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UNIQUENESS OF MEROMORPHIC FUNCTIONS

CONCERNING DIFFERENTIAL POLYNOMIALS WITH

REGARD TO MULTIPLICITY SHARING A SMALL

FUNCTION

HARINA P. WAGHAMORE∗ AND SANGEETHA ANAND

Abstract. In this paper, using the notion of weakly weighted sharing and
relaxed weighted sharing, we investigate the uniqueness problems of certain
differential polynomials sharing a small function. The results obtained in
this paper extend the theorem obtained by Jianren Long [9].
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1. Introduction

In this paper, we use the standard notations of Nevanlinna value distribution
theory (see [4, 13, 14]). Let f and g be two non-constant meromorphic functions
defined in the open complex plane C. If for some a ∈ C ∪ {∞}, f − a and g − a
have the same set of zeros with the same multiplicities, we say that f and g share
the value a CM (counting multiplicities). If we do not consider multiplicities,
then f and g are said to share the value a IM (ignoring multiplicities).

Let k be a positive integer or infinity. Set E(a, f) = {z : f(z)−a = 0}, where
a zero with multiplicity k is counted k times. If the zeros are counted only once,
then we denote the set by E(a, f). If E(a, f) = E(a, g), then we say that f and
g share the value a CM; If E(a, f) = E(a, g), then we say that f and g share the
value a IM. We denote by Ek)(a, f) the set of all a-points of f with multiplicities
not exceeding k, where an a-point is counted according to its multiplicity. Also,
we denote by Ek)(a, f) the set of distinct a-points of f with multiplicities not
exceeding k.
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In 1997, Yang and Hua [12] obtained the following uniqueness theorem.

Theorem A. Let f and g be two non-constant entire (meromorphic) functions,

and let n ≥ 6 (n ≥ 11) be a positive integer. If fnf
′
and gng

′
share 1 CM,

then either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three constants
satisfying (c1c2)

n+1c2 = −1, or f = tg for a constant t such that tn+1 = 1.

In 2008, Zhang et al. [16] considered some general differential polynomials
and obtained the following result.

Theorem B. Let f and g be two non-constant meromorphic functions, and
h(̸≡ 0,∞) be a small function with respect to f and g. Let n, k and m be three
positive integers with n > 3k+m+8 and P (z) = amz

m+am−1z
m−1+...+a1z+a0,

where a0 ̸= 0, a1, ..., am−1, am ̸= 0 are complex constants. If (fnP (f))(k) and
(gnP (g))(k) share h(z) CM, then one of the following three cases hold:
(i) f = tg for a constant t such that td = 1, where d = GCD(n+m, ..., n+m−
i, ..., n), am−i ̸= 0 for some i = 0, 1, ...,m;
(ii) f and g satisfying the algebraic function equationR(f, g) = 0, whereR(w1, w2)
= wn1 (amw

m
1 + am−1w

m−1
1 + ...+ a0)− wn2 (amw

m
2 + am−1w

m−1
2 + ...+ a0);

(iii) (fnP (f))(k)(gnP (g))(k) = h2.

In 2013, Bhoosnurmath and Kabbur [3] extended Theorem B and proved the
following uniqueness theorem by using the concept of multiplicity.

Theorem C. Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
n and m be positive integers with (n−m− 1)s ≥ max{10, 2m+3} and let P (z)

be defined as in Theorem B. If fnP (f)f
′
and gnP (g)g

′
share 1 CM, then either

f = tg for a constant t such that td = 1, where d = GCD(n + m + 1, ..., n +
m + 1 − i, ..., n + 1), am−i ̸= 0 for some i = 0, 1, ...,m or f and g satisfy the

algebraic function equation R(f, g) = 0, where R(x, y) = xn+1(
am

n+m+ 1
xm +

am−1

n+m
xm−1 + ...+

a0
n+ 1

)− yn+1(
am

n+m+ 1
ym +

am−1

n+m
ym−1 + ...+

a0
n+ 1

).

Recently, J. R. Long [9] generalised Theorem C by proving the following result.

Theorem D. Let f and g be two transcendental meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer. Let

n and m be two positive integers with n−m > max{2 + 2m

s
,
(n+ 2)(k + 4)

ns
},

Θ(∞, f)+Θ(∞, g) >
4

n
and let P (z) be defined as in Theorem B. If (fnP (f))(k)

and (gnP (g))(k) share h(z) CM, where h(z)( ̸≡ 0,∞) is a small function of f and
g, then one of the following three cases hold:
(i) (fnP (f))(k)(gnP (g))(k) = h2;
(ii) f = tg for a constant t such that td = 1, where d = GCD(n+m, ..., n+m−
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i, ..., n), am−i ̸= 0 for some i = 0, 1, ...,m;
(iii) f and g satisfy the algebraic equationR(f, g) = 0, whereR(f, g) = fnP (f)−
gnP (g).
The possibility (fnP (f))(k)(gnP (g))(k) = h2 does not occur for k = 1.

To state our main results of this article, we need the following definitions.

Definition 1.1 ([6]). Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1) the
counting function of simple a-points of f . For a positive integer k we denote by
N(r, a; f |≤ k) the counting function of those a-points of f (counted with proper
multiplicities) whose multiplicities are not greater than k. By N(r, a; f |≤ k)
we denote the corresponding reduced counting function. Analogously, we can
define N(r, a; f |≥ k) and N(r, a; f |≥ k) .

Definition 1.2 ([5]). Let k be a positive integer or infinity. We denote by
Nk(r, a; f) the counting function of a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + · · ·+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 1.3 ([10]). We denote by NE(r, a; f, g) (NE(r, a; f, g)) the counting
function (reduced counting function) of all common zeros of f − a and g − a
with the same multiplicities and by N0(r, a; f, g) (N0(r, a; f, g)) the counting
function (reduced counting function) of all common zeros of f − a and g − a
ignoring multiplicities. If

N (r, a; f) +N (r, a; g)− 2NE(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share the value a “CM”.
If

N (r, a; f) +N (r, a; g)− 2N0(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share the value a “IM”.

Definition 1.4 ([7]). Let f and g share the value a “IM” and k be a positive

integer or infinity. N
E

k)(r, a; f, g) denotes the reduced counting function of those
a-points of f whose multiplicities are equal to the corresponding a-points of g,

and both of their multiplicities are not greater than k. N
0

(k(r, a; f, g) denotes the
reduced counting function of those a-points of f which are a-points of g, and
both of their multiplicities are not less than k.

Definition 1.5 ([7]). For a ∈ C ∪ {∞}, if k is a positive integer or infinity and

N(r, a; f |≤ k)−N
E

k)(r, a; f, g) = S(r, f),

N(r, a; g |≤ k)−N
E

k)(r, a; f, g) = S(r, g),

N(r, a; f |≥ k + 1)−N
0

(k+1(r, a; f, g) = S(r, f),
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N(r, a; g |≥ k + 1)−N
0

(k+1(r, a; f, g) = S(r, g),

or if k = 0 and
N(r, a; f)−N0(r, a; f, g) = S(r, f), N(r, a; g)−N0(r, a; f, g) = S(r, g),
then we say that f and g share the value a weakly with weight k and we write
f and g share “(a, k)”.

Definition 1.6 ([2]). We denote by N(r, a; f |= p; g |= q) the reduced counting
function of common a-points of f and g with multiplicities p and q respectively.

Definition 1.7 ([2]). Let f, g share a “IM”. Also let k be a positive integer or
infinity and a ∈ C ∪ {∞}. If for p ̸= q,∑

p,q≤k

N(r, a; f |= p; g |= q) = S(r),

then we say that f and g share the value a with weight k in a relaxed manner.
Here we write f and g share (a, k)∗ to mean that f and g share a with weight k
in a relaxed manner.

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel.
We denote by H the following function:

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
, (1)

where F and G are non-constant meromorphic functions defined in the complex
plane C.

Lemma 2.1 (see [15]). Let f be a non-constant meromorphic function and p, k
be positive integers, then

Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f), (2)

Np

(
r,

1

f (k)

)
≤ kN(r, f) +Np+k

(
r,

1

f

)
+ S(r, f). (3)

Lemma 2.2 (see [11]). Let f be a non-constant meromorphic function, let

Pn(f) =
n∑
j=0

ajf
j be a polynomial in f , where an ̸= 0, an−1, ..., a1, a0 ̸= 0 are

complex constants satisfying T (r, aj) = S(r, f), then

T (r, Pn) = nT (r, f) + S(r, f).

Lemma 2.3 (see [9]). Let f and g be two non-constant meromorphic functions

such that Θ(∞, f) + Θ(∞, g) >
4

n
for all integer n ≥ 3, then fn(af + b) =

gn(ag+b) implies f = g, where a and b are two finite non-zero complex constants.
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Lemma 2.4. Let f and g be two non-constant meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer and let
n, k andm be three positive integers. Let F = (fnP (f))(k) and G = (gnP (g))(k),
where P (z) be defined as in Theorem B. If there exists two non-zero constants

b1 and b2 such that N(r,
1

F
) = N(r,

1

G− b1
) and N(r,

1

G
) = N(r,

1

F − b2
), then

n ≤ 3k + 3

s
+m when m ≤ k + 1 and n ≥ 5k + 5

s
−m when m > k + 1.

Proof. By the second fundamental theorem of Nevanlinna theory, we have

T (r, F ) ≤ N

(
r,

1

F

)
+N(r, F ) +N

(
r,

1

F − b2

)
+ S(r, F )

≤ N

(
r,

1

F

)
+N(r, F ) +N

(
r,

1

G

)
+ S(r, F ). (4)

Combining (2), (3), (4) and Lemma 2.2, we get

(n+m)T (r, f) ≤ T (r, F )−N

(
r,

1

F

)
+Nk+1

(
r,

1

fnP (f)

)
+ S(r, f)

≤ N

(
r,

1

G

)
+N(r, f) +Nk+1

(
r,

1

fnP (f)

)
+ S(r, f)

≤ Nk+1

(
r,

1

fnP (f)

)
+Nk+1

(
r,

1

gnP (g)

)
+N(r, f)

+ kN(r, g) + S(r, f) + S(r, g). (5)

When m ≤ k + 1, then from (5), we have

(n+m)T (r, f) ≤
(
k + 1

s
+m

)
T (r, f) +

(
k + 1

s
+m

)
T (r, g) +

1

s
T (r, f)

+
k

s
T (r, g) + S(r, f) + S(r, g)

≤
(
k + 2

s
+m

)
T (r, f) +

(
2k + 1

s
+m

)
T (r, g)

+ S(r, f) + S(r, g). (6)

Similarly,

(n+m)T (r, g) ≤
(
k + 2

s
+m

)
T (r, g) +

(
2k + 1

s
+m

)
T (r, f)

+ S(r, f) + S(r, g). (7)

Combining (6) and (7), we get

(n+m)(T (r, f) + T (r, g)) ≤
(
3k + 3

s
+ 2m

)
(T (r, f) + T (r, g))

+ S(r, f) + S(r, g),
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which gives n ≤ 3k + 3

s
+m.

When m > k + 1, then from (5), we have

(n+m)T (r, f) ≤
(
2(k + 1)

s

)
T (r, f) +

(
2(k + 1)

s

)
T (r, g) +

1

s
T (r, f)

+
k

s
T (r, g) + S(r, f) + S(r, g)

≤
(
2k + 3

s

)
T (r, f) +

(
3k + 2

s

)
T (r, g)

+ S(r, f) + S(r, g). (8)

Similarly,

(n+m)T (r, g) ≤
(
2k + 3

s

)
T (r, g) +

(
3k + 2

s

)
T (r, f)

+ S(r, f) + S(r, g). (9)

Combining (8) and (9), we get

(n+m)(T (r, f) + T (r, g)) ≤
(
5k + 5

s

)
(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

which gives n ≤ 5k + 5

s
−m. This proves the lemma. �

Lemma 2.5 (see [9]). Let f and g be two transcendental meromorphic functions,
whose zeros and poles are of multiplicities atleast s, where s is a positive integer.
Let P (z) be defined as in Theorem B and n, m and k be three positive integers
and α(z)( ̸≡ 0, ∞) be a small function of f and g, then (fnP (f))(k)(gnP (g))(k) ̸≡
α2 holds for k = 1 and (n + m − 2)p > 2m(1 +

1

s
), where p is the number of

distinct roots of P (z) = 0.

Lemma 2.6 (see [2]). Let F and G be non-constant meromorphic functions that
share “(1,2)” and H ̸≡ 0, then

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N2(r, F ) +N2(r,G)−

∞∑
p=3

N (p

(
r,
G

G′

)
+ S(r, F ) + S(r,G),

and the same inequality hold for T (r,G).

Lemma 2.7 (see [2]). Let F and G be non-constant meromorphic functions that
share (1, 2)∗ and H ̸≡ 0, then

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N2(r, F ) +N2(r,G)

+N(r, F ) +N

(
r,

1

F

)
−m

(
r,

1

G− 1

)
+ S(r, F ) + S(r,G),
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and the same inequality hold for T (r,G).

Lemma 2.8 (see [1]). Let F and G be non-constant meromorphic functions. If
E4)(1, F ) = E4)(1, G), E2)(1, F ) = E2)(1, G) and H ̸≡ 0, then

T (r, F ) + T (r,G) ≤ 2

{
N2

(
r,

1

F

)
+N2(r, F ) +N2

(
r,

1

G

)
+N2(r,G)

}
+ S(r, F ) + S(r,G).

Now the following question is inevitable, which is the motivation of the paper:
Is it possible to relax the nature of sharing the small function in Theorem D?
Considering this question, we prove the following results.

3. Main results

Theorem 3.1. Let f and g be two transcendental meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer and
α(z)( ̸≡ 0) be a small function of f and g. Let P (z) be defined as in Theorem

B and Θ(∞, f) + Θ(∞, g) >
4

n
. Let n, m and k be three positive integers

satisfying n − m > max

{
2 +

2m

s
,
3k + 8

s

}
when m ≤ k + 1 and n + m >

max

{
2 +

2m

s
,
5k + 12

s

}
when m > k+1. If (fnP (f))(k) and (gnP (g))(k) share

“(α(z), 2)”, then one of the following three cases hold:

(i) (fnP (f))(k)(gnP (g))(k) = α2 for k ̸= 1;

(ii) f = tg for a constant t such that td = 1, where d = GCD(n+m, ..., n+m−
i, ..., n), am−i ̸= 0 for some i = 0, 1, ...,m;

(iii) f and g satisfy the algebraic equation R(f, g) = 0, where R(f, g) = fnP (f)−
gnP (g).

Proof. Let F =
(fnP (f))(k)

α(z)
and G =

(gnP (g))(k)

α(z)
. Then F and G are tran-

scendental meromorphic functions that share “(1, 2)” except the zeros and poles
of α(z).
Suppose that H ̸≡ 0.
Using (2) and Lemma 2.2, we get

N2

(
r,

1

F

)
≤ N2

(
r,

1

(fnP (f))(k)

)
+ S(r, f)

≤ T (r, F )− (n+m)T (r, f) +Nk+2

(
r,

1

fnP (f)

)
+ S(r, f). (10)

Using (3), we deduce that

N2

(
r,

1

F

)
≤ kN(r, (fnP (f))(k)) +Nk+2

(
r,

1

fnP (f)

)
+ S(r, f)
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≤ kN(r, f) +Nk+2

(
r,

1

fnP (f)

)
+ S(r, f). (11)

From (10), we have

(n+m)T (r, f) ≤ T (r, F ) +Nk+2

(
r,

1

fnP (f)

)
−N2

(
r,

1

F

)
+ S(r, f). (12)

By using (12) and Lemma 2.6, we get

(n+m)T (r, f) ≤ N2(r, F ) +N2(r,G) +N2

(
r,

1

G

)
+Nk+2

(
r,

1

fnP (f)

)
+ S(r, f) + S(r, g). (13)

We suppose that m ≤ k + 1. Then from (13), we get

(n+m)T (r, f) ≤
(
k + 4

s
+m

)
T (r, f) +

(
2k + 4

s
+m

)
T (r, g)

+ S(r, f) + S(r, g). (14)

Similarly,

(n+m)T (r, g) ≤
(
k + 4

s
+m

)
T (r, g) +

(
2k + 4

s
+m

)
T (r, f)

+ S(r, f) + S(r, g). (15)

From (14) and (15) together, we get(
n−m− 3k + 8

s

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction to our assumption that n−m > max

{
2 +

2m

s
,
3k + 8

s

}
.

Next we assume that m > k + 1. Then from (13), we get

(n+m)T (r, f) ≤
(
2k + 6

s

)
T (r, f) +

(
3k + 6

s

)
T (r, g)

+ S(r, f) + S(r, g). (16)

Similarly,

(n+m)T (r, g) ≤
(
2k + 6

s

)
T (r, g) +

(
3k + 6

s

)
T (r, f)

+ S(r, f) + S(r, g). (17)

From (16) and (17) together, we get(
n+m− 5k + 12

s

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),
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a contradiction to our assumption that n+m > max

{
2 +

2m

s
,
5k + 12

s

}
.

Therefore, we must have H = 0. Then(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
= 0.

Integrating both sides twice, we get

1

F − 1
=

a

G− 1
+ b, (18)

where a(̸= 0) and b are constants. From (18), it is clear that F and G share 1

CM and hence they share “(1, 2)”. Therefore, n−m > max

{
2 +

2m

s
,
3k + 8

s

}
when m ≤ k + 1 and n +m > max

{
2 +

2m

s
,
5k + 12

s

}
when m > k + 1. We

now discuss the following cases separately.
Case 1. Let b ̸= 0, and a = b. Then from (18), we get

1

F − 1
=

bG

G− 1
. (19)

If b = −1, then from (19), we obtain FG = 1.
Then (fnP (f))(k)(gnP (g))(k) = α2.
This is a contradiction when k = 1 by Lemma 2.5.

If b ̸= −1, from (19), we have
1

F
=

bG

(1 + b)G− 1
, hence N

(
r,

1

G− 1/(1 + b)

)
=

N(r,
1

F
).

Using (2), (3), Lemma 2.2 and the second fundamental theorem of Nevanlinna,
we deduce that

T (r,G) ≤ N

(
r,

1

G

)
+N

(
r,

1

G− 1/(1 + b)

)
+N(r,G) + S(r,G)

≤ N

(
r,

1

G

)
+N

(
r,

1

F

)
+N(r,G) + S(r,G).

Hence,

(n+m)T (r, g) ≤ N(r,
1

F
) +N(r,G) +Nk+1

(
r,

1

gnP (g)

)
+ S(r, g)

≤ kN(r, f) +Nk+1

(
r,

1

fnP (f)

)
+N(r, g) +Nk+1

(
r,

1

gnP (g)

)
+ S(r, g). (20)

If m ≤ k + 1, then from (20), we get

(n+m)T (r, g) ≤
(
2k + 1

s
+m

)
T (r, f) +

(
k + 2

s
+m

)
T (r, g)

+ S(r, f) + S(r, g). (21)
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Similarly,

(n+m)T (r, f) ≤
(
2k + 1

s
+m

)
T (r, g) +

(
k + 2

s
+m

)
T (r, f)

+ S(r, f) + S(r, g). (22)

From (21) and (22) together, we get(
n−m− 3k + 3

s

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction since n−m >
3k + 8

s
.

Similarly, if m > k + 1, then from (20), we get(
n+m− 5k + 5

s

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction since n+m >
5k + 12

s
.

Case 2. Let b ̸= 0 and a ̸= b. Then from (18), we have F =
(b+ 1)G− (b− a+ 1)

bG+ (a− b)
and hence

N

r, 1

G− b− a+ 1

b+ 1

 = N

(
r,

1

F

)
.

Proceeding in a manner similar to case 1, we get a contradiction.

Case 3. Let b = 0 and a ̸= 0. Then from (18), we have F =
G+ a− 1

a
and G = aF − (a− 1).
If a ̸= 1, it follows that

N

r, 1

F − a− 1

a

 = N

(
r,

1

G

)
and N

(
r,

1

G− (1− a)

)
= N(r,

1

F
).

By applying Lemma 2.4, we arrive at a contradiction. Therefore a = 1 and hence
F = G.
Hence, (fnP (f))(k) = (gnP (g))(k).
By integration, we get
(fnP (f))(k−1) = (gnP (g))(k−1) + ck−1, where ck−1 is a constant. If ck−1 ̸= 0 ,
by Lemma 2.4, it follows that

n−m ≤ 3k

s
<

3k + 3

s
when m ≤ k + 1

and n+m ≤ 5k

s
<

5k + 5

s
when m > k + 1, a contradiction to the hypothesis.
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Hence, ck−1 = 0.
Repeating the same process k − 1 times, we get

fnP (f) = gnP (g). (23)

If m = 1 in (23), then we get f = g by using Lemma 2.3.

Suppose that m ≥ 2 and b =
f

g
.

If b is a constant, then substituting f = bh in (23), we get

amg
n+m(bn+m − 1) + am−1g

n+m−1(bn+m−1 − 1) + ...+ a0g
n(bn − 1) = 0,

which implies bd = 1, where d = GCD(n+m, ..., n+m− i, ..., n). Hence, f = tg
for a constant t such that td = 1, d = GCD(n + m, ..., n + m − i, ..., n),
i = 0, 1, ...,m.
If b is not constant, then from (23), we find that f and g satisfy the algebraic
equation R(f, g) = 0, where R(f, g) = fnP (f)− gnP (g).
This completes the proof of Theorem 3.1. �

Remark 3.1. When m = 0, s = 1 and k = 1 in Theorem 3.1, we get Theorem
A.

Remark 3.2. When s = 1 in Theorem 3.1, we get Theorem B.

Theorem 3.2. Let f and g be two transcendental meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer and
α(z)( ̸≡ 0) be a small function of f and g. Let P (z) be defined as in Theorem

B and Θ(∞, f) + Θ(∞, g) >
4

n
. Let n, m and k be three positive integers

satisfying n − 2m > max

{
2 +

2m

s
,
5k + 10

s

}
when m ≤ k + 1 and n + m >

max

{
2 +

2m

s
,
8k + 15

s

}
when m > k+1. If (fnP (f))(k) and (gnP (g))(k) share

(α(z), 2)∗, then conclusions of Theorem 3.1 hold.

Proof. Let F and G be defined as in Theorem 3.1. Then F and G are transcen-
dental meromorphic functions that share (1, 2)∗ except the zeros and poles of
α(z).
We suppose that H ̸≡ 0.
Using (3) and Lemma 2.7 in (10), we get

(n+m)T (r, f) ≤ N2

(
r,

1

G

)
+N2(r, F ) +N2(r,G) +N(r,

1

F
) +N(r, F )

+Nk+2

(
r,

1

fnP (f)

)
+ S(r, f) + S(r, g). (24)

Suppose that m ≤ k + 1, then from (24), we get

(n+m)T (r, f) ≤ Nk+2

(
r,

1

gnP (g)

)
+ kN(r, g) + 2N(r, f) + 2N(r, g)
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+Nk+1

(
r,

1

fnP (f)

)
+ kN(r, f) +N(r, f)

+Nk+2

(
r,

1

fnP (f)

)
+ S(r, f) + S(r, g)

≤
(
3k + 6

s
+ 2m

)
T (r, f) +

(
2k + 4

s
+m

)
T (r, g)

+ S(r, f) + S(r, g).

Similarly,

(n+m)T (r, g) ≤
(
3k + 6

s
+ 2m

)
T (r, g) +

(
2k + 4

s
+m

)
T (r, f)

+ S(r, f) + S(r, g).

Hence, (
n− 2m− 5k + 10

s

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction to our assumption that n− 2m > max

{
2 +

2m

s
,
5k + 10

s

}
.

Similarly, if m > k + 1, then from (24), we get(
n+m− 8k + 15

s

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction to the fact that n+m > max

{
2 +

2m

s
,
8k + 15

s

}
.

Thus, H ≡ 0 and rest of the theorem follows from the proof of Theorem 3.1.
This completes the proof of Theorem 3.2. �

Theorem 3.3. Let f and g be two transcendental meromorphic functions, whose
zeros and poles are of multiplicities atleast s, where s is a positive integer and
α(z)( ̸≡ 0) be a small function of f and g. Let P (z) be defined as in Theo-

rem B and Θ(∞, f) + Θ(∞, g) >
4

n
. Let n, m and k be three positive inte-

gers satisfying n − m > max

{
2 +

2m

s
,
3k + 8

s

}
when m ≤ k + 1 and n +

m > max

{
2 +

2m

s
,
5k + 12

s

}
when m > k + 1. If E4)(α(z), (f

nP (f))(k)) =

E4)(α(z), (g
nP (g))(k)) and E2)(α(z), (f

nP (f))(k)) = E2)(α(z), (g
nP (g))(k)), then

the conclusions of Theorem 3.1 hold.

Proof. Let F and G be defined as in Theorem 3.1. Then F and G are transcen-
dental meromorphic functions such that E4)(1, F ) = E4)(1, G) and E2)(1, F ) =

E2)(1, G) except for the zeros and poles of α(z). Let H ̸≡ 0.
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Then by using (3), (10) and Lemma 2.8, we get

(n+m)(T (r, f) + T (r, g)) ≤ 2N2(r, F ) + 2N2(r,G) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+Nk+2

(
r,

1

fnP (f)

)
+Nk+2

(
r,

1

gnP (g)

)
+ S(r, F )

+ S(r,G). (25)

Suppose that m ≤ k + 1, then from (25), we get

(n+m)(T (r, f) + T (r, g)) ≤
(
3k + 8

s
+ 2m

)
(T (r, f)

+ T (r, g)) + S(r, f) + S(r, g). (26)

Hence, (
n−m− 3k + 8

s

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction to our assumption that n−m > max

{
2 +

2m

s
,
3k + 8

s

}
.

Similarly, if m > k + 1, then from (25), we get(
n+m− 5k + 12

s

)
(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

a contradiction to the fact that n+m > max

{
2 +

2m

s
,
5k + 12

s

}
.

Thus, H ≡ 0 and rest of the theorem follows from the proof of Theorem 3.1.
This completes the proof of Theorem 3.3. �
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