0
for k ≥ m + 1. Since Hk = 0 for k ≥ m + 1, it can be easily seen that the
system is always stable. We assume that the retrial rate may depend on the
number of failures to enter the service facility and let γk be the retrial rate of
the customer that has experienced blocking k times. An approximation for this
system is proposed in [56] and we describe the method and the results therein
briefly in the following.

Denote the customer who has failed k times to enter the service facility and
is still in orbit by the type k-customer, 1 ≤ k ≤ m. Thus if a type k-customer
is blocked again, then the customer becomes the customer of type k + 1 with
probability Hk+1 or leaves the system with probability H̄k+1 = 1 −Hk+1, 1 ≤
k < m. The customers in service facility are denoted by type 0 ones. Let X

(m)
k

be the number of customers of type k, k = 0, 1, · · · ,m in stationary state. We

fix a finite number m and for simplicity, we write Xk instead of X
(m)
k if it is

not confused in the context and let Pkj = P (Xk = j) be the distribution of Xk,
0 ≤ k ≤ m.

Note that the state space of the random vector XXX = (X0, · · · , Xm) is S =
{0, 1, · · · ,K} × Zm+ . Following the usual arguments, one can easily derive the
the balance equations for P (nnn) = P (XXX = nnn). It can be easily seen from the
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balance equations that the marginal distribution P0j of X0 satisfies the following
equations

(λj + µj)P0j = λj−1P0,j−1 + µj+1P0,j+1, 0 ≤ j < K, (15)

where µj = min(j, c)µ and

λj = λ+
m∑
k=1

γkLkj , j = 0, 1, · · · ,K − 1 (16)

with

Lkj = E[Xk|X0 = j], 0 ≤ k ≤ m, 0 ≤ j ≤ K.

Thus P0j , j = 0, 1, · · · ,K are the stationary distribution of birth and death
process with arrival rates λj and service rates µj and the following proposition
is immediately obtained.

Proposition 4.1. The marginal distribution P0j = P (X0 = j) is given by

P0j = P00

j∏
i=1

(
λi−1

µi

)
, j = 1, 2, · · · , c (17)

with
∑c
j=0 P0j = 1.

We can also obtain from the balance equations for P (nnn) that the mean Lk =
E[Xk] is given by

Lk =

{ 1
γ1
λP0KH1, k = 1,

1
γk
γk−1Lk−1,KP0KHk, k = 2, 3, · · · ,m. (18)

Let Rkj be the proportion of returning customers of type k who find the service
facility of state j, that is,

Rkj =
γkE[Xk1{X0=j}]

γkE[Xk]
=
LkjP0j

Lk
, k = 1, 2, · · · ,m. (19)

It follows from (18), (19) and (17) that

Lkj =

{
λ
γk

∏k
i=1HiRiK , j = K,

λ
γk

(∏K
i=j+1

λi−1

µi

)(∏k−1
i=1 HiRiK

)
HkRkj , 1 ≤ j ≤ K − 1

(20)

Combining the results above, we have that

Proposition 4.2.

Lk =
λP0K

γk

(
k−1∏
i=1

HiRiK

)
Hk, k = 1, 2, · · · ,m, (21)

λj = λ+ λ

 K∏
i=j+1

λi−1

µi

 m∑
k=1

(
k−1∏
i=1

HiRiK

)
HkRkj , 0 ≤ j < K. (22)
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4.2. Approximations. Based on the formula (15), we adopt the following
approximation assumption about the behavior of service facility.

Assumption IC. The service facility behaves like a birth-and-death process
with birth rates {λj}K−1

j=0 in (16) and death rates {µj}Kj=1 and is independent of
the retrials.

Assume that a type (k−1)-customer is blocked at time t = 0 and it becomes a
type k-customer. This customer returns after an exponential time with param-
eter γk. Based on Assumption IC, we approximate Rkj with the probability
that the returning customer finds the service facility of state j, that is,

Rkj ≈
∫ ∞

0

qKj(t)γke
−γkt dt = γkq̃Kj(γk), 0 ≤ j ≤ K, 1 ≤ k ≤ m, (23)

where qij(t) is the transition function of a Markov chain given in Assumption
IC and q̃ij(s) is the Laplace transform of qij(t).

Once Rkj is obtained, the approximations for λj , Lk and Lkj are obtained by
substituting Rkj into (22), (18) and (20), respectively. The unknowns λj and
Rkj can be calculated by fixed point iteration as Algorithm M in Section 2.

Let W be the time period during which a customer sojourns in the system
until the customer leaves the system and R be the number of retrials made
by a customer during its sojourn in the system. Let {R = n, Success} be
the event that a customer succeeds in getting service after the nth retrial and
{R = n, Loss} the event that a customer leaves the system without service after
the nth retrial. Let PS(n) = P (R = n, Success), PL(n) = P (R = n, Loss) and

PR(n) = P (R = n) = PS(n) + PL(n), n = 0, 1, · · · ,m.

The approximation formulae for PS(n) = P (R = n, Success) and PL(n) =
P (R = n, Loss) as follows

PS(n) =

{
P0KH1(1− γ1q̃KK(γ1)), n = 1,
1
λγn−1Ln−1,KP0KHn(1− γnq̃KK(γn)), 2 ≤ n ≤ m,

PL(n) =
1

λ
γnLn,KP0KH̄n+1, 1 ≤ n ≤ m.

The loss probability PL is given by

PL =
m∑
n=0

PL(n) =
P0K

λ

(
λH̄1 +

m∑
n=1

γnLnKH̄n+1

)
.

Shin and Moon [56] derive an approximation formula for LST of W . Here, we
present an approximation formula for E[W ] as

E[W ] = (1− PL)
1

µ
+

m∑
n=1

PR(n)W̄R(n)
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+
K−1∑
i=c

(
P0i +

m∑
n=1

PR(n, i)

)
i− c+ 1

cµ
,

where W̄R(n) =
∑n
j=1

1
γj
, n = 1, 2, · · · ,m and

PR(n, i) =

{
P0KH1γ1q̃Ki(γ1), n = 1,
1
λγn−1Ln−1,KP0KHnγnq̃Ki(γn), 2 ≤ n ≤ m.

Numerical experiments in [56] show that approximations for L0 = E[X0]
are overestimated and the relative error Err(%) increases as ρ increases and γ
increases, but approximations for the mean number LOrbit of customers in orbit
are underestimated as m increases. The behaviors of L0 and LOrbit increase,
but PL decreases as γ decreases and m increases. The performance measures
L0, LOrbit, PB and PL as a function of m approaches to a constant as m tends
to infinity.

4.3. Bibliographical notes. A retrial queueing model taking into account
nonpersistence of customers was considered by [12] for the M/M/c type retrial
queue. Much effort has been spent to analyze the retrial queues with the special
case of persistence function H1 = α, H2 = H3 = · · · = β. Closed form solutions
for the system have not been obtained except for a few special cases, for example,
M/G/1 retrial queue with α ≤ 1 and β = 1 and M/M/1 retrial queue with
α ≤ 1 and β ≤ 1, see [19, Section 3.3]. For multiple server case, some algorithms
and approximations are presented, e.g. [19, 20, 23, 50, 61]. For more detailed
references and the related results, see [19, Chapter 5], [5, Chapter 3] and [64,
Chapter 7]. Generalized truncation method for the stationary distribution of
M/M/s retrial queue in which α and β may depend on the number of customers
in service facility is presented in [50]. An approximation of the M/M/c retrial
queue with the persistence function Hj = 1, 1 ≤ j ≤ m and Hj = 0 for j ≥ m+1
for a given constant m is presented in [52].

5. M/M/c retrial queue with multiclass of customers

5.1. The model and preliminaries. Consider an M/M/c retrial queue with
multiclass of customers. Customers belong to one of m different types. The
customers of type i (i-customers) arrive from outside according to a Poisson
process with rate λi, 1 ≤ i ≤ m. Note that λi in this section has different
meaning from those in the previous sections. Let Λ =

∑m
i=1 λi be the total

arrival rate and αi = λi

Λ , 1 ≤ i ≤ m. When an arriving i-customer finds an
available server, then the customer starts to get service and leaves the system
after service. Otherwise, the customer joins orbit and repeats its request after
exponential amount of time with rate γi. Service time distribution of i-customers
is exponential with parameter µi. Let γγγ = (γ1, · · · , γm) and µµµ = (µ1, · · · , µm).
An approximation for this system is proposed in [59] and we describe the method
and the results therein briefly in the following.
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Let Ci(t) be the number of i-customers being served and Ni(t) the num-
ber of i-customers in orbit at time t and CCC(t) = (C1(t), · · · , Cm(t)), NNN(t) =
(N1(t), · · · , Nm(t)). Then XXX = {(CCC(t),NNN(t)), t ≥ 0} forms a Markov chain
with state space S = K × Zm+ , where K = ∪ci=0K(i) and K(i) = {(k1, · · · , km) ∈
Zm+ :

∑m
j=1 kj = i}. The necessary and sufficient condition for the Markov

chain XXX to be positive recurrent is ρ =
∑m
i=1

λi

cµi
< 1. Let CCC = (C1, · · · , Cm)

andNNN = (N1, · · · , Nm) be the stationary version ofCCC(t) andNNN(t) and P (kkk,nnn) =
P (CCC = kkk,NNN = nnn), where kkk = (k1, · · · , km) ∈ K, nnn = (n1, · · · , nm) ∈ Zm+ . The
balance equations for P (kkk,nnn) can be obtained by usual argument and are omit-
ted here. It can be seen from the balance equations for P (kkk,nnn) that the following
Proposition 5.1 and E[Ci] = λi

µi
, i = 1, 2, · · · ,m.

Proposition 5.1. The marginal distribution πππ = (π(kkk), kkk ∈ K) with π(kkk) =
P (CCC = kkk) is given by πππQMC = 0, where

QMC =



K(0) K(1) K(2) · · · K(c)

K(0) D0 A0

K(1) B1 D1 A1

...
. . .

. . .
. . .

K(c− 1) Bc−1 Dc−1 Ac−1

K(c) Bc Dc

. (24)

The matrix Dl is a diagonal matrix of size
(
m+l−1
m−1

)
, l = 0, 1, · · · , c whose diag-

onal elements are determined by making QMCe = 0 and Al and Bl are given as
follows

[Al]jjjkkk =

{
ai(jjj), kkk = jjj + ei, jjj ∈ K(l), kkk ∈ K(l + 1), i = 1, 2, · · · ,m
0, otherwise

[Bl]jjjk =

{
jiµi, kkk = jjj − ei, jjj ∈ K(l), kkk ∈ K(l − 1), i = 1, 2, · · · ,m
0, otherwise,

where

ai(kkk) = λi + γiLi(kkk), i = 1, 2, · · · ,m
is the total arrival rate of i-customers from outside and orbit into the service
facility given that the service facility is in state kkk and Li(kkk) = E[Ni |CCC = kkk].

It can be seen from the balance equation for P (kkk,nnn) that after tedious algebra

Li =
λiPB
γi

+
∑

kkk∈K(c)

Li(kkk)π(kkk), i = 1, 2, · · · ,m,

where PB = P (CCC ∈ K(c)) is the blocking probability.
Let Ri(kkk) be the proportion of returning customers of i-customers from orbit

who find the service facility in state kkk, that is,

Ri(kkk) =
γiE[Ni1{CCC=kkk}]

γiE[Ni]
=
Li(kkk)π(kkk)

Li
, i = 1, 2, · · · ,m,
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where Li = E[Ni]. Let RB(i) =
∑
kkk∈K(c)Ri(kkk). Combining the results above,

we have the following proposition.

Proposition 5.2.

Li =
λiPB

γi(1−RB(i))
, i = 1, 2, · · · ,m, (25)

ai(kkk) = λi +
γiLiRi(kkk)

π(kkk)
, i = 1, 2, · · · ,m. (26)

Let Γ =
∑m
i=1 γi and βi = γi/Γ, 1 ≤ i ≤ m. Fix a retrial ratio βββ =

(β1, · · · , βm) and in order to highlight the dependence of retrial rate Γ we write
the stationary distribution as PΓ(kkk,nnn) instead of P (kkk,nnn).

Theorem 5.3. [59] Assume that limΓ→∞ PΓ(kkk,nnn) = P∞(kkk,nnn) exists. Then
P∞(kkk,nnn) = 0 for |kkk| ≤ c−1, |nnn| ≥ 1 and P∞(kkk,nnn) satisfies the balance equations
for the stationary distribution in multiclass M/M/c queue with discriminatory
random order service (DROS) discipline in which an i-customer is randomly

selected for next service with probability niβi

βββ·nnn when there are nnn = (n1, · · · , nm)

customers in queue upon a service completion.

5.2. Approximations. Based on the formula QMC in (24) for π(kkk), we adopt
the following approximation assumption about the behavior of service facility.

Assumption MC. The service facility behaves like a level dependent quasi-
birth-and-death process with generator QMC and is independent of the retrials.

Assume that an i-customer is blocked at time t = 0 and the customer returns
after exponential time with rate γi. The Ri(kkk) is approximated by the proba-
bility that this customer finds the service facility of state kkk upon retrial under
Assumption MC, that is,

Ri(kkk) ≈
γi
PB

∑
jjj∈K(c)

π(jjj)[(γiI −QMC)
−1]jjjkkk, i = 1, 2, · · · ,m. (27)

Remark 5.1. If the service rates are identical, that is, µi = µ, i = 1, 2, · · · ,m,
then the marginal distribution π(k) = P (

∑m
i=1 Ci = k) satisfies the

(a(k) + kµ)π(k) = a(k − 1)p(k − 1) + (k + 1)µπ(k + 1), 0 ≤ k ≤ c, (28)

where a(k) = Λ +
∑m
i=1 γiE[Ni |C = k] and hence we have that

π(k) =
a(0)a(1) · · · a(k − 1)

k!µk
π(0), k = 1, 2, · · · , c

with
∑c
k=0 π(k) = 1. Furthermore, the formula (27) becomes Ri(k) = γi[(γiI −

Q)−1]ck, where Q is the generator corresponding to (28).

The following algorithm is for computing aaa = (aaa(kkk), kkk ∈ K), where aaa(kkk) =
(a1(kkk), · · · , am(kkk)). Write QMC as QMC(aaa) to highlight the dependence of aaa.
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Algorithm MC.

For n = 0, 1, 2, · · · , repeat the following steps starting with a
(0)
i (kkk) = λi, i =

1, · · · ,m,
1. Compute the stationary distribution πππ(n) of Q(n) = QMC(aaa

(n))

2. Compute R
(n)
i (kkk) and L

(n)
i using (27)

3. Update a
(n+1)
i (kkk) with R

(n)
i (kkk) and L

(n)
i using (25)− (27)

until
||aaa(n+1) − aaa(n)|| < ϵ.

5.3. Performance measures. Blocking probability and mean number of cus-
tomers. The blocking probability is given by PB =

∑
kkk∈K(c) πππ(kkk) and E[Ci] =

λi/µi. Denote by Li(Γ) the mean number of i-customers in orbit in the system
with retrial rate Γ and Li,App(Γ) the approximation of Li(Γ) that can be cal-
culated by (25). In order to improve the accuracy of approximation, Shin and

Moon [59] propose the modified formula L̂i(Γ) for Li(Γ) as follows:

L̂i(Γ) = Li,App(Γ) + (Li,M/M/c/DROS(βββ) − Li,App(Γ
∗)),

where Li,M/M/c/ROS(βββ) is the mean number of customers in queue for ordinary
M/M/c queue with DROS(βββ) service rule and Γ∗ is sufficiently large.

Waiting time distribution. The approximation formulae for the LST of the
distribution of the sojourn time Wi of an i-customer are presented in terms of
the distribution of the number NR(i) of retrials made by a customer during its
waiting time in the system in [59]. Here, we present the expectations as follows

E[Wi] =
1

γi
E[NR(i)] +

1

µi
, i = 1, 2, · · · ,m,

where

E[NR(i)] =
PB

1−RB(i)
.

It can be seen that the approximation formula for E[Wi] satisfies Little’s formula
λiE[Wi] = E[Ci] + Li.

Numerical results in [59] show that the approximation of PB works well for
small ρ or small Γ and becomes worse as Γ and c increase and the approximation
of Li works well for wide range of Γ. The approach for approximating Li uses
the ordinary M/M/c/DROS queue. For more wide range of applications of the
approach proposed here, further research is required to develop an algorithm for
ordinary M/M/c/DROS queue.

5.4. Bibliographical notes. There are a number of analytical results for
retrial queueing models with two classes of customers that in case of blocking,
one class of customers joins orbit and the other can be queued [11, 18, 28] or
leaves the system without service [38]. Explicit expressions for the mean number
of customers or mean waiting time in single server retrial queue with two or
more classes of customers are presented in [31, 32, 16]. The MX/G/1 retrial
queue with multiclass customers is studied by means of branching processes with
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immigration in [24] and the stability condition for multiclass retrial queue with
multiple servers is given in [30]. For the multiserver case with finite size of orbit,
an algorithmic approach using matrix geometric method [10] or computational
approache using the colored generalized Petri nets [21] are proposed. Theorem
5.3 is the version of the system with multiclass of customers corresponding to
the convergence of the retrial queue with single class of customers [19, 51, 44].

6. M/M/c retrial queue with server vacations

6.1. The model and preliminaries. Consider the M/M/c retrial queue in
which the servers take vacations. The arrival rate and service rate of each server
is λ and µ, respectively. If any a (1 ≤ a < c) or more servers are idle at a service
completion, that is, the number of customers at the service facility is less than or
equal to a∗ = c− a upon a service completion, then b (0 ≤ b ≤ a) servers among
idle servers take a vacation and the remaining b∗ = c − b servers are available.
This vacation policy is called the (a, b)-vacation policy [65]. The vacation time
distribution is assumed to be of a phase type PH(δδδ,VVV ), where VVV = (vij) is a
nonsingular w × w matrix with vii = −vi < 0, 1 ≤ i ≤ w and δδδ = (δ1, · · · , δw)
with δδδe = 1. Let VVV 0 = −VVV e = (v01 , · · · , v0w)T and mv = δδδ(−UUU)−1e be the
mean vacation time. We consider the single vacation policy under which the
servers take only one vacation and after the vacation the servers either serves
the waiting customer in service facility if any or stays idle.

If a customer finds that the number of customers in service facility is less
than c upon arrival, the customer enters the service facility, otherwise the cus-
tomer joins orbit and repeats its request until the customer gets into the service
facility. The customers in orbit retry independently with other customers and
retrial times of each customer are assumed to be independent and identically
distributed. We assume that the retrial time distribution of a customer in orbit
is of phase type PH(θθθ,UUU) whose distribution function is F (t) = 1− θθθ exp(UUUt)e,
t ≥ 0, where θθθ = (θ1, · · · , θg) ≥ 0 with θθθe = 1 and UUU = (uij) is a nonsin-
gular g × g matrix with uii = −ui < 0, 1 ≤ i ≤ g. Let uuu = (u1, · · · , ug),
γγγ = −UUUe = (γ1, · · · , γg)T and mr = θθθ(−UUU)−1e be the mean retrial time. Here,
we introduce the results in [60] and the readers can refer the paper for details.

Let Xi(t) the number of customers in orbit whose service phase is of i, 1 ≤
i ≤ g and Y (t) be the number of customers at service facility and J(t) the server
state at time t defined by

J(t) =

{
0, c servers are available
j, the phase of vacation time is of j, 1 ≤ j ≤ w.

Then ΨΨΨ = {(XXX(t), Y (t), J(t)), t ≥ 0} with XXX(t) = (X1(t), · · · , Xg(t)) is a con-

tinuous time Markov chain on the state space S = {(nnn, k, j) ∈ Zg+2
+ : nnn ≥ 0, 0 ≤

k ≤ c, 0 ≤ j ≤ w} and ΨΨΨ is positive recurrent if ρ = λ
cµ < 1 [49]. Let (XXX,Y, J)

be the stationary version of ΨΨΨ. One can easily obtain the balance equations for
P (nnn, k, j) = P (XXX = nnn, Y = k, J = j) and we omit the results, see [60] for details.
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Let Y = {(k, j) : 0 ≤ k ≤ c, 0 ≤ j ≤ w} and γ(k, j) be retrial rate from orbit
given that (Y, J) = (k, j), that is,

γ(k, j) =

g∑
i=1

γiLi(k, j), (k, j) ∈ Y,

where Li(k, j) = E[Xi|Y = k, J = j].

Proposition 6.1. The marginal distribution πππ = (π(k, j), (k, j) ∈ Y) with
π(k, j) = P (Y = k, J = j) satisfies πππQV = 0, where

QV =


B0 A0

C1 B1 A1

. . .
. . .

. . .

Cc−1 Bc−1 Ac−1

Cc Bc

 .

The matrix Ak is the diagonal matrix of size w+1 whose diagonal elements are

[Ak]jj = λ+ γ(k, j), j = 0, 1, · · · , w, 0 ≤ k ≤ c− 1.

The matrices Bk and Ck are square matrices of size w+1 whose (i, j)-component
are as follows:

[Bk]ij =

 v0i , 1 ≤ i ≤ w, j = 0
vij , 1 ≤ i ̸= j ≤ w
−∆k(i), i = j,

[Ck]ij =

 µkδj , 0 ≤ k ≤ a∗ + 1, i = 0, 1 ≤ j ≤ w
µk, a∗ + 2 ≤ k ≤ c, i = j = 0
µ∗
k, 1 ≤ i = j ≤ w,

where ∆k(i) is the positive number that makes QV e = 0 and the components not
stated above are all zero and the components not stated above are all zero.

Proposition 6.2. Let LLL = (L1, · · · , Lg) with Li = E[Xi]. Then

LLL = Λθθθ(−UUU)−1, (29)

where

Λ =

(
λ+

g∑
i=1

γiLi(c)

)
PB

and PB = P (Y = c) and Li(c) = E[Xi|Y = c].

Note from (29) and θθθ(−UUU)−1γγγ = 1 that
∑g
i=1 γiLi = Λ and

L =

g∑
i=1

Li = Λmr.
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Proposition 6.3. Let R(k, j) be the proportion of returning customers from
orbit who find the arrival phase and service facility in state (k, h), that is,

R(k, j) =
1

Λ
γ(k, j)π(k, j), (k, j) ∈ Y. (30)

Then the mean number of customers in orbit L is given by

L =
λPB

1−RB
mr, (31)

where RB is the portion of blocking of a returning customer

RB =

w∑
j=0

R(c, j) = 1− λPB
Λ

.

6.2. Approximations. Based on the formula of QV , we adopt the following
approximation assumption about the behavior of service facility.

Assumption V. The service facility behaves like a level dependent quasi-
birth-and-death process with generator QV and is independent of the retrials.

We approximate R(k, j) with the probability that a customer who joins orbit
at time 0 finds the service facility is in state (k, j) at the retrial instant as follows:

R(k, j) ≈ 1

Λ

w∑
i=0

(λ+ γ(c, i))π(c, i)

[∫ ∞

0

eQV t θθθeUUUtdt

]
(c,i),(k,j)

. (32)

Once initial value of γ(k, j) is given, ΛR(k, j) can be approximated by (32) using
the stationary distribution πππ and γ(k, j) is updated from ΛR(k, j) by the formula
(30). The following algorithm summarizes the results above. We write QV as
QV (γ) to highlight the dependence of γ.

Algorithm V.
For n = 0, 1, 2, · · · , repeat with γ(0)(k, j) = 0

1. Let Q(n) = QV (γ
(n)) and compute πππ(n);

2. Compute ΛR(n)(k, j) using (32);
3. Update γ(n+1)(k, j) using (30);

until

||γ(n+1) − γ(n)|| < ϵ.

6.3. Performance measures. Once πππ and R(k, j) are obtained through Al-
gorithm V, the performance measures such as the blocking probability PB =
P (Y = c), the probability PV = 1 − P (J = 0) that the servers are in vacation,
the mean E[Y ] and standard deviation SD[Y ] of the number of customers in ser-
vice facility can be calculated. The mean number L(mr) of customers in orbit
when the mean retrial time is mr is approximated by the formula

L̂(mr) = LApp(mr) + (LV − LAppr(m
∗
r)), (33)
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where LApp(mr) is the approximation formula (31) and LV is the mean number
of customers waiting in the queue for the ordinary M/M/c vacation queue. The
quantity m∗

r is chosen to be small enough so that the variation of LApp(mr) is
negligible for mr ≤ m∗

r . It follows from the numerical examples in [60] that the
accuracy of approximation is good in practical sense and tends to improve as
the mean retrial time mr increases.

6.4. Bibliographical notes. Retrial queues and vacation queues have been
studied separately for last several decades. Recently, the interests on the retrial
queues with vacations is growing rapidly. However, almost all the literature deals
with the system with single-server and/or constant retrial policy that only one
customer in orbit can retry e.g. see [1, 8, 27, 14, 34]. Algorithmic approaches for
the single server queue with Bernoulli vacation schedule and linear retrial policy
are considered by [13]. The call center with outgoing calls introduced in [43] can
be considered as the queues with retrials and vacations. An algorithmic solution
for theMAP/M/c/K queue with PH-vacation time and exponential retrial time
is developed in [48] and the stability condition for the MAP/PH/c/K queue
with PH vacation time and PH retrial time is given in [49].

7. Concluding remarks

The behavior of the retrial queue is described by multidimensional process
jointly describing the states of service facility and the states of orbit. The com-
mon features of the method described above are as follows.

The first step is to reduce the whole system equations that consists of infinite
number of equations in general to the system of equations of finite number
equations for the marginal distributions of service facility. The reduced equations
describe the behavior of service facility and contain the unknown parameters that
reflect the retrials from orbit. In this step, one can see that the arrival rate to
the service facility is sum of the rate from external arrivals and the rate of orbit
that is unknown. Then, derive the equations for approximate the arrival rates
from orbit to the service facility under appropriate approximation assumption.
Finally, solve the equations for unknown parameters by iteration and calculate
the performance measures.

In this paper, we have explained the dimension reduction method in detail for
M/M/c retrial queue and showed that the method is very useful to approximate
the systems with complex structures in retrial queueing models. Besides the
systems mentioned above, the method seems to be a promising approach to
approximate the more complex systems.
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