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HEEGAARD SPLITTINGS OF BRANCHED CYCLIC

COVERINGS OF CONNECTED SUMS OF LENS SPACES

Tatyana Kozlovskaya

Abstract. We study relations between two descriptions of closed ori-

entable 3-manifolds: as branched coverings and as Heegaard splittings.
An explicit relation is presented for a class of 3-manifolds which are

branched cyclic coverings of connected sums of lens spaces, where the
branching set is an axis of a hyperelliptic involution of a Heegaard sur-

face.

1. Introduction

Arbitrary closed orientable 3-manifold M can be described in various ways:
by its triangulation, fundamental polyhedron, surgery on a link, Heegaard split-
ting, etc. Choosing of a way depends on a context as well as on a question asked
about M .

Closed orientable 3-manifolds with cyclic symmetries are objects of intensive
study in last decades. The initial and most known examples of closed orientable
3-manifolds belong to the class of branched cyclic covers of the 3-sphere S3.
Among them are the following:

• spherical and hyperbolic dodecahedral spaces, constructed by Weber
and Seifert in 1933 [14], are the 3-fold cyclic cover of S3 branched over
the trefoil knot and the 5-fold cyclic cover of S3 branched over the
Whitehead link, respectively;

• Fibonacci manifolds, constructed by Helling, Kim, and Mennicke [8],
are n-fold cyclic covers of S3 branched over the figure-eight knot;

• Sieradski manifolds, constructed by Cavicchioli, Kim, and Hegenbarth
[7], are n-fold cyclic covers of S3 branched over the trefoil knot;

• the smallest volume closed orientable hyperbolic 3-manifold, construc-
ted by Fomenko and Matveev [10] and by Weeks [15], is the 3-fold cyclic
cover of S3, branched over the two-bridge knot 7/3.

Received September 19, 2016; Accepted December 26, 2016.
2010 Mathematics Subject Classification. Primary 57M12, 57M25.

Key words and phrases. Heegaard splitting, branched cyclic covering, lens space.
This work was supported in part by Russian Foundation for Basic Research (grant number

12-01-90812).

c©2017 Korean Mathematical Society

1851



1852 T. KOZLOVSKAYA

Here we are interested in the class of closed 3-manifolds which are branched
cyclic coverings of connected sums of lens spaces. In particular, the class con-
tains manifolds from [4] which are branched cyclic covers of connected sums of
two lens spaces.

For lens spaces with arbitrary parameters we present Heegaard diagrams
(see Theorem 4.2 and Fig. 4) for manifolds from the class in the case when the
branching set is an axis of a hyperelliptic involution of a Heegaard surface, i.e.,
an involution with 2g + 2 fixed points for a surface of genus g.

2. Branched cyclic coverings and symmetric Heegaard splittings

Recall some basic definitions of the 3-manifold theory. Let M and N be
triangulated 3-dimensional manifolds, and let f : M → N be a simplicial map.
The map f is said to be a branched covering space projection if the restriction
of f to the complement of the 1-dimensional skeleton of the triangulation is a
covering space projection. The branch set B ⊂ N is the set of points z ∈ N
which have the property that z has no neighborhood U such that the restriction
of f to an arc-component of f−1(U) is a covering. The set L = f−1(B) is
referred to as the branch cover, and we say that M is a covering space of
N , branched over B. We refer to the pair (M,L) as a branching covering of

(N,B), writing f : (M,L) → (N,B). Let f̂ be the restriction of f to M \ L.

Then f̂ : (M \ L) → (N \ B) is an ordinary covering space projection, which
is referred to as the associate unbranched covering space. We say that M is an

n–fold cyclic covering of N branched over B if the group f̂∗π1(M \ L) is the
kernel of a homomorphism from π1(N \B) onto Zn, a cyclic group of order n.

We will work with representations of closed orientable 3-manifolds by Hee-
gaard splittings. Consider Hg and H ′g, two solid handlebodies of genus g, and
let τ : Hg → H ′g be a map that identifies a point z ∈ Hg with its corresponding
point z′ ∈ H ′g. Let Φ be an orientation-preserving self-homeomorphism of ∂Hg.
We use Φ to define a map which “glue” ∂Hg to ∂H ′g by the rule τΦ(z) = z,
where z ∈ ∂Hg. The space Hg ∪τΦ H

′
g is a closed orientable 3-manifold which

is represented by a Heegaard splitting of genus g. It is well-known that every
closed orientable 3-manifold can be presented in this way for some (nonunique)
integer g and surface homeomorphism Φ. A 3-manifold which is so represented
will be said to have Heegaard genus g if it admits a Heegaard splitting of genus
g, but no Heegaard splittings of genus smaller than g. The only 3-manifold of
genus 0 is S3; 3-manifolds of Heegaard genus 1 are S2 × S1 and lens spaces
L(p, q) defined below.

In this paper we consider a special type of Heegaard splittings, which we
will refer to as n-symmetric Heegaard splittings. Let Hg, H

′
g, τ , and Φ be

as defined above. It will be assumed further that Hg and H ′g are subsets of

Euclidean 3-space E3 and there is given a piecewise-linear homeomorphism
P : E3 → E3 of period n, and that Hg is invariant under the action of P. Note
that the homeomorphisms P and τ define in a natural way a transformation
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P ′ = τPτ−1 which acts on H ′g such that P ′ is also has period n, and that H ′g
is left invariant under the action of P ′.

The Heegaard splitting Hg ∪τΦ H
′
g is said to be n-symmetric if

(i) There is n0, with 1 ≤ n0 ≤ n, such that (Φ)(P|∂Hg
)(Φ−1) = (P|∂Hg

)n0 .
(ii) The orbit space of Hg under the action of P is a 3-ball.
(iii) The fixed point set of P coincides with the fixed point set of Pk for

each k, 1 ≤ k < n.
(iv) The image of the fixed point set of P is an unknotted set of arcs in the

ball Hg/P.

The n-symmetric Heegaard genus of a 3-manifold M is the smallest integer g
such that M admits a n-symmetric Heegaard splitting of genus g.

Remark 2.1. As observed in [13], by the positive solution of the Smith Conjec-
ture [12] it is easy to see that necessary n0 ≡ ±1 mod n. We recall that a set
of mutually disjoint arcs {α1, . . . , α`} properly embedded in a handlebody H
is unknotted if there is a set of mutually disjoint discs {D1, . . . , D`} properly
embedded in H such that αi ∩Di = αi ∩ ∂Di = αi, αi ∩Dj = ∅ for j 6= i, and
∂Di \ αi ⊂ ∂H for 1 ≤ i, j ≤ `.

A relation between cyclic coverings of S3 branched over knots and symmetric
Heegaard splittings was obtained in [1, Theorem 4]: every n-fold cyclic covering
of S3 branched over a knot of braid number b is a closed, orientable 3-manifold
of n-symmetric Heegaard genus g ≤ (b− 1)(n− 1).

This result has a natural generalization from the case of knots to the case of
links. Let L = ∪µj=1 be an oriented µ-component link in S3. An n-fold cyclic

covering of S3 branched over L is completely determined by assigning to each
component Lj an integer cj ∈ Zn \{0}, such that the set {c1, . . . , cµ} generates
the group Zn, The monodromy associated to the covering sends each meridian
of Lj , coherently oriented with the chosen orientations of L and S3, to the
permutation (12 · · ·n)cj ∈ Sn. Following [11] we shall call a branched cyclic
covering strictly-cyclic if cj′ = cj′′ , for every j′, j′′ ∈ {1, 2, . . . , µ}. It was shown
in [13] that every n-fold strictly-cyclic covering of S3 branched over a link of
bridge number b is a closed orientable 3-manifold of n-symmetric Heegaard
genus g ≤ (b− 1)(n− 1).

3. Lens spaces and their cyclic branched covers

Let p and q be a pair of coprime integers, p ≥ 3 and p > q > 0. Consider a
p-gonal bipyramid, i.e., the union of two cones over a regular p-gon as presented
in Fig. 1, where the vertices of the p-gon are denoted by A0, A1, . . . , Ap−1 and
apex of cones are denoted by S+ and S−. For each i = 0, . . . , n − 1 we glue
the face AiS+Ai+1 with the face Ai+qS−Ai+q+1, where the indices are taken
modulo p and the vertices are glued in the order in which they are written. The
manifold obtained is the lens space L(p, q). Lens spaces L(p, q) and L(p′, q′)
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Figure 1. A p–gonal bipyramid.

are homeomorphic if and only if p = p′ and q′ = ±q, or qq′ = ±1 mod p. Recall
that L(1, 0) = S3, L(0, 1) = S2 × S1, L(2, 1) = RP 3.

A convenient way of presenting a Heegaard diagram is given below. Let us
cut the surface Sg along meridional disks v1, v2, . . . , vg. We obtain a sphere
with 2g disks D1, D̄1, . . . , Dg, D̄g, where Di and D̄i , which are joined by arcs
obtained by cutting meridians of the system vi. The meridians u will then be
cut into arcs having endpoints u ∩ vi on the boundaries of the disks Di, D̄i,
i = 1, . . . , g. Let a direction to each vi be chosen and let the point of set u∩ vi
be numbered in the given direction. This numbering induces a numbering of
the ends of arcs on the boundary of the disks Di and D̄i. Heegaard diagram of
the lens space L(p, q) is presented in Fig. 2.

Figure 2. A Heegaard diagram for lens space L(p, q).

Dunwoody introduced in [5] some infinite family of diagrams D(a, b, c, n, r, s)
with cyclic symmetry, depending on six integer parameters a, b, c, n, r, s, such
that n > 0 and a, b, c, r, s > 0. Each manifold arising in this way is called a
Dunwoody manifold. It was shown by Grasselli and Mulazzani [6] that Dun-
woody manifolds are exactly the cyclic branched coverings of (1, 1)-knots, i.e.,
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the knots that admit 1-bridge presentation of genus 1. In particular, the class
of (1, 1)-knots contains all two-bridge knots and all torus knots in S3. The knot
is called a (g, b)-knot if it admits a b-bridge presentation of genus g. Notice
that (1, 1)-knots are knots in a 3-sphere S3 or in lens spaces. For generalization
of Dunwoody manifolds see [2].

The existence and uniqueness of the cyclic branched coverings of (g, 1)-knots
were investigated in [4]. Moreover, there was given some algorithm of finding
the fundamental group of a covering. We note that 3-manifolds from the class
of cyclic branched coverings of (1, b)-links (b > 2) were considered in [9]. Some
infinite families of 3-manifolds which are cyclic coverings of lens spaces L(p, q),
branched over two-component links, were constructed in [3].

4. Heegaard diagrams for connected sums of lens spaces and for
cyclic branched covering spaces

We start with describing Heegaard diagrams for connected sums of lens
spaces, i.e., for manifolds N(p1, q1) · · · (pk, qk) = L(p1, q1)# · · ·#L(pk, qk). We
will start with a particular case of the connected sum of two lens spaces given
by parameters (pi, qi) = (3, 1).

Example 4.1. Manifolds N(3, 1)(3, 1) and N(3, 1)(3, 1)(3, 1) admit Heegaard
diagrams presented in Fig. 3 on the left and on the right, respectively. Consider,
firstly, N(3, 1)(3, 1). Denote by A, B, A and B disjoint closed 2-discs on S2.
We orient boundaries ∂A, ∂B in clockwise direction, and boundaries ∂A, ∂B
– in counterclockwise direction. Then for each disc we fix five points on its
boundary and numerate point in respect to the above orientation. Further we
glue the disc A with A, and the disc B with B in such a way that points with
the same numbers will be identified. After that all arcs of the diagram will
split into two classes of equivalent. These classes can be seen in Fig. 3.

A Heegaard diagram for N(3, 1)(3, 1)(3, 1) has similar description. A gener-
alization to Heegaard diagrams of N(p1, q1) · · · (pk, qk) is straightforward.

Now we will describe n-symmetric Heegaard diagram for the n-fold branched
cyclic cover Nn(p1, q1) · · · (pk, qk) of the 3-manifold N(p1, q1) · · · (pk, qk) with
branching set, corresponding the axis of the hyperelliptic involution of the
Heegaard surface.

Theorem 4.2. A manifold Nn(p1, q1) · · · (pk, qk) admits an n-symmetric Hee-
gaard diagram presented in Figure 4.

The construction of a Heegaard diagram is as follows. Denote by A,B, . . . , Z
and A,B, . . . , Z discs of the Heegaard diagram of N(p1, q1) · · · (pk, qk), which
arises as a generalization of Fig. 3. Denote by Ai, Bi, . . . , Zi, Ai, Bi, . . . , Zi
i = 1, . . . , n discs, obtained by the n-cyclic symmetry. The discs Ai, Bi, . . . , Zi
and Ai, Bi, . . . , Zi, i = 1, . . . , n, will serve as discs of the Heegaard diagram of
Nn(p1, q1) · · · (pk, qk). We label points on the boundary of Ai, Bi, . . . , Zi (resp.
Ai, Bi, . . . , Zi) by p1, p2, p3, . . . , pk with a counterclockwise orientation (resp.
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Figure 3. Heegaard diagrams for N(3,1)(3,1) and N(3,1)(3,1)(3,1).
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Figure 4. A Heegaard diagram for Nn(p1, q1)(p2, q2) · · · (pk, qk).

clockwise orientation). These points are numerated in according to the chosen
direction of the diversion. We identify the discs in pairs Ai and Ai, . . . , Zi and
Zi in such a way that points with the same numbers will coincide. The arcs of
the diagram are drawn in Fig. 4.
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The proof consists of two steps. Firstly, we show that the presented diagram
is a Heegaard diagram of some 3-manifold. Secondly, we show the this manifold
is a branched cyclic cover of a connected sum of lens spacesN(p1, q1) · · · (pk, qk).
Since these two steps are technically standard, we omit them here.
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