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Abstract. The aim of this paper is to present two new viscosity rules

for nonexpansive mappings in Hilbert spaces. Under some assumptions,
the strong convergence theorems of the purposed new viscosity rules are
proved. Some applications are also included.
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1. Introduction

In this paper, we shall take H as a real Hilbert space, ⟨·, ·⟩ as inner product,
∥ · ∥ as the induced norm, and C as a nonempty closed subset of H.

Definition 1.1. Let T : H → H be a mapping. T is called nonexpansive if

∥T (x)− T (y)∥ ≤ ∥x− y∥, ∀x, y ∈ H.

Definition 1.2. A mapping f : H → H is called a contraction if for all x, y ∈ H
and θ ∈ [0, 1)

∥f(x)− f(y)∥ ≤ θ∥x− y∥.
Definition 1.3. Pc : H → C is called a metric projection if for every x ∈ H
there exists a unique nearest point in C, denoted by Pcx, such that

∥x− Pcx∥ ≤ ∥x− y∥, ∀y ∈ C.

The following theorem gives the condition for a projection mapping to be
nonexpansive.
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Theorem 1.4. Let C be a nonempty closed convex subset of the real Hilbert
space H and Pc : H → H a metric projection. Then

(1) ∥Pcx− Pcy∥2 ≤ ⟨x− y, Pcx− Pcy⟩ for all x, y ∈ H.
(2) Pc is a nonexpansive mapping, i.e., ∥x− Pcx∥ ≤ ∥x− y∥ for all y ∈ C.
(3) ⟨x− Pcx, y − Pcx⟩ ≤ 0 for all x ∈ H and y ∈ C.

In order to verify the weak convergence of an algorithm to a fixed point of a
nonexpansive mapping we need the demiclosedness principle:

Theorem 1.5. (The demiclosedness principle) [2] Let C be a nonempty closed
convex subset of the real Hilbert space H and T : C → C such that

xn ⇀ x∗ ∈ C and (I − T )xn → 0.

Then x∗ = Tx∗. Here → and ⇀ denote strong and weak convergence, respec-
tively.

Moreover, the following result gives the conditions for the convergence of a
nonnegative real sequence.

Theorem 1.6. [9] Assume that {an} is a sequence of nonnegative real numbers
such that an+1 ≤ (1−γn)an+ δn, ∀n ≥ 0, where {γn} is a sequence in (0, 1) and
{δn} is a sequence with

(1)
∑∞
n=0 γn = ∞,

(2) lim supn→∞
δn
γn

≤ 0 or
∑∞
n=0 |δn| <∞.

Then an → 0.

The following strong convergence theorem, which is also called the viscosity
approximation method, for nonexpansive mappings in real Hilbert spaces is given
by Moudafi [6] in 2000.

Theorem 1.7. Let C be a noneempty closed convex subset of the real Hilbert
space H. Let T be a nonexpansive mapping of C into itself such that F (T ) :=
{x ∈ H : T (x) = x} is nonempty. Let f be a contraction of C into itself.
Consider the sequence

xn+1 =
ϵn

1 + ϵn
f(xn) +

1

1 + ϵn
T (xn), n ≥ 0,

where the sequence {ϵn} in (0, 1) satisfies

(1) limn→∞ ϵn = 0,
(2)

∑∞
n=0 ϵn = ∞, and

(3) limn→∞ | 1
ϵn+1

− 1
ϵn
| = 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping
T, which is also the unique solution of the variational inequality

⟨(I − f)x, y − x⟩ ≥ 0, ∀y ∈ F (T ). (1)
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In 2015, Xu et al. [9] applied viscosity method on the midpoint rule for
nonexpansive mappings and give the generalized viscosity implicit rule:

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, ∀n ≥ 0.

This, using contraction, regularizes the implicit midpoint rule for nonexpan-
sive mappings. They also proved that the sequence generated by the generalized
viscosity implicit rule converges strongly to a fixed point of T . Ke and Ma [5],
motivated and inspired by the idea of Xu et al. [9], proposed two generalized
viscosity implicit rules:

xn+1 = αnf(xn) + (1− αn)T (snxn + (1− sn)xn+1) (2)

and

xn+1 = αnxn + βf(xn) + γnT (snxn + (1− sn)xn+1). (3)

In this paper, we contribute the following two new viscosity rules:{
xn+1 = αnf(yn) + (1− αn)T (yn),

yn = snxn + (1− sn)xn+1

(4)

and 
xn+1 = T (yn),

yn = αnf(zn) + (1− αn)T (zn),

zn = snxn + (1− sn)xn+1.

(5)

2. Main Results

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a nonexpansive mapping with F (T ) ̸= ∅ and f : C → C be
a contraction with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be a sequence
generated by {

xn+1 = αnf(yn) + (1− αn)T (yn),

yn = snxn + (1− sn)xn+1,
(6)

where {αn} and {sn} are sequences in (0, 1) satisfying the following conditions:

(i) αn + sn = 1 and limn→∞ sn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,

(iii)
∑∞
n=0 |αn+1 − αn| <∞,

(iv)
∑∞
n=0 |sn+1 − sn| <∞.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T
which is also the unique solution of the variational inequality ⟨(I−f)x, y−x⟩ ≥ 0
for all y ∈ F (T ).

In other words, x∗ is the unique fixed point of the contraction PF (T )f, that is,
PF (T )f(x

∗) = x∗.
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Proof. We divide the proof into the following five steps.
Step 1. Firstly, we show that {xn} is bounded.
Indeed, take p ∈ F (T ) arbitrarily, we have

∥xn+1 − p∥
= ∥αnf(yn) + (1− αn)T (yn)− p∥
= ∥αnf(yn)− αnp+ (1− αn)T (yn)− (1− αn)p∥
≤ αn∥f(yn)− p∥+ (1− αn)∥T (yn)− p∥
≤ αn∥f(yn)− f(p)∥+ αn∥f(p)− p∥+ (1− αn)∥yn − p∥
≤ αnθ∥yn − p∥+ αn∥f(p)− p∥+ (1− αn)∥yn − p∥
= (αnθ + 1− αn)∥yn − p∥+ αn∥f(p)− p∥
= (αnθ + 1− αn)∥snxn + (1− sn)xn+1 − p∥+ αn∥f(p)− p∥
≤ (αnθ + 1− αn)[sn∥xn − p∥+ (1− sn)∥xn+1 − p∥] + αn∥f(p)− p∥
= (αnθ + 1− αn)sn∥xn − p∥+ (αnθ + 1− αn)(1− sn)∥xn+1 − p∥
+αn∥f(p)− p∥.

It follows that

(1− (αnθ + 1− αn)(1− sn))∥xn+1 − p∥
≤ (αnθ + 1− αn)sn∥xn − p∥+ αn∥f(p)− p∥,

which implies that

[1− (1− αn(1− θ))(1− sn)]∥xn+1 − p∥
≤ sn(1− αn(1− θ))∥xn − p∥+ αn∥f(p)− p∥. (7)

Since αn, sn, θ ∈ (0, 1), 1− (αnθ+1−αn)(1− sn) ≥ 0. Moreover, by (7) we get

∥xn+1 − p∥

≤ sn(1− αn(1− θ))

1− (1− αn(1− θ))(1− sn)
∥xn − p∥

+
αn

1− (1− αn(1− θ))(1− sn)
∥f(p)− p∥

=

[
1− 1− (1− αn(1− θ))(1− sn)− sn(1− αn(1− θ)

1− (1− αn(1− θ))(1− sn)

]
∥xn − p∥

+
αn

1− (1− αn(1− θ))(1− sn)
∥f(p)− p∥

=

[
1− 1− (1− αn(1− θ))

1− (1− αn(1− θ))(1− sn)

]
∥xn − p∥

+
αn

1− (1− αn(1− θ))(1− sn)
∥f(p)− p∥

=

[
1− αn(1− θ)

1− (1− αn(1− θ))(1− sn)

]
∥xn − p∥
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+
αn(1− θ)

1− (1− αn(1− θ))(1− sn)

(
1

1− θ
∥f(p)− p∥

)
.

Thus, we have ∥xn+1 − p∥ ≤ max
{
∥xn − p∥, 1

1−θ∥f(p) − p∥
}
. By applying in-

duction, we obtain ∥xn+1 − p∥ ≤ max
{
∥x0 − p∥, 1

1−θ∥f(p) − p∥
}
. Hence, we

concluded that {xn}is bounded. Consequently, we deduce immediately from it
that {f(yn)}, {T (yn)} are bounded.

Step 2. Now, we prove that limn→∞ ∥xn+1 − xn∥ = 0.

∥xn+1 − xn∥
= ∥αnf(yn) + (1− αn)T (yn)− [αn−1f(yn−1) + (1− αn−1)T (yn−1)]∥
= ∥αnf(yn) + (1− αn)T (yn)− [αn−1f(yn−1) + (1− αn−1)T (yn−1)]∥
= ∥αnf(yn)− αnf(yn−1) + (αn − αn−1)f(yn) + (1− αn)T (yn)

−(1− αn)T (yn−1)− (αn − αn−1)T (yn−1)∥
= ∥αn[f(yn)− f(yn−1)] + (αn − αn−1)[f(yn−1)− T (yn−1)]

+(1− αn)[T (yn)− T (yn−1)∥
≤ αn∥f(yn)− f(yn−1)∥+ (1− αn)∥T (yn)− T (yn−1)∥

+|αn − αn−1|∥f(yn−1)− T (yn−1)∥
≤ αnθ∥yn − yn−1∥+ (1− αn)∥yn − yn−1∥+ |αn − αn−1|M
≤ αnθ∥(snxn + (1− sn)xn+1)− (sn−1xn−1 + (1− sn−1)xn)∥

+(1− αn)∥(snxn + (1− sn)xn+1)− (sn−1xn−1 + (1− sn−1)xn)∥
+|αn − αn−1|M

≤ (αnθ + 1− αn)∥sn(xn − xn−1) + (1− sn)(xn+1 − xn)

+(sn − sn−1)xn−1 − (sn − sn−1)xn)∥+ |αn − αn−1|M
= (1− αn(1− θ))∥sn(xn − xn−1) + (1− sn)(xn+1 − xn)

+(sn − sn−1)(xn−1 − xn)∥+ |αn − αn−1|M
= (1− αn(1− θ))∥sn−1(xn − xn−1) + (1− sn)(xn+1 − xn)∥

+|αn − αn−1|M
≤ (1− αn(1− θ))sn−1∥xn − xn−1∥+ (1− αn(1− θ))(1− sn)∥xn+1 − xn∥

+|αn − αn−1|M,

where M > 0 is a constant such that M ≥ supn≥0 ∥f(yn−1)− T (yn−1)∥. It give

(1− (1− αn(1− θ))(1− sn))∥xn+1 − xn∥
≤ (1− αn(1− θ))sn−1∥xn − xn−1∥+ |αn − αn−1|M,

that is,

∥xn+1 − xn∥

≤ (1− αn(1− θ))sn−1

1− (1− αn(1− θ))(1− sn)
∥xn − xn−1∥
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+
M

1− (1− αn(1− θ))(1− sn)
|αn − αn−1|

=

[
1− 1− (1− αn(1− θ))(1− sn)− (1− αn(1− θ))sn−1

1− (1− αn(1− θ))(1− sn)

]
∥xn − xn−1∥

+
M

1− (1− αn(1− θ))(1− sn)
|αn − αn−1|

=

[
1− 1− (1− αn(1− θ))(1− sn + sn−1)

(1− (1− αn(1− θ))(1− sn))

]
∥xn − xn−1∥

+
M

1− (1− αn(1− θ))(1− sn)
|αn − αn−1|

=

[
1− 1− 1 + sn − sn−1 + αn(1− θ)− αn(1− θ)(sn − sn−1)

1− (1− αn(1− θ))(1− sn)

]
∥xn − xn−1∥

+
M

1− (1− αn(1− θ))(1− sn)
|αn − αn−1|

=

[
1− (1− αn(1− θ))(sn − sn−1) + αn(1− θ)

1− (1− αn(1− θ))(1− sn)

]
∥xn − xn−1∥

+
M

(1− (1− αn(1− θ)(1− sn)
|αn − αn−1|.

Since θ, αn, sn ∈ (0, 1),

0 < ϵ ≤ 1− (1− αn(1− θ))(1− sn) ≤ 1

and
(1− αn(1− θ))(sn − sn−1) + αn(1− θ)

(1− (1− αn(1− θ))(1− sn))
≥ αn(1− θ).

Thus

∥xn+1 − xn∥ ≤ (1− αn(1− θ))∥xn − xn−1∥+
M

ϵ
|αn − αn−1|.

Since
∑∞
n=0 αn = ∞ and

∑∞
n=0 |αn+1 − αn| < ∞, by Theorem 1.6, we have

∥xn+1 − xn∥ → 0 as n→ ∞.
Step 3. Now, we prove that limn→∞ ∥xn − Txn∥ = 0.
Consider

∥xn − T (xn)∥
= ∥xn − xn+1 + xn+1 − T (yn) + T (yn)− T (xn)∥
≤ ∥xn − xn+1∥+ ∥xn+1 − T (yn)∥+ ∥T (yn)− T (xn)∥
≤ ∥xn − xn+1∥+ ∥αnf(yn) + (1− αn)T (yn)− T (yn)∥+ ∥yn − xn∥
= ∥xn − xn+1∥+ αn∥f(yn)− T (yn)∥+ (1− sn)∥xn+1 − xn∥
≤ (2− sn)∥xn − xn+1∥+ αnM

≤ 2∥xn − xn+1∥+ αnM

Then by limn→∞ αn = 0, we get ∥xn − T (xn)∥ → 0 as n→ ∞.
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Similarly we have ∥T (snxn + (1− sn)xn+1)− xn∥ → 0∥ as n→ ∞.
Step 4. In this step, we claim that lim supn→∞⟨x∗ − f(x∗), x∗ − xn⟩ ≤ 0,

where x∗ = PF (T )f(x
∗).

Indeed, we take a subsequence {xni} of {xn} which converges weakly to a
fixed point p of T . Without loss of generality, we may assume that {xni} ⇀ p.
From limn→∞ ∥xn − Txn∥ = 0 and Theorem 1.5 we have p = Tp. This together
with the property of the metric projection implies that

lim sup
n→∞

⟨x∗ − f(x∗), x∗ − xn⟩ = lim sup
n→∞

⟨x∗ − f(x∗), x∗ − xni⟩

= ⟨x∗ − f(x∗), x∗ − p⟩
≤ 0.

Step 5. Finally, we show that xn → x∗ as n→ ∞.
Now we again take x∗ ∈ F (T ) is the unique fixed point of the contraction

PF (T )f . Consider

∥xn+1 − x∗∥2

= ∥αnf(yn) + (1− αn)T (yn)− x∗∥2

= ∥αn[f(yn)− x∗] + (1− αn)[T (yn)− x∗]∥2

= α2
n∥f(yn)− x∗∥2 + (1− αn)

2∥T (yn)− x∗∥2

+2αn(1− αn)⟨f(yn)− x∗, T (yn)− x∗⟩
≤ α2

n∥f(yn)− x∗∥2 + (1− αn)
2∥yn − x∗∥2

+2αn(1− αn)⟨f(yn)− f(x∗), T (yn)− x∗⟩
+2αn(1− αn)⟨f(x∗)− x∗, T (yn)− x∗⟩

≤ (1− αn)
2∥yn − x∗∥2 + 2αn(1− αn)∥f(yn)− f(x∗)∥∥T (yn)− x∗∥+Kn

≤ (1− αn)
2∥yn − x∗∥2 + 2αn(1− αn)θ∥yn − x∗∥∥yn − x∗∥+Kn

= (1− αn)
2∥yn − x∗∥2 + 2αn(1− αn)θ∥yn − x∗∥2 +Kn

=
[
(1− αn)

2 + 2αn(1− αn)θ
]
∥yn − x∗∥2 +Kn

=
[
(1− αn)

2 + 2αn(1− αn)θ
]
∥snxn + (1− sn)xn+1 − x∗∥2 +Kn

=
[
(1− αn)

2 + 2αn(1− αn)θ
]
∥sn(xn − x∗) + (1− sn)(xn+1 − x∗)∥2 +Kn

≤
[
(1− αn)

2 + 2αn(1− αn)θ
]
[s2n∥xn − x∗∥2 + (1− sn)

2∥xn+1 − x∗∥
+2sn(1− sn)∥xn − x∗∥∥xn+1 − x∗∥] +Kn

≤
[
(1− αn)

2 + 2αn(1− αn)θ
]
[s2n∥xn − x∗∥2 + (1− 2sn + s2n)∥xn+1 − x∗∥

+sn(1− sn)
(
∥xn − x∗∥2 + ∥xn+1 − x∗∥2

)
] +Kn

=
[
(1− αn)

2 + 2αn(1− αn)θ
] [
sn∥xn − x∗∥2 + (1− sn)∥xn+1 − x∗∥2

]
+Kn

= sn
[
(1− αn)

2 + 2αn(1− αn)θ
]
∥xn − x∗∥2

+(1− sn)
[
(1− αn)

2 + 2αn(1− α)θ
]
∥xn+1 − x∗∥2 +Kn,
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where

Kn = α2
n∥f(snxn + (1− sn)xn+1)− x∗∥2

+2αn(1− αn)⟨f(x∗)− x∗, T (snxn + (1− sn)xn+1)− x∗⟩.

It will become as[
1− (1− sn){(1− αn)

2 + 2αn(1− α)θ}
]
∥xn+1 − x∗∥2

≤ sn
[
(1− αn)

2 + 2αn(1− α)θ
]
∥xn − x∗∥2 +Kn,

which implies that

∥xn+1 − x∗∥2

≤
sn
[
(1− αn)

2 + 2αn(1− α)θ
]

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]
∥xn − x∗∥2

+
Kn

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]

=

[
1−

1− (1− sn)
[
(1− αn)

2 + 2αn(1− α)θ
]
− sn

[
(1− αn)

2 + 2αn(1− α)θ
]

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]

]

×∥xn − x∗∥2 + Kn

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]

=

[
1−

1−
[
(1− αn)

2 + 2αn(1− α)θ
]

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]

]
∥xn − x∗∥2

+
Kn

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]

=

[
1− −α2

n + 2α2
nθ

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]

]
∥xn − x∗∥2

+
Kn

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]
.

Note that 0 < 1− (1− sn)
[
(1− αn)

2 + 2αn(1− α)θ
]
< 1 and

−α2
n + 2α2

nθ

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]
≤ −α2

n + 2α2
nθ < 2α2

nθ.

Thus we have

∥xn+1 − x∗∥2 ≤ [1− 2α2
nθ]∥xn − x∗∥2

+
Kn

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]
. (8)

By limn→∞ αn = 0 and limn→∞ sn = 1 we have

lim
n→∞

Kn

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]
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= lim
n→∞

[
α2
n∥f(snxn + (1− sn)xn+1)− x∗∥2

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]

+
2αn(1− αn)⟨f(x∗)− x∗, T (snxn + (1− sn)xn+1)− x∗⟩

1− (1− sn) [(1− αn)2 + 2αn(1− α)θ]

]
≤ 0. (9)

From (8), (9) and Theorem 1.6 we have limn→∞ ∥xn+1−xn∥2 = 0, which implies
that xn → x∗ as n→ ∞. This completes the proof. �

Theorem 2.2. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T : C → C be a nonexpansive mapping with F (T ) ̸= ∅ and f : C → C be
a contraction with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let {xn} be a sequence
generated by 

xn+1 = T (yn),

yn = αnf(zn) + (1− αn)T (zn),

zn = snxn + (1− sn)xn+1,

(10)

where {αn} and {sn} are sequences in (0, 1) satisfying the following conditions:

(i) αn + sn = 1 and limn→∞ sn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,

(iii)
∑∞
n=0 |αn+1 − αn| <∞,

(iv)
∑∞
n=0 |sn+1 − sn| <∞,

(v) limn→∞ ∥xn − T (xn)∥ = 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping T
which is also the unique solution of the variational inequality ⟨(I−f)x, y−x⟩ ≥ 0
for all y ∈ F (T ).

In other words, x∗ is the unique fixed point of the contraction PF (T )f, that is,
PF (T )f(x

∗) = x∗.

Proof. The prove of this theorem is similar to the prove of Theorem 2.1. �

3. Applications

3.1. A more general system of variational inequalities. Let C be a
nonempty closed convex subset of the real Hilbert SpaceH and {Ai}Ni=1 : C → H
be a family if mappings. In [1], Cai and Bu considered the problem of finding
x∗1, x

∗
2, ..., x

∗
N ∈ C × C × · · · × C such that

⟨λNANx∗N + x∗1 − x∗N , x− x∗1⟩ ≥ 0, ∀x ∈ C,

⟨λN−1AN−1x
∗
N−1 + x∗N − x∗N−1, x− x∗N ⟩ ≥ 0, ∀x ∈ C,

........,

⟨λ2A2x
∗
2 + x∗3 − x∗2, x− x∗3⟩ ≥ 0, ∀x ∈ C,

⟨λ1A1x
∗
1 + x∗2 − x∗1, x− x∗2⟩ ≥ 0, ∀x ∈ C.

(11)
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Equation (11) can be written as

⟨x∗1 − (I − λNAN )x∗N , x− x∗1⟩ ≥ 0, ∀x ∈ C,

⟨x∗N − (I − λN−1AN−1)x
∗
N−1, x− x∗N ⟩ ≥ 0, ∀x ∈ C,

........,

⟨x∗3 − (I − λ2A2)x
∗
2, x− x∗3⟩ ≥ 0, ∀x ∈ C,

⟨x∗2 − (I − λ1A1)x
∗
1, x− x∗2⟩ ≥ 0, ∀x ∈ C,

which is more general system of variational inequalities in Hilbert spaces, where
λi > 0 for all i ∈ {1, 2, 3, ..., N}. We also have following lemmas.

Lemma 3.1. [1] Let C be a nonempty closed convex subset of a real Hilbert
space H. For i ∈ {1, 2, 3, ..., N}, let Ai : C → H be δi-inverse-strongly monotone
for some positive real number δi, namely

⟨Aix−Aiy, x− y⟩ ≥ δi∥Aix−Aiy∥2, ∀x, y ∈ C.

Let G : C → C be a mapping defined by

G(x) = PC(I − λNAN )PC(I − λN−1AN−1) · · ·
PC(I − λ2A2)PC(I − λ1A1)x, ∀x ∈ C. (12)

If 0 < λi ≤ 2δi for all i ∈ {1, 2, ..., N}, then G is nonexpansive.

Lemma 3.2. [4] Let C be a nonempty closed convex subset of a real Hilbert
space H. Let Ai : C → H be a nonlinear mapping, where i ∈ {1, 2, 3, ..., N}. For
given x∗i ∈ C, i ∈ {1, 2, 3, ..., N}, (x∗1, x∗2, x∗3, ..., x∗N ) is a solution of the problem
(11) if and only if

x∗1 = PC(I − λNAN )x∗N ,

x∗i = PC(I − λi−1Ai−1)x
∗
i−1, i = 2, 3, 4, ..., N, (13)

that is,

x∗1 = PC(I − λNAN )PC(I − λN−1AN−1) · · ·
PC(I − λ2A2)PC(I − λ1A1)x

∗
1, ∀x ∈ C.

From Lemma 3.2, we know that x∗1 = G(x∗1), that is, x∗1 is a fixed point of
the mapping G, where G is defined by (12). Moreover, if we find the fixed point
x∗1, it is easy to get the other points by (13). Applying Theorem 2.1 we get the
following results.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H. For i ∈ {1, 2, 3, ..., N}, let Ai : C → H be δi-inverse-strongly monotone for
some positive real number δi with F (G) ̸= ∅, where G : C → C is defined by

G(x) = PC(I − λNAN )PC(I − λN−1AN−1) · · ·
PC(I − λ2A2)PC(I − λ1A1)x, ∀x ∈ C.



Strong Convergence of New Viscosity Rules of Nonexpansive Mappings 433

Let f : C → C be a contraction with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let
{xn} be a sequence generated by{

xn+1 = αnf(yn) + (1− αn)G(yn),

yn = snxn + (1− sn)xn+1,

where {αn} and {sn} are sequences in (0, 1) satisfying the following conditions:

(i) αn + sn = 1 and limn→∞ sn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,

(iii)
∑∞
n=0 |αn+1 − αn| <∞,

(iv)
∑∞
n=0 |sn+1 − sn| <∞.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping G
which is also the unique solution of the variational inequality ⟨(I − f)x, y−x⟩ ≥
0, ∀y ∈ F (G).

In other words, x∗ is the unique fixed point of the contraction PF (G)f, that is,
PF (G)f(x

∗) = x∗.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space
H. For i ∈ {1, 2, 3, ..., N}, let Ai : C → H be δi-inverse-strongly monotone for
some positive real number δi with F (G) ̸= ∅, where G : C → C is defined by

G(x) = PC(I − λNAN )PC(I − λN−1AN−1) · · ·
PC(I − λ2A2)PC(I − λ1A1)x, ∀x ∈ C.

Let f : C → C be a contraction with coefficient θ ∈ [0, 1). Pick any x0 ∈ C, let
{xn} be a sequence generated by

xn+1 = G(yn),

yn = αnf(zn) + (1− αn)G(zn),

zn = snxn + (1− sn)xn+1,

where {αn} and {sn} are sequences in (0, 1) satisfying the following conditions:

(i) αn + sn = 1 and limn→∞ sn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,

(iii)
∑∞
n=0 |αn+1 − αn| <∞,

(iv)
∑∞
n=0 |sn+1 − sn| <∞,

(v) limn→∞ ∥xn − T (xn)∥ = 0.

Then {xn} converges strongly to a fixed point x∗ of the nonexpansive mapping G
which is also the unique solution of the variational inequality ⟨(I − f)x, y−x⟩ ≥
0, ∀y ∈ F (G).

In other words, x∗ is the unique fixed point of the contraction PF (G)f, that is,
PF (G)f(x

∗) = x∗.
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3.2. The constrained convex minimization problem. Now, we consider
the following constrained convex minimization problem:

min
x∈C

ϕ(x), (14)

where ϕ : C → R is a real-valued convex function and assumes that the problem
(14) is consistent. Let Ω denote its solution set. For the minimization problem
(14), if ϕ is (Fréchet) differentiable, then we have the following lemma.

Lemma 3.5. (Optimality Condition) [7] A necessary condition of optimality for
a point x∗ ∈ C to be a solution of the minimization problem (14) is that x∗ solves
the variational inequality

⟨∇ϕ(x∗), x− x∗⟩ ≥ 0, ∀x ∈ C. (15)

Equivalently, x∗ ∈ C solves the fixed point equation

x∗ = PC (x∗ − λ∇ϕ(x∗))
for every constant λ > 0.

If, in a addition ϕ is convex, then the optimality condition (15) is also suffi-
cient.

It is well known that the mapping PC(I − λA) is nonexpansive when the
mapping A is δ-inverse-strongly monotone and 0 < λ < 2δ. We therefore have
the following results.

Theorem 3.6. Let C be a nonempty closed convex subset of a real Hilbert space
H. For the minimization problem (14), assume that ϕ is (Fréchet) differentiable
and the gradient ∇ϕ is a δ-inverse-strongly monotone mapping for some positive
real number δ. Let f : C → C be a contraction with coefficient θ ∈ [0, 1). Pick
any x0 ∈ C. Let {xn} be a sequence generated by{

xn+1 = αnf(yn) + (1− αn)PC(I − λ∇ϕ)(yn),
yn = snxn + (1− sn)xn+1,

where {αn} and {sn} are sequences in (0, 1) satisfying the following conditions:

(i) αn + sn = 1 and limn→∞ sn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,

(iii)
∑∞
n=0 |αn+1 − αn| <∞,

(iv)
∑∞
n=0 |sn+1 − sn| <∞.

Then {xn} converges strongly to a solution x∗ of the minimization problem (14),
which is also the unique solution of the variational inequality ⟨(I − f)x, y−x⟩ ≥
0, ∀y ∈ Ω.

In other words, x∗ is the unique fixed point of the contraction PΩf, that is,
PΩf(x

∗) = x∗.

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space
H. For the minimization problem (14), assume that ϕ is (Fréchet) differentiable
and the gradient ∇ϕ is a δ-inverse-strongly monotone mapping for some positive
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real number δ. Let f : C → C be a contraction with coefficient θ ∈ [0, 1). Pick
any x0 ∈ C. Let {xn} be a sequence generated by

xn+1 = PC(I − λ∇ϕ)(yn),
yn = αnf(zn) + (1− αn)PC(I − λ∇ϕ)(zn),
zn = snxn + (1− sn)xn+1,

where {αn} and {sn} are sequences in (0, 1) satisfying the following conditions:

(i) αn + sn = 1 and limn→∞ sn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,

(iii)
∑∞
n=0 |αn+1 − αn| <∞,

(iv)
∑∞
n=0 |sn+1 − sn| <∞,

(v) limn→∞ ∥xn − T (xn)∥ = 0.

Then {xn} converges strongly to a solution x∗ of the minimization problem (14),
which is also the unique solution of the variational inequality ⟨(I − f)x, y−x⟩ ≥
0, ∀y ∈ Ω.

In other words, x∗ is the unique fixed point of the contraction PΩf, that is,
PΩf(x

∗) = x∗.

3.3. K-mapping. Kangtunyakarn and Suantai [3] in 2009 gave K-mapping
generated by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN as follows.

Definition 3.8. [3] Let C be a nonempty convex subset of the real Banach space.
Let {Ti}Ni=1 be a family of mappings of C into itself and let λ1, λ2, λ3, ..., λN be
real numbers such that 0 ≤ λi ≤ 1 for every i = 1, 2, 3, ..., N . We define a
mapping K : C → C as follows:

U1 = λ1T1 + (1− λ1)I,

U2 = λ2T2U1 + (1− λ2)U1,

........,

UN−1 = λN−1TN−1UN−2 + (1− λN−1)UN−2,

UN = λNTNUN−1 + (1− λN )UN−1.

Such a mapping is called a K-mapping generated by T1, T2, T3, ..., TN and
λ1, λ2, λ3, ..., λN .

In 2014, Suwannaut and Kangtunyakarn [8] established the following result
for K-mapping generated by T1, T2, T3, ..., TN and λ1, λ2, λ3, ..., λN .

Lemma 3.9. [8] Let C be a nonempty closed convex subset of a real Hilbert
space H. For i = 1, 2, 3, ..., N, let {Ti}Ni=1 be a finite family of Ki-strictly pseudo-

contractive mapping of C into itself with Ki ≤ ωi and
∩N
i=1 F (Ti) ̸= ∅, namely

there exist constants Ki ∈ [0, 1) such that

∥Tix− Tiy∥2 ≤ ∥x− y∥2 +Ki∥(I − Ti)x− (I − Ti)y∥2, ∀x, y ∈ C.
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Let λ1, λ2, λ3, ..., λN be real numbers with 0 < λi < ω2,∀i = 1, 2, 3, ..., N and
ω1 + ω2 < 1. Let K be the K-mapping generated by T1, T2, T3, ......, TN and
λ1, λ2, λ3, ..., λN . Then the following properties hold:

(1) F (K) =
∩N
i=1 F (Ti),

(2) K is a nonexpansive mapping.

On the bases of above lemma, we have the following results.

Theorem 3.10. Let C be a nonempty closed convex subset of a real Hilbert
space H. For i = 1, 2, 3, ..., N, let {Ti}Ni=1 be a finite family of Ki-strictly

pseudo-contractive mapping of C into itself with Ki ≤ ωi and
∩N
i=1 F (Ti) ̸= ∅.

Let λ1, λ2, λ3, ..., λN be real numbers with 0 < λi < ω2,∀i = 1, 2, 3, ..., N and
ω1 + ω2 < 1. Let K be the K-mapping generated by T1, T2, T3, ..., TN and
λ1, λ2, λ3, ..., λN . Let f : C → C be a contraction with coefficient θ ∈ [0, 1).
Pick any x0 ∈ C, let {xn} be sequence generated by{

xn+1 = αnf(yn) + (1− αn)K(yn),

yn = snxn + (1− sn)xn+1,

where {αn} and {sn} are sequences in (0, 1) satisfying the following conditions:

(i) αn + sn = 1 and limn→∞ sn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,

(iii)
∑∞
n=0 |αn+1 − αn| <∞,

(iv)
∑∞
n=0 |sn+1 − sn| <∞.

Then {xn} converges strongly to a fixed point x∗ of the mappings {Ti}Ni=1, which
is also the unique solution of the variational inequality ⟨(I − f)x, y − x⟩, ∀y ∈
F (K) =

∩N
i=1 F (Ti).

In other words, x∗ is the unique fixed point of the contraction P∩N
i=1 F (Ti)

f,

that is, P∩N
i=1 F (Ti)

f(x∗) = x∗.

Theorem 3.11. Let C be a nonempty closed convex subset of a real Hilbert
space H. For i = 1, 2, 3, ..., N, let {Ti}Ni=1 be a finite family of Ki-strictly

pseudo-contractive mapping of C into itself with Ki ≤ ωi and
∩N
i=1 F (Ti) ̸= ∅.

Let λ1, λ2, λ3, ..., λN be real numbers with 0 < λi < ω2,∀i = 1, 2, 3, ..., N and
ω1 + ω2 < 1. Let K be the K-mapping generated by T1, T2, T3, ..., TN and
λ1, λ2, λ3, ..., λN . Let f : C → C be a contraction with coefficient θ ∈ [0, 1).
Pick any x0 ∈ C, let {xn} be sequence generated by

xn+1 = K(yn),

yn = αnf(zn) + (1− αn)K(zn),

zn = snxn + (1− sn)xn+1,

where {αn} and {sn} are sequences in (0, 1) satisfying the following conditions:

(i) αn + sn = 1 and limn→∞ sn = 1,
(ii) limn→∞ αn = 0 and

∑∞
n=0 αn = ∞,

(iii)
∑∞
n=0 |αn+1 − αn| <∞,
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(iv)
∑∞
n=0 |sn+1 − sn| <∞,

(v) limn→∞ ∥xn − T (xn)∥ = 0.

Then {xn} converges strongly to a fixed point x∗ of the mappings {Ti}Ni=1, which
is also the unique solution of the variational inequality ⟨(I − f)x, y − x⟩, ∀y ∈
F (K) =

∩N
i=1 F (Ti).

In other words, x∗ is the unique fixed point of the contraction P∩N
i=1 F (Ti)

f,

that is, P∩N
i=1 F (Ti)

f(x∗) = x∗.
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