UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENTIAL POLYNOMIALS WITH REGARD TO MULTIPLICITY SHARING A SMALL FUNCTION

HARINA P. WAGHAMORE* AND SANGEETHA ANAND

Abstract

In this paper, using the notion of weakly weighted sharing and relaxed weighted sharing, we investigate the uniqueness problems of certain differential polynomials sharing a small function. The results obtained in this paper extend the theorem obtained by Jianren Long [9].

AMS Mathematics Subject Classification : Primary 30D35.
Key words and phrases : Uniqueness, meromorphic functions, differential polynomials, multiplicity, weighted sharing.

1. Introduction

In this paper, we use the standard notations of Nevanlinna value distribution theory (see $[4,13,14]$). Let f and g be two non-constant meromorphic functions defined in the open complex plane \mathbb{C}. If for some $a \in \mathbb{C} \cup\{\infty\}, f-a$ and $g-a$ have the same set of zeros with the same multiplicities, we say that f and g share the value $a \mathrm{CM}$ (counting multiplicities). If we do not consider multiplicities, then f and g are said to share the value a IM (ignoring multiplicities).

Let k be a positive integer or infinity. Set $E(a, f)=\{z: f(z)-a=0\}$, where a zero with multiplicity k is counted k times. If the zeros are counted only once, then we denote the set by $\bar{E}(a, f)$. If $E(a, f)=E(a, g)$, then we say that f and g share the value $a \mathrm{CM}$; If $\bar{E}(a, f)=\bar{E}(a, g)$, then we say that f and g share the value $a \mathrm{IM}$. We denote by $E_{k)}(a, f)$ the set of all a-points of f with multiplicities not exceeding k, where an a-point is counted according to its multiplicity. Also, we denote by $\bar{E}_{k)}(a, f)$ the set of distinct a-points of f with multiplicities not exceeding k.

[^0]In 1997, Yang and Hua [12] obtained the following uniqueness theorem.
Theorem A. Let f and g be two non-constant entire (meromorphic) functions, and let $n \geq 6(n \geq 11)$ be a positive integer. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share 1 CM , then either $f(z)=c_{1} e^{c z}, g(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are three constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f=t g$ for a constant t such that $t^{n+1}=1$.

In 2008, Zhang et al. [16] considered some general differential polynomials and obtained the following result.
Theorem B. Let f and g be two non-constant meromorphic functions, and $h(\not \equiv 0, \infty)$ be a small function with respect to f and g. Let n, k and m be three positive integers with $n>3 k+m+8$ and $P(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\ldots+a_{1} z+a_{0}$, where $a_{0} \neq 0, a_{1}, \ldots, a_{m-1}, a_{m} \neq 0$ are complex constants. If $\left(f^{n} P(f)\right)^{(k)}$ and $\left(g^{n} P(g)\right)^{(k)}$ share $h(z) \mathrm{CM}$, then one of the following three cases hold:
(i) $f=t g$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m, \ldots, n+m-$ $i, \ldots, n), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$;
(ii) f and g satisfying the algebraic function equation $R(f, g)=0$, where $R\left(w_{1}, w_{2}\right)$ $=w_{1}^{n}\left(a_{m} w_{1}^{m}+a_{m-1} w_{1}^{m-1}+\ldots+a_{0}\right)-w_{2}^{n}\left(a_{m} w_{2}^{m}+a_{m-1} w_{2}^{m-1}+\ldots+a_{0}\right)$;
(iii) $\left(f^{n} P(f)\right)^{(k)}\left(g^{n} P(g)\right)^{(k)}=h^{2}$.

In 2013, Bhoosnurmath and Kabbur [3] extended Theorem B and proved the following uniqueness theorem by using the concept of multiplicity.

Theorem C. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n and m be positive integers with $(n-m-1) s \geq \max \{10,2 m+3\}$ and let $P(z)$ be defined as in Theorem B. If $f^{n} P(f) f^{\prime}$ and $g^{n} P(g) g^{\prime}$ share 1 CM, then either $f=t g$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m+1, \ldots, n+$ $m+1-i, \ldots, n+1), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$ or f and g satisfy the algebraic function equation $R(f, g)=0$, where $R(x, y)=x^{n+1}\left(\frac{a_{m}}{n+m+1} x^{m}+\right.$ $\left.\frac{a_{m-1}}{n+m} x^{m-1}+\ldots+\frac{a_{0}}{n+1}\right)-y^{n+1}\left(\frac{a_{m}}{n+m+1} y^{m}+\frac{a_{m-1}}{n+m} y^{m-1}+\ldots+\frac{a_{0}}{n+1}\right)$.

Recently, J. R. Long [9] generalised Theorem C by proving the following result.
Theorem D. Let f and g be two transcendental meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n and m be two positive integers with $n-m>\max \left\{2+\frac{2 m}{s}, \frac{(n+2)(k+4)}{n s}\right\}$, $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n}$ and let $P(z)$ be defined as in Theorem B. If $\left(f^{n} P(f)\right)^{(k)}$ and $\left(g^{n} P(g)\right)^{(k)}$ share $h(z) \mathrm{CM}$, where $h(z)(\not \equiv 0, \infty)$ is a small function of f and g, then one of the following three cases hold:
(i) $\left(f^{n} P(f)\right)^{(k)}\left(g^{n} P(g)\right)^{(k)}=h^{2}$;
(ii) $f=t g$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m, \ldots, n+m-$
$i, \ldots, n), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$;
(iii) f and g satisfy the algebraic equation $R(f, g)=0$, where $R(f, g)=f^{n} P(f)-$ $g^{n} P(g)$.
The possibility $\left(f^{n} P(f)\right)^{(k)}\left(g^{n} P(g)\right)^{(k)}=h^{2}$ does not occur for $k=1$.
To state our main results of this article, we need the following definitions.
Definition $1.1([6])$. Let $a \in \mathbb{C} \cup\{\infty\}$. We denote by $N(r, a ; f \mid=1)$ the counting function of simple a-points of f. For a positive integer k we denote by $N(r, a ; f \mid \leq k)$ the counting function of those a-points of f (counted with proper multiplicities) whose multiplicities are not greater than k. By $\bar{N}(r, a ; f \mid \leq k)$ we denote the corresponding reduced counting function. Analogously, we can define $N(r, a ; f \mid \geq k)$ and $\bar{N}(r, a ; f \mid \geq k)$.
Definition 1.2 ([5]). Let k be a positive integer or infinity. We denote by $N_{k}(r, a ; f)$ the counting function of a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and k times if $m>k$. Then

$$
N_{k}(r, a ; f)=\bar{N}(r, a ; f)+\bar{N}(r, a ; f \mid \geq 2)+\cdots+\bar{N}(r, a ; f \mid \geq k)
$$

Clearly $N_{1}(r, a ; f)=\bar{N}(r, a ; f)$.
Definition $1.3([10])$. We denote by $N_{E}(r, a ; f, g)\left(\bar{N}_{E}(r, a ; f, g)\right)$ the counting function (reduced counting function) of all common zeros of $f-a$ and $g-a$ with the same multiplicities and by $N_{0}(r, a ; f, g)\left(\bar{N}_{0}(r, a ; f, g)\right)$ the counting function (reduced counting function) of all common zeros of $f-a$ and $g-a$ ignoring multiplicities. If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{E}(r, a ; f, g)=S(r, f)+S(r, g)
$$

then we say that f and g share the value a "CM". If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{0}(r, a ; f, g)=S(r, f)+S(r, g)
$$

then we say that f and g share the value a "IM".
Definition 1.4 ([7]). Let f and g share the value a "IM" and k be a positive integer or infinity. $\bar{N}_{k)}^{E}(r, a ; f, g)$ denotes the reduced counting function of those a-points of f whose multiplicities are equal to the corresponding a-points of g, and both of their multiplicities are not greater than $k . \bar{N}_{(k}^{0}(r, a ; f, g)$ denotes the reduced counting function of those a-points of f which are a-points of g, and both of their multiplicities are not less than k.
Definition $1.5([7])$. For $a \in \mathbb{C} \cup\{\infty\}$, if k is a positive integer or infinity and

$$
\begin{aligned}
& \bar{N}(r, a ; f \mid \leq k)-\bar{N}_{k)}^{E}(r, a ; f, g)=S(r, f) \\
& \bar{N}(r, a ; g \mid \leq k)-\bar{N}_{k)}^{E}(r, a ; f, g)=S(r, g) \\
& \bar{N}(r, a ; f \mid \geq k+1)-\bar{N}_{(k+1}^{0}(r, a ; f, g)=S(r, f)
\end{aligned}
$$

$$
\bar{N}(r, a ; g \mid \geq k+1)-\bar{N}_{(k+1}^{0}(r, a ; f, g)=S(r, g)
$$

or if $k=0$ and
$\bar{N}(r, a ; f)-\bar{N}_{0}(r, a ; f, g)=S(r, f), \quad \bar{N}(r, a ; g)-\bar{N}_{0}(r, a ; f, g)=S(r, g)$, then we say that f and g share the value a weakly with weight k and we write f and g share " (a, k) ".
Definition 1.6 ([2]). We denote by $\bar{N}(r, a ; f|=p ; g|=q)$ the reduced counting function of common a-points of f and g with multiplicities p and q respectively.
Definition 1.7 ([2]). Let f, g share a "IM". Also let k be a positive integer or infinity and $a \in \mathbb{C} \cup\{\infty\}$. If for $p \neq q$,

$$
\sum_{p, q \leq k} \bar{N}(r, a ; f|=p ; g|=q)=S(r)
$$

then we say that f and g share the value a with weight k in a relaxed manner. Here we write f and g share $(a, k)^{*}$ to mean that f and g share a with weight k in a relaxed manner.

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel. We denote by H the following function:

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{1}
\end{equation*}
$$

where F and G are non-constant meromorphic functions defined in the complex plane \mathbb{C}.

Lemma 2.1 (see [15]). Let f be a non-constant meromorphic function and p, k be positive integers, then

$$
\begin{align*}
& N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) \tag{2}\\
& N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq k \bar{N}(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f) \tag{3}
\end{align*}
$$

Lemma 2.2 (see [11]). Let f be a non-constant meromorphic function, let $P_{n}(f)=\sum_{j=0}^{n} a_{j} f^{j}$ be a polynomial in f, where $a_{n} \neq 0, a_{n-1}, \ldots, a_{1}, a_{0} \neq 0$ are complex constants satisfying $T\left(r, a_{j}\right)=S(r, f)$, then

$$
T\left(r, P_{n}\right)=n T(r, f)+S(r, f)
$$

Lemma 2.3 (see [9]). Let f and g be two non-constant meromorphic functions such that $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n}$ for all integer $n \geq 3$, then $f^{n}(a f+b)=$ $g^{n}(a g+b)$ implies $f=g$, where a and b are two finite non-zero complex constants.

Lemma 2.4. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer and let n, k and m be three positive integers. Let $F=\left(f^{n} P(f)\right)^{(k)}$ and $G=\left(g^{n} P(g)\right)^{(k)}$, where $P(z)$ be defined as in Theorem B. If there exists two non-zero constants b_{1} and b_{2} such that $\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}\left(r, \frac{1}{G-b_{1}}\right)$ and $\bar{N}\left(r, \frac{1}{G}\right)=\bar{N}\left(r, \frac{1}{F-b_{2}}\right)$, then $n \leq \frac{3 k+3}{s}+m$ when $m \leq k+1$ and $n \geq \frac{5 k+5}{s}-m$ when $m>k+1$.
Proof. By the second fundamental theorem of Nevanlinna theory, we have

$$
\begin{align*}
T(r, F) & \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F-b_{2}}\right)+S(r, F) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{G}\right)+S(r, F) \tag{4}
\end{align*}
$$

Combining (2), (3), (4) and Lemma 2.2, we get

$$
\begin{align*}
(n+m) T(r, f) & \leq T(r, F)-\bar{N}\left(r, \frac{1}{F}\right)+N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)+S(r, f) \\
& \leq N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)+N_{k+1}\left(r, \frac{1}{g^{n} P(g)}\right)+\bar{N}(r, f) \\
& +k \bar{N}(r, g)+S(r, f)+S(r, g) \tag{5}
\end{align*}
$$

When $m \leq k+1$, then from (5), we have

$$
\begin{align*}
(n+m) T(r, f) \leq & \left(\frac{k+1}{s}+m\right) T(r, f)+\left(\frac{k+1}{s}+m\right) T(r, g)+\frac{1}{s} T(r, f) \\
& +\frac{k}{s} T(r, g)+S(r, f)+S(r, g) \\
\leq & \left(\frac{k+2}{s}+m\right) T(r, f)+\left(\frac{2 k+1}{s}+m\right) T(r, g) \\
& +S(r, f)+S(r, g) \tag{6}
\end{align*}
$$

Similarly,

$$
\begin{gather*}
(n+m) T(r, g) \leq\left(\frac{k+2}{s}+m\right) T(r, g)+\left(\frac{2 k+1}{s}+m\right) T(r, f) \\
+S(r, f)+S(r, g) \tag{7}
\end{gather*}
$$

Combining (6) and (7), we get

$$
\begin{gathered}
(n+m)(T(r, f)+T(r, g)) \leq\left(\frac{3 k+3}{s}+2 m\right)(T(r, f)+T(r, g)) \\
+S(r, f)+S(r, g)
\end{gathered}
$$

which gives $n \leq \frac{3 k+3}{s}+m$.
When $m>k+1$, then from (5), we have

$$
\begin{align*}
(n+m) T(r, f) \leq & \left(\frac{2(k+1)}{s}\right) T(r, f)+\left(\frac{2(k+1)}{s}\right) T(r, g)+\frac{1}{s} T(r, f) \\
& +\frac{k}{s} T(r, g)+S(r, f)+S(r, g) \\
\leq & \left(\frac{2 k+3}{s}\right) T(r, f)+\left(\frac{3 k+2}{s}\right) T(r, g) \\
& +S(r, f)+S(r, g) \tag{8}
\end{align*}
$$

Similarly,

$$
\begin{gather*}
(n+m) T(r, g) \leq\left(\frac{2 k+3}{s}\right) T(r, g)+\left(\frac{3 k+2}{s}\right) T(r, f) \\
+S(r, f)+S(r, g) \tag{9}
\end{gather*}
$$

Combining (8) and (9), we get

$$
(n+m)(T(r, f)+T(r, g)) \leq\left(\frac{5 k+5}{s}\right)(T(r, f)+T(r, g))+S(r, f)+S(r, g)
$$

which gives $n \leq \frac{5 k+5}{s}-m$. This proves the lemma.
Lemma 2.5 (see [9]). Let f and g be two transcendental meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $P(z)$ be defined as in Theorem B and n, m and k be three positive integers and $\alpha(z)(\not \equiv 0, \infty)$ be a small function of f and g, then $\left(f^{n} P(f)\right)^{(k)}\left(g^{n} P(g)\right)^{(k)} \not \equiv$ α^{2} holds for $k=1$ and $(n+m-2) p>2 m\left(1+\frac{1}{s}\right)$, where p is the number of distinct roots of $P(z)=0$.

Lemma 2.6 (see [2]). Let F and G be non-constant meromorphic functions that share " $(1,2)$ " and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F) & \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)-\sum_{p=3}^{\infty} \bar{N}_{(p}\left(r, \frac{G}{G^{\prime}}\right) \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

and the same inequality hold for $T(r, G)$.
Lemma 2.7 (see [2]). Let F and G be non-constant meromorphic functions that share $(1,2)^{*}$ and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F) & \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G) \\
& +\bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)-m\left(r, \frac{1}{G-1}\right)+S(r, F)+S(r, G)
\end{aligned}
$$

and the same inequality hold for $T(r, G)$.
Lemma 2.8 (see [1]). Let F and G be non-constant meromorphic functions. If $\bar{E}_{4)}(1, F)=\bar{E}_{4)}(1, G), \bar{E}_{2)}(1, F)=\bar{E}_{2)}(1, G)$ and $H \not \equiv 0$, then

$$
\begin{aligned}
T(r, F)+T(r, G) & \leq 2\left\{N_{2}\left(r, \frac{1}{F}\right)+N_{2}(r, F)+N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, G)\right\} \\
& +S(r, F)+S(r, G)
\end{aligned}
$$

Now the following question is inevitable, which is the motivation of the paper: Is it possible to relax the nature of sharing the small function in Theorem D? Considering this question, we prove the following results.

3. Main results

Theorem 3.1. Let f and g be two transcendental meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer and $\alpha(z)(\not \equiv 0)$ be a small function of f and g. Let $P(z)$ be defined as in Theorem B and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n}$. Let n, m and k be three positive integers satisfying $n-m>\max \left\{2+\frac{2 m}{s}, \frac{3 k+8}{s}\right\}$ when $m \leq k+1$ and $n+m>$ $\max \left\{2+\frac{2 m}{s}, \frac{5 k+12}{s}\right\}$ when $m>k+1$. If $\left(f^{n} P(f)\right)^{(k)}$ and $\left(g^{n} P(g)\right)^{(k)}$ share " $(\alpha(z), 2)$ ", then one of the following three cases hold:
(i) $\left(f^{n} P(f)\right)^{(k)}\left(g^{n} P(g)\right)^{(k)}=\alpha^{2}$ for $k \neq 1$;
(ii) $f=t g$ for a constant t such that $t^{d}=1$, where $d=G C D(n+m, \ldots, n+m-$ $i, \ldots, n), a_{m-i} \neq 0$ for some $i=0,1, \ldots, m$;
(iii) f and g satisfy the algebraic equation $R(f, g)=0$, where $R(f, g)=f^{n} P(f)-$ $g^{n} P(g)$.

Proof. Let $F=\frac{\left(f^{n} P(f)\right)^{(k)}}{\alpha(z)}$ and $G=\frac{\left(g^{n} P(g)\right)^{(k)}}{\alpha(z)}$. Then F and G are transcendental meromorphic functions that share " $(1,2)$ " except the zeros and poles of $\alpha(z)$.
Suppose that $H \not \equiv 0$.
Using (2) and Lemma 2.2, we get

$$
\begin{align*}
N_{2}\left(r, \frac{1}{F}\right) & \leq N_{2}\left(r, \frac{1}{\left(f^{n} P(f)\right)^{(k)}}\right)+S(r, f) \\
& \leq T(r, F)-(n+m) T(r, f)+N_{k+2}\left(r, \frac{1}{f^{n} P(f)}\right)+S(r, f) \tag{10}
\end{align*}
$$

Using (3), we deduce that

$$
N_{2}\left(r, \frac{1}{F}\right) \leq k \bar{N}\left(r,\left(f^{n} P(f)\right)^{(k)}\right)+N_{k+2}\left(r, \frac{1}{f^{n} P(f)}\right)+S(r, f)
$$

$$
\begin{equation*}
\leq k \bar{N}(r, f)+N_{k+2}\left(r, \frac{1}{f^{n} P(f)}\right)+S(r, f) \tag{11}
\end{equation*}
$$

From (10), we have

$$
\begin{equation*}
(n+m) T(r, f) \leq T(r, F)+N_{k+2}\left(r, \frac{1}{f^{n} P(f)}\right)-N_{2}\left(r, \frac{1}{F}\right)+S(r, f) \tag{12}
\end{equation*}
$$

By using (12) and Lemma 2.6, we get

$$
\begin{align*}
(n+m) T(r, f) & \leq N_{2}(r, F)+N_{2}(r, G)+N_{2}\left(r, \frac{1}{G}\right)+N_{k+2}\left(r, \frac{1}{f^{n} P(f)}\right) \\
& +S(r, f)+S(r, g) \tag{13}
\end{align*}
$$

We suppose that $m \leq k+1$. Then from (13), we get

$$
\begin{align*}
(n+m) T(r, f) & \leq\left(\frac{k+4}{s}+m\right) T(r, f)+\left(\frac{2 k+4}{s}+m\right) T(r, g) \\
& +S(r, f)+S(r, g) \tag{14}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m) T(r, g) & \leq\left(\frac{k+4}{s}+m\right) T(r, g)+\left(\frac{2 k+4}{s}+m\right) T(r, f) \\
& +S(r, f)+S(r, g) \tag{15}
\end{align*}
$$

From (14) and (15) together, we get

$$
\left(n-m-\frac{3 k+8}{s}\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

a contradiction to our assumption that $n-m>\max \left\{2+\frac{2 m}{s}, \frac{3 k+8}{s}\right\}$.
Next we assume that $m>k+1$. Then from (13), we get

$$
\begin{align*}
(n+m) T(r, f) & \leq\left(\frac{2 k+6}{s}\right) T(r, f)+\left(\frac{3 k+6}{s}\right) T(r, g) \\
& +S(r, f)+S(r, g) \tag{16}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m) T(r, g) & \leq\left(\frac{2 k+6}{s}\right) T(r, g)+\left(\frac{3 k+6}{s}\right) T(r, f) \\
& +S(r, f)+S(r, g) \tag{17}
\end{align*}
$$

From (16) and (17) together, we get

$$
\left(n+m-\frac{5 k+12}{s}\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

a contradiction to our assumption that $n+m>\max \left\{2+\frac{2 m}{s}, \frac{5 k+12}{s}\right\}$.
Therefore, we must have $H=0$. Then

$$
\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)=0 .
$$

Integrating both sides twice, we get

$$
\begin{equation*}
\frac{1}{F-1}=\frac{a}{G-1}+b, \tag{18}
\end{equation*}
$$

where $a(\neq 0)$ and b are constants. From (18), it is clear that F and G share 1 CM and hence they share " $(1,2)$ ". Therefore, $n-m>\max \left\{2+\frac{2 m}{s}, \frac{3 k+8}{s}\right\}$ when $m \leq k+1$ and $n+m>\max \left\{2+\frac{2 m}{s}, \frac{5 k+12}{s}\right\}$ when $m>k+1$. We now discuss the following cases separately.
Case 1. Let $b \neq 0$, and $a=b$. Then from (18), we get

$$
\begin{equation*}
\frac{1}{F-1}=\frac{b G}{G-1} . \tag{19}
\end{equation*}
$$

If $b=-1$, then from (19), we obtain $F G=1$.
Then $\left(f^{n} P(f)\right)^{(k)}\left(g^{n} P(g)\right)^{(k)}=\alpha^{2}$.
This is a contradiction when $k=1$ by Lemma 2.5.
If $b \neq-1$, from (19), we have $\frac{1}{F}=\frac{b G}{(1+b) G-1}$, hence $\bar{N}\left(r, \frac{1}{G-1 /(1+b)}\right)=$ $\bar{N}\left(r, \frac{1}{F}\right)$.
Using (2), (3), Lemma 2.2 and the second fundamental theorem of Nevanlinna, we deduce that

$$
\begin{aligned}
T(r, G) & \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{G-1 /(1+b)}\right)+\bar{N}(r, G)+S(r, G) \\
& \leq \bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+S(r, G)
\end{aligned}
$$

Hence,

$$
\begin{align*}
(n+m) T(r, g) & \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+N_{k+1}\left(r, \frac{1}{g^{n} P(g)}\right)+S(r, g) \\
& \leq k \bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)+\bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{g^{n} P(g)}\right) \\
& +S(r, g) \tag{20}
\end{align*}
$$

If $m \leq k+1$, then from (20), we get

$$
\begin{align*}
(n+m) T(r, g) & \leq\left(\frac{2 k+1}{s}+m\right) T(r, f)+\left(\frac{k+2}{s}+m\right) T(r, g) \\
& +S(r, f)+S(r, g) \tag{21}
\end{align*}
$$

Similarly,

$$
\begin{align*}
(n+m) T(r, f) & \leq\left(\frac{2 k+1}{s}+m\right) T(r, g)+\left(\frac{k+2}{s}+m\right) T(r, f) \\
& +S(r, f)+S(r, g) \tag{22}
\end{align*}
$$

From (21) and (22) together, we get

$$
\left(n-m-\frac{3 k+3}{s}\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

a contradiction since $n-m>\frac{3 k+8}{s}$.
Similarly, if $m>k+1$, then from (20), we get

$$
\left(n+m-\frac{5 k+5}{s}\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

a contradiction since $n+m>\frac{5 k+12}{s}$.
Case 2. Let $b \neq 0$ and $a \neq b$. Then from (18), we have $F=\frac{(b+1) G-(b-a+1)}{b G+(a-b)}$ and hence

$$
\bar{N}\left(r, \frac{1}{G-\frac{b-a+1}{b+1}}\right)=\bar{N}\left(r, \frac{1}{F}\right)
$$

Proceeding in a manner similar to case 1 , we get a contradiction.
Case 3. Let $b=0$ and $a \neq 0$. Then from (18), we have $F=\frac{G+a-1}{a}$ and $G=a F-(a-1)$.
If $a \neq 1$, it follows that

$$
\bar{N}\left(r, \frac{1}{F-\frac{a-1}{a}}\right)=\bar{N}\left(r, \frac{1}{G}\right) \text { and } \bar{N}\left(r, \frac{1}{G-(1-a)}\right)=\bar{N}\left(r, \frac{1}{F}\right)
$$

By applying Lemma 2.4, we arrive at a contradiction. Therefore $a=1$ and hence $F=G$.
Hence, $\left(f^{n} P(f)\right)^{(k)}=\left(g^{n} P(g)\right)^{(k)}$.
By integration, we get
$\left(f^{n} P(f)\right)^{(k-1)}=\left(g^{n} P(g)\right)^{(k-1)}+c_{k-1}$, where c_{k-1} is a constant. If $c_{k-1} \neq 0$, by Lemma 2.4, it follows that
$n-m \leq \frac{3 k}{s}<\frac{3 k+3}{s}$ when $m \leq k+1$
and $n+m \leq \frac{5 k}{s}<\frac{5 k+5}{s}$ when $m>k+1$, a contradiction to the hypothesis.

Hence, $c_{k-1}=0$.
Repeating the same process $k-1$ times, we get

$$
\begin{equation*}
f^{n} P(f)=g^{n} P(g) \tag{23}
\end{equation*}
$$

If $m=1$ in (23), then we get $f=g$ by using Lemma 2.3.
Suppose that $m \geq 2$ and $b=\frac{f}{g}$.
If b is a constant, then substituting $f=b h$ in (23), we get

$$
a_{m} g^{n+m}\left(b^{n+m}-1\right)+a_{m-1} g^{n+m-1}\left(b^{n+m-1}-1\right)+\ldots+a_{0} g^{n}\left(b^{n}-1\right)=0
$$

which implies $b^{d}=1$, where $d=G C D(n+m, \ldots, n+m-i, \ldots, n)$. Hence, $f=t g$ for a constant t such that $t^{d}=1, d=G C D(n+m, \ldots, n+m-i, \ldots, n)$, $i=0,1, \ldots, m$.
If b is not constant, then from (23), we find that f and g satisfy the algebraic equation $R(f, g)=0$, where $R(f, g)=f^{n} P(f)-g^{n} P(g)$.
This completes the proof of Theorem 3.1.
Remark 3.1. When $m=0, s=1$ and $k=1$ in Theorem 3.1, we get Theorem A.

Remark 3.2. When $s=1$ in Theorem 3.1, we get Theorem B.
Theorem 3.2. Let f and g be two transcendental meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer and $\alpha(z)(\equiv \equiv 0)$ be a small function of f and g. Let $P(z)$ be defined as in Theorem B and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n}$. Let n, m and k be three positive integers satisfying $n-2 m>\max \left\{2+\frac{2 m}{s}, \frac{5 k+10}{s}\right\}$ when $m \leq k+1$ and $n+m>$ $\max \left\{2+\frac{2 m}{s}, \frac{8 k+15}{s}\right\}$ when $m>k+1$. If $\left(f^{n} P(f)\right)^{(k)}$ and $\left(g^{n} P(g)\right)^{(k)}$ share $(\alpha(z), 2)^{*}$, then conclusions of Theorem 3.1 hold.

Proof. Let F and G be defined as in Theorem 3.1. Then F and G are transcendental meromorphic functions that share $(1,2)^{*}$ except the zeros and poles of $\alpha(z)$.
We suppose that $H \not \equiv 0$.
Using (3) and Lemma 2.7 in (10), we get

$$
\begin{align*}
(n+m) T(r, f) & \leq N_{2}\left(r, \frac{1}{G}\right)+N_{2}(r, F)+N_{2}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F) \\
& +N_{k+2}\left(r, \frac{1}{f^{n} P(f)}\right)+S(r, f)+S(r, g) \tag{24}
\end{align*}
$$

Suppose that $m \leq k+1$, then from (24), we get

$$
(n+m) T(r, f) \leq N_{k+2}\left(r, \frac{1}{g^{n} P(g)}\right)+k \bar{N}(r, g)+2 \bar{N}(r, f)+2 \bar{N}(r, g)
$$

$$
\begin{aligned}
& +N_{k+1}\left(r, \frac{1}{f^{n} P(f)}\right)+k \bar{N}(r, f)+\bar{N}(r, f) \\
& +N_{k+2}\left(r, \frac{1}{f^{n} P(f)}\right)+S(r, f)+S(r, g) \\
& \leq\left(\frac{3 k+6}{s}+2 m\right) T(r, f)+\left(\frac{2 k+4}{s}+m\right) T(r, g) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
(n+m) T(r, g) & \leq\left(\frac{3 k+6}{s}+2 m\right) T(r, g)+\left(\frac{2 k+4}{s}+m\right) T(r, f) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

Hence,

$$
\left(n-2 m-\frac{5 k+10}{s}\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

a contradiction to our assumption that $n-2 m>\max \left\{2+\frac{2 m}{s}, \frac{5 k+10}{s}\right\}$. Similarly, if $m>k+1$, then from (24), we get

$$
\left(n+m-\frac{8 k+15}{s}\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

a contradiction to the fact that $n+m>\max \left\{2+\frac{2 m}{s}, \frac{8 k+15}{s}\right\}$.
Thus, $H \equiv 0$ and rest of the theorem follows from the proof of Theorem 3.1. This completes the proof of Theorem 3.2.

Theorem 3.3. Let f and g be two transcendental meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer and $\alpha(z)(\not \equiv 0)$ be a small function of f and g. Let $P(z)$ be defined as in Theorem B and $\Theta(\infty, f)+\Theta(\infty, g)>\frac{4}{n}$. Let n, m and k be three positive integers satisfying $n-m>\max \left\{2+\frac{2 m}{s}, \frac{3 k+8}{s}\right\}$ when $m \leq k+1$ and $n+$ $m>\max \left\{2+\frac{2 m}{s}, \frac{5 k+12}{s}\right\}$ when $m>k+1$. If $\bar{E}_{4)}\left(\alpha(z),\left(f^{n} P(f)\right)^{(k)}\right)=$ $\bar{E}_{4)}\left(\alpha(z),\left(g^{n} P(g)\right)^{(k)}\right)$ and $\bar{E}_{2)}\left(\alpha(z),\left(f^{n} P(f)\right)^{(k)}\right)=\bar{E}_{2)}\left(\alpha(z),\left(g^{n} P(g)\right)^{(k)}\right)$, then the conclusions of Theorem 3.1 hold.

Proof. Let F and G be defined as in Theorem 3.1. Then F and G are transcendental meromorphic functions such that $\bar{E}_{4)}(1, F)=\bar{E}_{4)}(1, G)$ and $\bar{E}_{2)}(1, F)=$ $\bar{E}_{2)}(1, G)$ except for the zeros and poles of $\alpha(z)$. Let $H \not \equiv 0$.

Then by using (3), (10) and Lemma 2.8, we get

$$
\begin{align*}
(n+m)(T(r, f)+T(r, g)) & \leq 2 N_{2}(r, F)+2 N_{2}(r, G)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right) \\
& +N_{k+2}\left(r, \frac{1}{f^{n} P(f)}\right)+N_{k+2}\left(r, \frac{1}{g^{n} P(g)}\right)+S(r, F) \\
& +S(r, G) \tag{25}
\end{align*}
$$

Suppose that $m \leq k+1$, then from (25), we get

$$
\begin{align*}
(n+m)(T(r, f)+T(r, g)) & \leq\left(\frac{3 k+8}{s}+2 m\right)(T(r, f) \\
& +T(r, g))+S(r, f)+S(r, g) \tag{26}
\end{align*}
$$

Hence,

$$
\left(n-m-\frac{3 k+8}{s}\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

a contradiction to our assumption that $n-m>\max \left\{2+\frac{2 m}{s}, \frac{3 k+8}{s}\right\}$.
Similarly, if $m>k+1$, then from (25), we get

$$
\left(n+m-\frac{5 k+12}{s}\right)(T(r, f)+T(r, g)) \leq S(r, f)+S(r, g)
$$

a contradiction to the fact that $n+m>\max \left\{2+\frac{2 m}{s}, \frac{5 k+12}{s}\right\}$.
Thus, $H \equiv 0$ and rest of the theorem follows from the proof of Theorem 3.1. This completes the proof of Theorem 3.3.

References

1. A. Banerjee, On uniqueness of meromorphic functions when two differential monomials share one value, Bull. Korean Math. Soc. 44 (2007), no. 4, 607-622.
2. A. Banerjee and S. Mukherjee, Uniqueness of meromorphic functions concerning differential monomials sharing the same value, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 50 (2007), no. 3, 191-206.
3. S. S. Bhoosnurmath and S. R. Kabbur, Uniqueness and value sharing of meromorphic functions with regard to multiplicity, Tamkang J. Math. 44 (2013), no. 1, 11-22.
4. W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
5. I. Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Variables Theory Appl. 46 (2001), no. 3, 241-253.
6. I. Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci. 28 (2001), no. 2, 83-91.
7. S. Lin and W. Lin, Uniqueness of meromorphic functions concerning weakly weightedsharing, Kodai Math. J. 29 (2006), no. 2, 269-280.
8. X. Lin and W. Lin, Uniqueness of entire functions sharing one value, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 3, 1062-1076.
9. J. Long, Nonlinear differential polynomials of meromorphic functions with regard to multiplicity sharing a small function, J. Comput. Anal. Appl. 22 (2017), no. 7, 1220-10230.
10. P. Sahoo and H. Karmakar, Results on uniqueness of entire functions whose certain difference polynomials share a small function, Anal. Math. 41 (2015) no. 4, 257-272.
11. C. C. Yang, On deficiencies of differential polynomials. II, Math. Z. 125 (1972), 107-112.
12. C.-C. Yang and X. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395-406.
13. C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557, Kluwer Acad. Publ., Dordrecht, 2003.
14. L. Yang, Value distribution theory, translated and revised from the 1982 Chinese original, Springer, Berlin, 1993.
15. J.-L. Zhang and L.-Z. Yang, Some results related to a conjecture of R. Brück, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 1, Article 18, 11 pp.
16. X.-Y. Zhang, J.-F. Chen and W.-C. Lin, Entire or meromorphic functions sharing one value, Comput. Math. Appl. 56 (2008), no. 7, 1876-1883.

Harina P. Waghamore

Associate Professor, Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore-56.
e-mail:harinapw@gmail.com

Sangeetha Anand

Research Scholar, Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore-56.
e-mail:sangeetha.ads13@gmail.com

[^0]: Received February 14, 2017. Revised June 10, 2017. Accepted June 21, 2017. * Corresponding author.
 (c) 2017 Korean SIGCAM and KSCAM.

