References
- Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, et al. Heart disease and stroke statistics-2007 update. A report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation. 2007;115:e69-e171. http://circ.ahajournals.org/content/115/5/e69. Accessed 5 July 2017 https://doi.org/10.1161/CIRCULATIONAHA.106.179918
- Patlak M. From viper's venom to drug design: treating hypertension. FASEB J 2004;18(3):421. PMID: 15003987. https://www.faseb.org/Portals/2/PDFs/opa/venom.pdf. Accessed 5 July 2017. https://doi.org/10.1096/fj.03-1398bkt
- Gomes A, Ghosh S, Ghosh S. et al. Anti-osteoarthritic activity of Bungarus fasciatus venom fraction BF-F47 involving molecular markers in the rats. Toxicon 2016;118:43-46. http://www.sciencedirect.com/science/article/pii/S004101011630112X. Accessed 5 July 2017. https://doi.org/10.1016/j.toxicon.2016.04.039
- Jain D, Kumar S. Snake venom: a potent anticancer agent. Asian Pac J Cancer Prev. 2012;13(10):4855-60. https://www.researchgate.net/publication/ 233937869_Snake_Venom_A_Potent_Anticancer_Agent. Accessed 5 July 2017 https://doi.org/10.7314/APJCP.2012.13.10.4855
- Vyas VK, Brahmbhatt K, Bhatt H, Parmar U, Patidar R. Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pac J Trop Biomed. 2013;3(2):156-62. https://doi.org/10.1016/S2221-1691(13)60042-8
- Zouari-Kessentini R, Srairi-Abid N, Bazaa A, El Ayeb M, Luis J, Marrakchi N. Antitumoral potential of Tunisian snake venoms secreted phospholipases A2. Biomed Res Int. 2013;2013:9. http://dx.doi.org/10.1155/2013/391389. Accessed 12 June 2017
- Making Medicines from Snake Venom. https://biologybiozine.com/2012/11/01/making-medicine-from-snake-venom/. Accessed 5 July 2017.
- Van Thiet N. Study on ribonucleolytic activity of cobra. J Med Mater. 2002; 7(6):181-5.
- Dhananjaya BL, D'souza CJM. An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochem Mosc. 2010;75(1):1-6. https://www.researchgate.net/publication/42439895_An_Overview_on_Nucleases_DNase_RNase_and_Phosphodiesterase_in_Snake_Venoms. Accessed 5 July 2017 https://doi.org/10.1134/S0006297910010013
- Snake Venom. Types of Snake Venom. http://www.chm.bris.ac.uk/ webprojects2003/stoneley/types.htm. Accessed 5 July 2017.
- Beintema JJ, Kleineidam RG. The ribonuclease a superfamily: general discussion. Cell Mol Life Sci. 1998;54:825-32. https://doi.org/10.1007/s000180050211
- Sorrentino S, Libonati M. Structure-function relationships in human ribonucleases: main distinctive features of the major RNase types. FEBS Lett. 1997;404(1):1-5. http://onlinelibrary.wiley.com/doi/10.1016/S0014-5793(97)00086-0/full. Accessed 5 July 2017
- Cho S, Zhang J. Zebrafish Ribonucleases are bactericidal: implications for the origin of the vertebrate RNase a Superfamily. Mol Biol Evol. 2007;24(5):1259-68. https://doi.org/10.1093/molbev/msm047
- Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol. 2003;4(3):69-73.
- Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol. 1989;142(12):4428-34. http://www.jimmunol.org/content/142/12/4428. Accessed 5 July 2017
- Pulido D, Arranz-Trullen J, Prats-Ejarque G, Velazquez D, Torrent M, Moussaoui M, et al. Insights into the antimicrobial mechanism of action of human RNase6: structural determinants for bacterial cell agglutination and membrane permeation. Int J Mol Sci. 2016;17:552. https://doi.org/10.3390/ijms17040552
- Pulido D, Torrent M, Andreu D, Nogues MV, Boix E. Two human host defense ribonucleases against mycobacteria, the eosinophil cationic protein (RNase 3) and RNase 7. Antimicrob Agents Chemother. 2013;57:3797-805. https://doi.org/10.1128/AAC.00428-13
- Rudolph B, Podschun R, Sahly H, Schubert S, Schroder JM, Harder J. Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob Agents Chemother. 2006;50(9):3194-6. http://aac.asm.org/content/50/9/3194.full. Accessed 5 July 2017 https://doi.org/10.1128/AAC.00246-06
- Tao F, Fan M, Zhao W, Lin Q, Ma R. A novel cationic ribonuclease with antimicrobial activity from Rana dybowskii. Biochem Genet. 2011;49:369-84. https://doi.org/10.1007/s10528-010-9414-4
- Bedoya VI, Boasso A, Hardy AW, Rybak S, Shearer GM, Rugeles MT. Ribonucleases in HIV type 1 inhibition: effect of recombinant RNases on infection of primary T cells and immune activation-induced RNase Gene and Protein expression. AIDS Res Hum Retrovir. 2006;22(9):897-907. doi:10.1089/aid.2006.22.897.
- Domachowske JB, Bonville CA, Dyer KD, Rosenberg HF. Evolution of antiviral activity in the ribonuclease a gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res. 1998;26(23):5327-32. https://doi.org/10.1093/nar/26.23.5327
- Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res. 1998;26:3358-63. https://doi.org/10.1093/nar/26.14.3358
- Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis. 1998;177:1458-64. https://doi.org/10.1086/515322
- Huang H-C, Wang S-C, Leu Y-J, Lu S-C, Liao Y-D. The Rana catesbeiana rcr gene encoding a cytotoxic ribonuclease. Tissue distribution, cloning, purification, cytotoxicity, and active residues for RNase activity. J Biol Chem. 1998;273:6395-401. https://doi.org/10.1074/jbc.273.11.6395
- Kim JS, Soucek J, Matousek J, Raines RT. Mechanism of ribonulcease cytotoxicity. J Biol Chem. 1995;270(52):31097-102. https://doi.org/10.1074/jbc.270.52.31097
- Kim JS, Sousek J, Matousek J, Raines RT. Structural basis for the biological activities of bovine seminal ribonuclease. J Boil Chem. 1995;270(18):10525-30. https://doi.org/10.1074/jbc.270.18.10525
- Leland PA, Raines RT. Cancer chemotherapy-Rionucleases to the rescue. Biol Chem. 2001;8:405-13. https://doi.org/10.1016/S1074-5521(01)00030-8
- Raines RT. Ribonuclease a: from model system to cancer chemotherapeutic. In: Frey PA, Northrop DB, editors. Enzymatic mechanism. Washington DC: IOC press; 1999. p. 235-49. https://biochem.wisc.edu/sites/default/files/labs/raines/pdfs/Raines1999.pdf. Accessed 5 July 2017.
- Wu Y, Mikulski SM, Ardelt W, Rybark SM, Youle RJ. A cytotoxic ribonuclease: study of the mechanism of onconase cytotoxicity. J Biol Chem. 1993; 268(14):10686-10693. PMID: 8486718. https://www.ncbi.nlm.nih.gov/ pubmed/8486718. Accessed 5 July 2017
- Shcheglovitova O, Maksyanina E, Ionova I, Rustam'yan YL, Komolova G. Cow milk angiogenin induces cytokine production in human blood leukocytes. Bull Exp Biol Med. 2003;135:158-60. https://doi.org/10.1023/A:1023871931764
- Tamgurrini M, Scala G, Verde C, Ruocco MR, Parente A, Venuta S, et al. Immunosuppressive activity of bovine seminal RNase on T-cell proliferation. Eur J Biochem. 1990;190(1):145-8. https://doi.org/10.1111/j.1432-1033.1990.tb15557.x
- Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, et al. Human ribonuclease a superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol. 2004;173:6134-42. https://doi.org/10.4049/jimmunol.173.10.6134
- Goo SM, Cho S. The expansion and functional diversification of the mammalian Ribonuclease a Superfamily epitomizes the efficiency of Multigene families at generating biological novelty. Genome Biol Evol. 2013;5:2124-40. https://doi.org/10.1093/gbe/evt161
- Koczera P, Martin L, Marx G, Schuerholz T. The Ribonuclease a Superfamily in humans: canonical RNases as the buttress of innate immunity. Int J Mol Sci. 2016;17(8):1278. https://doi.org/10.3390/ijms17081278
- Sorrentino S. The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett. 2010;584:2194-200. https://doi.org/10.1016/j.febslet.2010.04.018
- Gupta SK, Haigh BJ, Griffin FJ, Wheeler TT. The mammalian secreted RNases: mechanisms of action in host defense. Innate Immun. 2013;19:86-97. https://doi.org/10.1177/1753425912446955
- Irie M, Nitta K, Nonaka T. Biochemistry of frog ribonucleases. Cell Mol Life Sci. 1998;54:775-84. https://doi.org/10.1007/s000180050206
- Fry BG, Scheib H, de LM I, Junqueira de Azevedo I, Silva DA, Casewell NR. Novel transcripts in the maxillary venom glands of advanced snakes. Toxicon. 2012;59(7-8):696-708. https://doi.org/10.1016/j.toxicon.2012.03.005
- Vasilenko SK, Babkina GT. Isolation and properties of ribonuclease isolated from cobra venom. Biokhimiia. 1965;30(4):705-712. [Article in Russian] PMID: 5894094. https://www.ncbi.nlm.nih.gov/pubmed/5894094. Accessed 5 July 2017
- Mahalakshmi YV, Jagannadham MV, Pandit MW. Ribonuclease from cobra snake venom: purification by affinity chromatography and further characterization. IUBMB Life. 2000;49:309-16. http://onlinelibrary.wiley.com/ doi/10.1080/15216540050033186/epdf. Accessed 5 July 2017
- Mahalakshmi YV, Pandit MW. The new ribonuclease from cobra venom (Naja naja) showing specificity towards cytidylic acid. Biochem Biophys Res Commun. 1987;145(2):740-8. http://documents.tips/documents/a-newribonuclease- from-cobra-venom-naja-naja-showing-specificity-towards. html#. Accessed 5 July 2017 https://doi.org/10.1016/0006-291X(87)91027-8
- Babkina GT, Vasilenko SK. Nuclease activity of the venom of central Asian snakes. Biokhimiya. 1964;29(2):268-272. [Article in Russian] PMID: 14207641. https://www.ncbi.nlm.nih.gov/pubmed/14207641. Accessed 5 July 2017
- Raines RT. Ribonuclease a. Chem Rev. 1998;98:1045-65. https://doi.org/10.1021/cr960427h
- Haigis MC, Kurten EL, Raines RT. Ribonuclease inhibitor as an intracellular sentry. Nucleic Acids Res. 2003;31:31024-32.
- Ardelt W, Mikulski SM, Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens Oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem 1991;266(1):245-251. PMID:1985896. http://www.jbc.org/content/266/1/245.full.pdf. Accessed 5 July 2017.
- Klink TA, Raines RT. Conformational stability is a determinant of ribonuclease cytotoxicity. J Biol Chem. 2000;275(23):17463-7. https://doi.org/10.1074/jbc.M001132200