DOI QR코드

DOI QR Code

Effect of AC Electric Field on Decreasing Liftoff Height in Laminar Lifted Jet Flames

층류 부상 화염의 화염부상 높이 감소 구간에서 교류 전기장이 인가된 화염에 관한 영향

  • Seo, B.H. (Dept. of Mechanical Engineering, Pukyoung National University) ;
  • Van, K.H. (Dept. of Mechanical Engineering, Pukyoung National University) ;
  • Kim, G.T. (Dept. Interdisciplinary Program of Marine-Bio, Electric& Mechanical Engineering, Pukyong National University) ;
  • Park, J. (Dept. of Mechanical Engineering, Pukyoung National University) ;
  • Keel, S.I. (Korea Institute of Machinery and Materials) ;
  • Kim, S.W. (Korea Institute of industrial Technology) ;
  • Chung, S.H. (King Abdullah University of Science and Technology, Clean Combustion Research Center)
  • Received : 2017.05.02
  • Accepted : 2017.06.16
  • Published : 2017.09.30

Abstract

An experimental study has been conducted to elucidate the effect of AC electric field on behaviors of laminar lifted flame in nitrogen-diluted methane coflow-jets. Our concerns are focued on the regime to show a decrease in liftoff height, $H_L$ with increasing nozzle exit velocity, $U_O$ (hereafter, $decreasing-H_L$). The $H_L$ with $U_O$ near flame extinction were measured by varying the applied AC voltage, $V_{AC}$ and frequency, $f_{AC}$ in a single electrode configuration. The behavior of $H_L$ with a functional dependency of $V_{AC}$ and $f_{AC}$ was categorized into two regime : (I) $H_L$ decreased for nozzle diameter, D = 1.0 mm, and (II) $H_L$ increased in the increase of $f_{AC}$ for a fixed $V_{AC}$ in a D = 4.0, 8.4 mm. The lifted flames in $decreasing-H_L$ region was unstable in high voltage regimes while the $H_L$ showed a decreasing tendency with $U_O$ except them. Such behaviors in $H_L$ were also characterized by functional dependencies of related physical parameters such as $V_{AC}$, $f_{AC}$, $U_O$, fuel mole fraction ($X_{F.O}$) and D.

Keywords

References

  1. S. H. Won, S. K. Ryu, M. K. Kim, M. S. Cha, S. H. Chung. Effect of electric fields on the propagation speed of tribrachial flames in coflow jets. Combust Flame. (2008) 152: 496. https://doi.org/10.1016/j.combustflame.2007.11.008
  2. M. K. Kim, S. K. Ryu, S. H. Won, S. H. Chung. Electric filed effect on liftoff and blow-off of nonpremixed laminar jet flames in a coflow. Combust Flame. (2010) 157:17. https://doi.org/10.1016/j.combustflame.2009.10.002
  3. M.S. Cha, Y. Lee, Premixed Combustion Under Electric Field in a Constant Volume Chamber, IEEE Trans. Plasma Sci 40 (2012) 3131-3138. https://doi.org/10.1109/TPS.2012.2206120
  4. Y. Xiong, M.S. Cha, S.H. Chung, AC electric field induced vortex in laminar coflow diffusion flames, Proc. Combust. Inst., 35 (2015) 3513-3520. https://doi.org/10.1016/j.proci.2014.08.027
  5. J. Lawton, F.J. Weinberg, (1970). Electrical aspects of combustion. 14. Oxford: Clarendon Press 283.
  6. F.J. Weinberg, Advanced Combustion Method, Academic Press, New York, (1989).
  7. S.M. Lee, C.S. Park, M.S. Cha, S.H. Chung, IEEE Trans. Plasma Sci. 33(5) (2005) 1703-1709. https://doi.org/10.1109/TPS.2005.856414
  8. S. H. Won, M. S. Cha, C. S. Park, S. H. Chung. Effect of electric field on reattachment and propagation speed of tribrachial flames in laminar coflow jets. Proc. Combust Inst. (2007) 31:963 https://doi.org/10.1016/j.proci.2006.07.166
  9. S.K. Ryu, Y.K. Kim, M.K. Kim, S.H. Won, S.H. Chung, Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields. Combust. Flame 157 (1) (2010) 25-32. https://doi.org/10.1016/j.combustflame.2009.10.001
  10. S. H. Chung and B. J. Lee. On the Characteristics of Laminar Lifted Flames in a Non-premixed Jet. Combust. Flame (1991) 86:62. https://doi.org/10.1016/0010-2180(91)90056-H
  11. B. J. Lee, S. H. Chung. Stabilization of Lifted Tribrachial Flames in a Laminar Nonpremixed Jet. Combust. Flame (1997) 109:163. https://doi.org/10.1016/S0010-2180(96)00145-9
  12. S. H. Chung. Stabilization, propagation and instability of tribrachial triple flame. Proc Combust Inst. (2007)31:877. https://doi.org/10.1016/j.proci.2006.08.117
  13. Chen, Y. C. and Bilger, R. W. Stabilization Mechanisms of Lifted Laminar Flames in Axisymmetric Jet Flows. Combust. Flame (2000) 122:377. https://doi.org/10.1016/S0010-2180(00)00120-6
  14. N. P.Sapkal, W. J. Lee, J. Park, O.B. Kwon. A Study on Laminar Lifted Jet Flames for Diluted Methane in Co-flow Air. J. Korean Soc. Combust. (2015) 20 (3) 1-7. https://doi.org/10.15231/jksc.2015.20.3.001
  15. N. P. Sarpkal, G. H. Van, J. Park, B. J. Lee, S. H. Chung. Decreasing Liftoff Height Regions on Diluted Methane Co-flow Jet Flames. (2016) The 53th KOSCO Symposium.
  16. S. H. Won, S. H. Chung, M. S. Cha, B. J. Lee. Lifted Flame Stabilization in Developing and Developed Regions of Coflow Jets for Highly Diluted Propane. Proc. Combust. Inst. 28 (2000) 2093-2099. https://doi.org/10.1016/S0082-0784(00)80618-9
  17. S. H Won, J. Kim, M. K. Shin, S. H. Chung, O. Fujita, T. Mori, J. H. Choi and K. Ito. Normal and Microgravity Experiment of Oscillating Lifted Flames on Coflow. Proc. Combust. Inst. (2002) 29, 37-44. https://doi.org/10.1016/S1540-7489(02)80009-8
  18. G. T. Kim, D. G. Park, M. S. Cha, J. Park, S. H. Chung. Flow instability in laminar jet flames driven by alternating crrent electric fields. Proc. Combust. Inst. (2016) 000: 1-8.
  19. M. K. Kim, S. H. Chung, H. H. Kim. Effect of electric fields on the stabilization of premixed laminar Bunsen flames at low AC frequency: Biionic wind effect. Combust. Flame (2012) 159:1151. https://doi.org/10.1016/j.combustflame.2011.10.018
  20. N. Peters, F. A. Williams. Liftoff characteristics of turbulent jet diffusion flames. AIAA Journal. (1983) 21:423-429. https://doi.org/10.2514/3.8089