DOI QR코드

DOI QR Code

Efficient membrane element for cyclic response of RC panels

  • Tesser, Lepoldo (Geodynamique & Structure) ;
  • Talledo, Diego A. (Department of Architecture Construction Conservation (DACC), University IUAV of Venice, Campus Terese)
  • Received : 2017.01.17
  • Accepted : 2017.05.10
  • Published : 2017.09.25

Abstract

This paper presents an efficient membrane finite element for the cyclic inelastic response analysis of RC structures under complex plane stress states including shear. The model strikes a balance between accuracy and numerical efficiency to meet the challenge of shear wall simulations in earthquake engineering practice. The concrete material model at the integration points of the finite element is based on damage plasticity with two damage parameters. All reinforcing bars with the same orientation are represented by an embedded orthotropic steel layer based on uniaxial stress-strain relation, so that the dowel and bond-slip effect of the reinforcing steel are presently neglected in the interest of computational efficiency. The model is validated with significant experimental results of the cyclic response of RC panels with uniform stress states.

Keywords

References

  1. Aktan, A.E. and Bertero, V.V. (1985), "RC structural walls: Seismic design for shear", J. Struct. Eng. ASCE, 111(8), 1775-1791. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:8(1775)
  2. Bazant, Z.P., Tsubaki, T. and Belytschko, T.B. (1980), "Concrete reinforcing net: Safe design", J. Struct. Div. ASCE, 106(9), 1899-1906.
  3. Beiraghi, H., Kheyroddin, A. and Kafi, M.A. (2015), "Nonlinear fiber element analysis of a reinforced concrete shear wall subjected to earthquake records", Iran. J. Sci. Technol. Trans. Civil Eng., 39(C2+), 409-422.
  4. Berto, L., Saetta, A., Scotta, R. and Talledo, D. (2014), "A coupled damage model for RC structures: Proposal for a frost deterioration model and enhancement of mixed tension domain", Constr. Build. Mater., 65, 310-320. https://doi.org/10.1016/j.conbuildmat.2014.04.132
  5. Bhide, S.B. and Collins, M.P. (1987), Reinforced Concrete Elements in Shear and Tension, Department of Civil Engineering, University of Toronto, Canada.
  6. Cicekli, U.G., Voyiadjis, Z. and Abu Al-Rub, R.K. (2007), "A plasticity and anisotropic damage model for plain concrete", J. Plast., 23(10-11), 1874-1900. https://doi.org/10.1016/j.ijplas.2007.03.006
  7. Darwin, D. and Pecknold, D.A. (1976), "Analysis of RC Shear Panels under Cyclic Loading", J. Struct. Div. ASCE, 102(ST2), 355-369.
  8. Eberhard, M.O. and Sozen, M.A. (1993), "Behavior-based method to determine design shear in earthquake-resistant walls", J. Struct. Eng. ASCE, 119(2), 619-640. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(619)
  9. Faria, R., Oliver, J. and Cervera, M. (1998), "A strain-based plastic viscous-damage model for massive concrete structures", J. Sol. Struct., 35(14), 1533-1558. https://doi.org/10.1016/S0020-7683(97)00119-4
  10. Faria, R., Oliver, J. and Cervera, M. (2004), "Modeling material failure in concrete structures under cyclic actions", J. Struct. Eng. ASCE, 130(12), 1997-2005. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1997)
  11. FIB Bull 45 (2008), Practitioners' Guide to Finite Element Modeling of Reinforced Concrete Structures, Federation Internationale du Beton Bullettin, 45.
  12. Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints, Earthquake Engineering Research Center, University of California, U.S.A.
  13. Fischinger, M., Isakovic, T. and Kante, P. (2004), "Implementation of a macro model to predict seismic response of RC structural walls", Comput. Concrete, 1(2), 211-226. https://doi.org/10.12989/cac.2004.1.2.211
  14. Fischinger, M., Rejec, K. and Isakovic, T. (2012), "Modelling inelastic shear response of RC walls", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbona, Portugal.
  15. Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI Struct. J., 82(3), 310-323.
  16. Greifenhagen, C. and Lestuzzi, P. (2005), "Static cyclic tests on lightly reinforced concrete shear walls", Eng. Struct., 27(11), 1703-1712. https://doi.org/10.1016/j.engstruct.2005.06.008
  17. Hidalgo, P.A., Ledezma, C.A. and Jordan, R.M. (2002), "Seismic behavior of squat reinforced concrete shear walls", Earthq. Spectr., 18(2), 287-308. https://doi.org/10.1193/1.1490353
  18. Hofstetter, G. and Mang, H. (1995), Computational Mechanics of Renforced Concrete Structures, Vieweg+Teubner Verlag, Wiesbaden, Germany.
  19. Hsu, T.T.C. and Zhu, R.R.H. (2002), "Softened membrane model for reinforced concrete elements in shear", ACI Struct. J., 99(4), 460-469.
  20. Jiang, H. and Kurama, Y.C. (2010), "Analytical modeling of medium-rise reinforced concrete shear walls", ACI Struct. J., 107(4), 400-410.
  21. Ju, J.W. (1989), "On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects", J. Sol. Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2
  22. Karsan, I.D. and Jirsa, J.O. (1969), "Behavior of concrete under compressive loadings", J. Struct. Div. ASCE, 95(ST12), 2543-2563.
  23. Kratzig, W.B. and Polling, R. (2004), "An elasto-plastic damage model for reinforced concrete with minimum number of material parameters", Comput. Struct., 82(15-16), 1201-1215. https://doi.org/10.1016/j.compstruc.2004.03.002
  24. Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI J., 66(8), 656-666.
  25. Lee, H.J. and Fenves, G.L. (1998), "A plastic damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. D., 27(9), 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
  26. Lee, H.J. and Kuchma, D.A. (2007), "Seismic overstrength of shear walls in parking structures with flexible diaphragms", J. Struct. Eng. ASCE, 11(1), 86-109.
  27. Leonhardt, F. and Monnig, E. (1975), Vorlesungen uber Massivbau. Teil 2: Sonderfalle der Bemessung im Stahlbetonbau, Springer Verlag, Berlin, Germany.
  28. Lowes, L.N., Lehman, D.L., Birely, A.C., Kuchma, D.A., Hart, C.R. and Marley, K.P. (2011), UW-UIUC-UCLA NEESR Complex Wall Project: Summary of Planar Wall Test Program.
  29. Mansour, M. and Hsu, T.T.C. (2005a), "Behavior of reinforced concrete elements under cyclic shear. I: Experiments", J. Struct. Eng. ASCE, 131(1), 44-53. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(44)
  30. Martinelli, P. and Filippou, F.C. (2009), "Simulation of the shaking table test of a seven-story shear wall building", Earthq. Eng. Struct. D., 38(5), 587-607. https://doi.org/10.1002/eqe.897
  31. Massone, L.M., Orakcal, K. and Wallace, J.W. (2006), Shear-Flexure Interaction for Structural Walls, ACI Special Publication-Deformation Capacity and Shear Strength of Reinforced Concrete Members Under Cyclic Loading, SP-236.
  32. Mazars, J., Kotronis, P., Ragueneau, F. and Casaux, G. (2006), "Using multifiber beams to account for shear and torsion. Applications to concrete structural elements", Comput. Meth. Appl. M., 195(52), 7264-7281. https://doi.org/10.1016/j.cma.2005.05.053
  33. Mo, Y.L., Zhong, J. and Hsu, T.T.C. (2008), "Seismic simulation of RC wall-type structures", Eng. Struct., 30(11), 3167-3175. https://doi.org/10.1016/j.engstruct.2008.04.033
  34. Ohomori, N., Tsubota, H., Inoue, N., Kurihara, K. and Watanabe, S. (1989), "Reinforced concrete membrane elements subjected to reversed cyclic in-plane shear stress", Eng. Struct., 115(1), 61-72.
  35. Okamura, H. and Maekawa, K. (1991), Nonlinear Analysis and Constitutive Models of Reinforced Concrete, Giho-do Press, Tokyo, Japan.
  36. Palermo, D. and Vecchio, F.J. (2007), "Simulation of cyclically loaded concrete structures based on the finite-element method", J. Struct. Eng. ASCE, 133(5), 728-738. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:5(728)
  37. Pang, X.B.D. and Hsu, T.T.C. (1995), "Behavior of reinforced concrete membrane elements in shear", ACI Struct. J., 96(6), 665-677.
  38. Rhee, I., Willam, K.J. and Shing, B.P. (2004), Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models, Vail Cascade Resort, Vail Colorado, U.S.A.
  39. Ruggiero, D.M., Bentz, E.C., Calvi, G.M. and Collins, M.P. (2016), "Shear response under reversed cyclic loading", ACI Struct. J., 113(6), 1313-1324.
  40. Salonikios, T.N., Kappos, A.J., Tegos, I.A. and Penelis, G.G. (1999), "Behavior of reinforced concrete membrane elements in shear", ACI Struct. J., 96(4), 649-660.
  41. Saritas, A. and Filippou, F.C. (2009), "Inelastic axial-flexure-shear coupling in a mixed formulation beam finite element", ACI Struct. J., 44(8), 913-922.
  42. Saritas, A. and Filippou, F.C. (2013), "Analysis of RC walls with a mixed formulation frame finite element", Comput. Concrete, 12(4), 919-936.
  43. Scotta, R., Talledo, D.A., Tesser, L. and Vitaliani, R. (2014), "Non-linear behaviour modelling of RC panels subjected to inplane loads", Proceedings of the 4th European Conference on Computational Mechanics, Palais des Congres, Paris, France, May.
  44. Scotta, R., Tesser, L., Vitaliani, R. and Saetta, A. (2009), "Global damage indexes for the seismic performance assessment of RC structures", Earthq. Eng. Struct. D., 38(8), 1027-1049. https://doi.org/10.1002/eqe.882
  45. Stevens, N.J., Uzumeri, S.M. and Collins, M.P. (1987), Analytical Modelling of Reinforced Concrete Subjected to Monotonic and Reversed Loadings, Department of Civil Engineering, University of Toronto, Canada.
  46. Tesser, L., Filippou, F.C., Talledo, D.A., Scotta, R. and Vitaliani, R. (2011), "Nonlinear analysis of R/C panels by a two parameter concrete damage model", Proceedings of the 3rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Corfu, Greece, May.
  47. Thomsen, J.H. and Wallace, J.W. (2004), "Displacement-based design of slender reinforced concrete structural wallsexperimental verification", J. Struct. Eng. ASCE, 130(4), 618-630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618)
  48. Turgeon, J., Hart, C., Marley, K., Birely, A., Lehman, D., Lowes, L. and Kuchma, D. (2013), Seismic Behavior of Modern Reinforced Concrete Coupled Wall (Specimen CW1), Tech. Report, Network for Earthquake Engineering Simulation (NEES).
  49. Vecchio, F.J. (1989), "Nonlinear finite element analysis of reinforced concrete membranes", ACI Struct. J., 86(1), 26-35.
  50. Vecchio, F.J. (1990), "Reinforced concrete membrane element formulations", J. Struct. Eng. ASCE, 116(3), 730-750. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:3(730)
  51. Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: Formulation", J. Struct. Eng. ASCE, 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
  52. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231.
  53. Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release ratebased plastic-damage model for concrete", J. Sol. Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038
  54. Wu, Y.T., Lan, T.Q., Xiao, Y. and Yang, Y.B. (2016), "Macromodeling of reinforced concrete structural walls: State-of-theart", J. Earthq. Eng., 1-27.