DOI QR코드

DOI QR Code

Formation of MILD Combustion using Co-flow MILD Combustor

동축류 마일드 연소기를 적용한 마일드 연소 형성 연구

  • Lee, Pil Hyong (Division of Mechanical System Engineering, Incheon National University) ;
  • Hwang, Sang Soon (Division of Mechanical System Engineering, Incheon National University)
  • 이필형 (인천대학교 기계시스템공학부) ;
  • 황상순 (인천대학교 기계시스템공학부)
  • Received : 2016.11.05
  • Accepted : 2017.06.11
  • Published : 2017.09.30

Abstract

MILD combustion was first developed to suppress thermal NOx formation in combustor for heating industrial furnaces. In this paper, the effect of co-flow MILD combustor geometry and operating conditions on the formation of MILD combustion was analyzed using 3 dimensional numerical simulation. The numerical simulations were carried out using ANSYS Fluent. The combustion and turbulence flow was modeled using the Eddy Dissipation Concept(EDC) model and realizable $k-{\varepsilon}$ model respectively. The results show that the high temperature region and average temperature decreased due to an increase in the air velocity and decrease the wall thickness of fuel nozzle. In particular, the MILD combustion flame was found to be stable with a combustion flame region at fuel velocity 10 m/s, air velocity 20 m/s, fuel nozzle thickness 1.0 mm, equivalence ratio 0.9, and outlet area ratio 40%.

Keywords

References

  1. S. R. Turns, "An Introduction to Combustion," McGraw Hill, 2000.
  2. C. K. Law, "Combustion Physics," Cambridge University Press, 2006.
  3. P. H. Lee, S. S. Hwang, "Formation of Lean Premixed Surface Flame Using Porous Baffle Plate and Flame Holder", J. Therm. Sci. Tech., Vol. 8, pp. 178-189, 2013. https://doi.org/10.1299/jtst.8.178
  4. P. H. Lee, K, J, Song, S. S. Hwang, "Combustion Characteristics of Cylindrical Premixed Combustor using Liquid Fuel by Self Evaporation", J. Korean Soc. Combust., Vol. 21, No. 3, pp. 7-15, 2016. https://doi.org/10.15231/JKSC.2016.21.3.007
  5. Y. K. Choi, K. T. Kang, K. S. Lim, D. W. Ko, Y. M. Kim, "Experimental and Numerical Study of Low NOx Multi-Staged Burner in the Test Combustor", Trans. Korean Soc. Mech. Eng. B, Vol. 28, No. 11, pp. 1339-1347. 2004. https://doi.org/10.3795/KSME-B.2004.28.11.1339
  6. M. W. Kang, Y. B. Yoon, S. K. Dong, "The effect of flue-gas recirculation on combustion characteristics of regenerative low NOx burner", The 25th KOSCO Symposium, pp. 97-104, 2002.
  7. G. M. Choi, M. Katsuki, "Advanced Low Nox Combustion Using Highly Preheating Air", Energy Convers Manage, Vol. 42, pp. 639-652, 2001. https://doi.org/10.1016/S0196-8904(00)00074-1
  8. P. Li, B. B. Dally, J. Mi, F. Wang, "MILD oxy combustion of gaseous fuels in a laboratory scale furnace," Combust. Flame, Vol, 160, pp. 93-946, 2013.
  9. J. Leicher, A. Giese, "Flameless Oxidation as a means to Reduce NOx Emissions in Glass Melting Furnaces," Int. J. of Thermodynamics, Vol. 16, No. 2, pp. 55-61, 2013.
  10. P. H. Lee, S. S. Hwang, "Formation of Oxy-Fuel MILD Combustion under Different Operating Conditions", Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 9, pp. 577-587, 2016. https://doi.org/10.3795/KSME-B.2016.40.9.577
  11. A. Cavaliere, M. D. Joannon, "Mild Combustion," Prog Energy Combust Sci, Vol.30, pp. 329-366, 2004 https://doi.org/10.1016/j.pecs.2004.02.003
  12. K. Arghode, K. Gupta, "Effect of flow field for colorless distributed combustion(CDC) for gas turbine combustion", Appl Energy, Vol. 87, pp. 1631-1640, 2010 https://doi.org/10.1016/j.apenergy.2009.09.032
  13. Fluent. Fluent 6.0, Lebanon, NH, 2002.
  14. S. E. Hosseini, M. A. Wahid, "Investigation of bluff-body micro-flameless combustion," Energy Convers Manage, Vol. 88, pp. 120-128, 2014. https://doi.org/10.1016/j.enconman.2014.08.023
  15. A. Parente, C. Galletti, L. Tognotti, "Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels," Int. J. Hydrogen Energy, Vol. 33, pp. 7553-7564, 2008. https://doi.org/10.1016/j.ijhydene.2008.09.058
  16. M. Frenklach, H. Wang, C. L. Yu, M. Goldenberg, C. Bowman, R. Hanson, D. Davidson, E. Chang, G. Smith, D. Golden, W. Gardiner, V. Lissianski, GRI-Mech-An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion, Gas Research Institute Topic, Report GRI-95/0058, 1995.