
Bull. Korean Math. Soc. 54 (2017), No. 5, pp. 1827–1849

https://doi.org/10.4134/BKMS.b160759

pISSN: 1015-8634 / eISSN: 2234-3016

INTEGRAL CHOW MOTIVES OF THREEFOLDS WITH

K-MOTIVES OF UNIT TYPE

Sergey Gorchinskiy

Abstract. We prove that if a smooth projective algebraic variety of

dimension less or equal to three has a unit type integral K-motive, then
its integral Chow motive is of Lefschetz type. As a consequence, the

integral Chow motive is of Lefschetz type for a smooth projective variety
of dimension less or equal to three that admits a full exceptional collection.

1. Introduction

There are various categories of Grothendieck motives of smooth projective
algebraic varieties. A category of motives depends on the choice of a global
intersection theory, see Manin’s exposition in [26, § 1]. Among these categories,
we have the category of Chow motives and the category of K-motives. The
Chow motive of a smooth projective variety X is controlled by algebraic cycles,
more precisely, by Chow groups of products of X with other varieties. The K-
motive of X is controlled by vector bundles, more precisely, by K0-groups of
products ofX with other varieties. It makes sense to compare these two motives
of X.

Simplest Chow motives are that of Lefschetz type, that is, direct sums of
tensor powers of the Lefschetz motive. Simplest K-motives are that of unit
type, that is, direct sums of the unit object, see Section 2 for more detail.

It was shown by the author and Orlov in [19, Prop. 4.2] that if the Chow
motive of X is of Lefschetz type, then the K-motive of X is of unit type. A
natural question is then whether the converse implication is also true:

Question. Let X be a smooth projective variety such that its K-motive is of
unit type. Is it true that the Chow motive of X is of Lefschetz type?

This question had been already asked by Bernardara and Tabuada in [5].
In higher dimensions, the answer to Question is negative by [5, Prop. 2.3],
where it is constructed an example of a quadric X over a non-algebraically
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closed field such that the K-motive of X is of unit type and the Chow motive
of X is not of Lefschetz type. According to [5, Ex. 5.4], one can take the
ground field Q(t1, t2, t3), where t1, t2, t3 are independent variables, and let X
be the six-dimensional Pfister quadric that corresponds to the quadratic form
〈1, t1〉 ⊗ 〈1, t2〉 ⊗ 〈1, t3〉. Nevertheless, it is not known whether the answer to
Question is positive over an algebraically closed field.

Notice that with rational coefficients the Question is simple, because there
is a well-known close relation between the categories of rational Chow motives
and of rational K-motives, see Tabuada’s [37, Theor. 1.1] in the context of non-
commutative motives instead of K-motives and also the equivalence of cate-
gories (3.1) in Section 3. This implies that for any smooth projective variety,
its rational Chow motive is of Lefschetz type if and only if its rational K-motive
is of unit type, see [5, Theor. 2.1], [27, Theor. 1.3], [15, Prop. 2.1(1)], [41, § 2],
and also Proposition 3.2.

The main result of the paper is a positive answer to Question in dimensions
less or equal to three, see Theorem 2.1 (in the case of dimension three we
also assume that the characteristic of the ground field is not two). The most
essential part in the proof of the theorem is the case of a threefold, the cases
of dimensions one and two are much easier, see Remark 4.13.

A rather direct application of Theorem 2.1 is the following result, see The-
orem 2.2. Let X be a smooth projective variety that admits a full exceptional
collection and suppose that the dimension of X is less or equal to three (in the
case of dimension three we also assume that the characteristic of the ground
field is not two); then the Chow motive of X is of Lefschetz type. In fact, we
require in Theorem 2.2 a weaker condition on X, namely, that X admits only
an exceptional collection of expected length.

When X is a curve, the statement of Theorem 2.2 is easy. When X is a sur-
face, this was proved previously by Vial in [41, Theor. 2.7] by a different method
based on delicate properties of exceptional collections on surfaces obtained in
recent papers by Perling [34] and Kuznetsov [24].

A motivation for Theorem 2.2 is as follows: it seems that varieties with a
full exceptional collection tend to have Chow motives of Lefschetz type. The
first example of a full exceptional collection was elaborated by Beilinson on a
projective space, see [4]. Full exceptional collections are constructed now on
many different varieties. Among them one has Grassmanians, see [11] and [21],
and more general homogenous spaces over algebraically closed fields, see [25]
and references therein. The Chow motives of these varieties are known to be
of Lefschetz type. Let us also mention another interesting example: recently,
Kuznetsov has shown in [23] that the Chow motive of a certain Küchle fivefold
(see [22] for Küchle varieties) is of Lefschetz type and it is expected that this
Küchle fivefold admits a full exceptional collection. Finally, note that Orlov
has constructed in [31], [32] embeddings of arbitrary exceptional collections
into derived categories of smooth projective varieties and the Chow motives of
these varieties are of Lefschetz type again.
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The author is grateful to D. Orlov and I. Panin for discussions on this subject
and especially to A. Kuznetsov for a careful reading of the text and many useful
suggestions.

2. Statement of the main result

Let k be a field. All varieties are assumed to be over k unless another ground
field is specified explicitly. Given a field extension k ⊂ L and a variety V , by
VL we denote the extension of scalars of V from k to L.

We refer to [26] for details on the categories of Chow motives and K-motives.
By CH(k) denote the category of Chow motives over k and by KM(k) denote
the category of K-motives over k. Given a smooth projective variety V , by
M(V ) denote its Chow motive in CH(k) and by KM(V ) denote its K-motive
in KM(k). For irreducible smooth projective varieties V1 and V2, we have

HomCH(k)

(
M(V1),M(V2)

)
= CHd(V1 × V2) ,

HomKM(k)

(
KM(V1),KM(V2)

)
= K0(V1 × V2) ,

where d is the dimension of V1. The assignments V 7→M(V ) and V 7→ KM(V )
define contravariant functors from the category of smooth projective varieties
over k to the categories CH(k) and KM(k), respectively. The categories CH(k)
and KM(k) have natural symmetric monoidal structures that come from prod-
ucts of varieties. In both categories, the unit object is the motive of the point
Spec(k), which we denote by 1.

There are isomorphisms M(P1) ' 1 ⊕ L and KM(P1) ' 1 ⊕ 1, where L
is the Lefschetz motive. For short, we put Li := L⊗i for i ∈ Z, where L−1 is
the dual of L. A Chow motive in CH(k) is of Lefschetz type if it is isomorphic
to a (finite) direct sum of copies of Li for some integers i ∈ Z. A K-motive
in KM(k) is of unit type if it is isomorphic to a (finite) direct sum of copies of
1.

Theorem 2.1. Let X be a smooth projective variety of dimension d over a field
k. Suppose that the K-motive KM(X) is of unit type and one of the following
conditions is satisfied:

(i) we have d 6 2;
(ii) we have d = 3 and the characteristic of k is not 2.

Then the Chow motive M(X) is of Lefschetz type.

The next sections of the paper consist in the proof of Theorem 2.1.
Let us say that a smooth projective variety V admits an exceptional collec-

tion of expected length if V has an exceptional collection E1, . . . , En such that
for any field extension k ⊂ L, the classes of (E1)L, . . . , (En)L generate (freely)
the group K0(VL).
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One often considers the Euler pairing on the group K0(V ), which is defined
by the formula

χ : K0(V )⊗K0(V ) −→ Z,

χ([E], [F ]) :=
∑
i>0

dim Exti(E,F ) = χ
(
V,Hom(E,F )

)
,

where [E] and [F ] are classes in K0(V ) of vectors bundles E and F on V ,
respectively, and χ(V,G) denotes the Euler characteristic of a vector bundle G
on V . An advantage of the Euler pairing is that it has a categorical meaning
being defined in terms of the derived category of coherent sheaves on V only.
That is, derived equivalent varieties have the same Euler pairing. However the
Euler pairing is neither symmetric, nor antisymmetric.

We will also use the following symmetric pairing:

(2.1) τ : K0(V )⊗K0(V ) −→ Z , τ([E], [F ]) := χ(V,E ⊗ F ) .

Notice that the pairing τ does depend on the choice of the variety V and is not
well-defined for the derived category of coherent sheaves on V . That is, the
pairing τ does not stay invariant under derived equivalences.

Theorem 2.1 implies the following result.

Theorem 2.2. Let X be a smooth projective variety of dimension d over a
field k. Suppose that X admits an exceptional collection of expected length and
one of the following conditions is satisfied:

(i) we have d 6 2;
(ii) we have d = 3 and the characteristic of k is not 2.

Then the Chow motive M(X) is of Lefschetz type.

Proof. Let us show that the K-motive of X is of unit type. For this there are
several arguments known to experts and we provide one of them for the sake
of completeness (another approaches are, for example, to use a resolution of
the structure sheaf of the diagonal on X × X or, more generally, to use that
semi-orthogonal decompositions lead to decompositions of K-motives, see [19,
Sect. 4]).

Since X admits an exceptional collection of expected length, K0(X) is a
free abelian group of finite rank and the Euler pairing is unimodular. Indeed,
the Euler pairing is given by an upper-triangular matrix with units on the
diagonal in the basis in K0(X) given by the classes of elements in an exceptional
collection of expected length. The pairing τ is obtained from the Euler pairing
by applying the duality isomorphism

K0(X) −→ K0(X) , [E] 7−→ [E∨] ,

to the first argument. Therefore the pairing τ is unimodular as well.
Now let x1, . . . , xr be a basis in K0(X) and let y1, . . . , yr be the dual basis

with respect to the symmetric pairing τ . For each i, 1 6 i 6 n, define an
element πi := p∗1xi ⊗ p∗2yi in K0(X × X), where p1, p2 : X × X → X are the
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natural projections. One checks easily that πi are orthogonal idempotents in
the ring K0(X ×X) = EndKM(k)

(
KM(X)

)
. Furthermore, the decomposition

of identity into a sum of orthogonal idempotents

1 =
n∑
i=1

πi +

(
1−

n∑
i=1

πi

)
defines the decomposition of the K-motive KM(X) into a sum of a K-motive
of unit type and a rest K-motive Q:

KM(X) ' 1
⊕r ⊕Q .

This decomposition is compatible with scalar extensions with respect to ex-
tensions of the field k. Hence, by the definition of an exceptional collection
of expected length, for any field extension k ⊂ L, we have K0(QL) = 0. One
shows that Q = 0 using the same argument as in the proof of [19, Lem. 5.3].
Thus KM(X) is of unit type and we apply Theorem 2.1. �

3. Rational Chow motives of Lefschetz type

By CH(k)Q denote the Q-linear category of rational Chow motives and by
M(V )Q denote the rational Chow motive of a smooth projective variety V .
We will use the following almost evident facts on rational Chow motives of
Lefschetz type.

Lemma 3.1. Let V be an irreducible smooth projective variety of dimension
d such that the rational Chow motive M(V )Q in CH(k)Q is of Lefschetz type.
Then the following holds true:

(i) for each i, 0 6 i 6 d, the intersection pairing CHi(V )Q ⊗CHd−i(V )Q
→ Q is non-degenerate; in particular, CHi(V )Q and CHd−i(V )Q have
the same (finite) dimension over Q;

(ii) for any field extension k ⊂ L and for each i, 0 6 i 6 d, the natural
homomorphism CHi(V )Q → CHi(VL)Q is an isomorphism;

(iii) for any field extension k ⊂ L, the variety VL over L is irreducible.

Proof. Part (i) follows from [19, Lem. 2.1], where one uses the duality M(V )∨Q '
M(V )Q ⊗ L−d. To show (ii) one uses that scalar extension is well-defined for
Chow motives. Finally, (iii) is implied by (ii) with i = 0, because CH0(VL)Q is
the Q-vector space generated by irreducible components of VL and CH0(V )Q '
Q because V is irreducible. �

By KM(k)Q denote the Q-linear category of rational K-motives and by
KM(V )Q denote the rational K-motive of a smooth projective variety V . The
categories CH(k)Q and KM(k)Q are related as follows.

Let C̃H(k)Q be the symmetric monoidal category, where objects are the same
as in CH(k)Q and morphisms are defined by the formula

HomC̃H(k)Q
(M,N) :=

⊕
i∈Z

HomCH(k)Q(M,N ⊗ Li)
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for all rational Chow motives M and N (we do not consider the grading on
the right hand side), cf. [37, § 7]. Then one has an equivalence of symmetric
monoidal categories

(3.1) KM(k)Q
∼−→ C̃H(k)Q ,

which was constructed essentially by Orlov in [30]. For any smooth projective
variety V , the equivalence sends its rational K-motive KM(V )Q to its rational
Chow motive M(V )Q. Given irreducible smooth projective varieties V1 and V2,
the equivalence gives the map on morphisms

HomKM(k)Q

(
KM(V1)Q,KM(V2)Q

)
= K0(V1 × V2)Q

∼−→
⊕
i∈Z

CHi(V1 × V2)Q = HomC̃H(k)Q

(
M(V1)Q,M(V2)Q

)
defined by the formula

(3.2) α 7−→ p∗1
√

TdV1
· ch(α) · p∗2

√
TdV2

,

where p1 : V1 × V2 → V1, p2 : V1 × V2 → V2 are the natural projections,
ch(α) is the Chern character of α, and TdV1

, TdV2
are the Todd classes of

V1, V2, respectively. Grothendieck–Riemann–Roch theorem implies that this
definition is correct, that is, respects compositions of morphisms. (Alterna-
tively, following Tabuada in [37, § 8], one can send α to ch(α) · p∗2 TdV2

instead
of the right hand side of formula (3.2), or, more generally, one can send α
to (p∗1 TdV1)u · ch(α) · (p∗2 TdV2)1−u for any u ∈ Q.)

The following result is proved in the context of non-commutative motives
in [5, Theor. 2.1].

Proposition 3.2. For any smooth projective variety V , the rational K-motive
KM(V )Q in KM(k)Q is of unit type if and only if the rational Chow mo-
tive M(V )Q in CH(k)Q is of Lefschetz type.

There is a version of Proposition 3.2 which asserts that if V admits a full ex-
ceptional collection, then the rational Chow motive M(V )Q is of Lefschetz type.
For a while this had been a well-known folklore and then different proofs were
proposed by Marcolli and Tabuada in [27, Theor. 1.3], by Galkin, Katzarkov,
Mellit, and Shinder in [15, Prop. 2.1(1)], and by Vial in [41, § 2]. An essential
part in all these proofs is the Chern character isomorphism (which reveals ra-
tionality of coefficients). Any of the proofs cited above can be easily adopted
to show Proposition 3.2.

For the sake of completeness, we provide the following argument that proves
Proposition 3.2, without claiming any originality. One checks easily that a
rational Chow motive M is of Lefschetz type, that is, there is an isomorphism
M ' (Li1)⊕r1⊕· · ·⊕ (Lin)⊕rn in CH(k)Q if and only if there is an isomorphism

M ' 1
⊕r in C̃H(k)Q. Thus the proposition follows directly from the equivalence

of categories (3.1).
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4. Splitting off a Lefschetz type motive

In this section, we decompose the Chow motive of X as in Theorem 2.1
into a direct sum of a Chow motive of Lefschetz type and a Chow motive N
whose only potentially non-trivial Chow group is CH3(N), which is necessarily
2-torsion (and the same holds for the Chow motive NL for any field extension
k ⊂ L). We finish the proof of Theorem 2.1 in Section 5 by showing that
N = 0.

We will use several auxiliary results. First, we provide some elementary facts
about pairings on filtered abelian groups. Let A be a free finitely generated
abelian group with a structure of a commutative ring and a linear map

χ : A −→ Z
such that the symmetric pairing

〈·, ·〉 : A⊗A −→ Z , x⊗ y 7−→ χ(x · y) ,

is unimodular. Let

A = F 0A ⊃ F 1A ⊃ · · · ⊃ F dA ⊃ F d+1A = 0

be a multiplicative decreasing filtration, that is, for all i, j > 0, we have
F iA · F jA ⊂ F i+jA. We assume that for each i, 0 6 i 6 d, there is an equality
between the ranks of adjoint quotients:

rk(griF A) = rk(grd−iF A) .

We keep these assumptions on the ring A, the form χ, and the filtration F •A
during all this section.

Lemma 4.1. Suppose the filtration F •A splits, that is, for each i, 0 6 i 6 d,
the quotient A/F iA is torsion-free. Then for each i, 0 6 i 6 d, the induced
pairing between free finitely generated abelian groups

〈·, ·〉i : griF A⊗ grd−iF A −→ Z
is unimodular.

Proof. The proof is by induction on d. Depending on the parity of d, the base
of the induction is either the case A = 0 for d odd, or the case F 1A = 0 for d
even. In both cases, the assertion is clear.

Let us make an induction step. Since the pairing 〈·, ·〉 is unimodular, it

induces an isomorphism A
∼−→ A∨. Since the filtration splits, the natural

homomorphism
φ : A∨ −→ (F dA)∨ = (grdF A)∨

is surjective. The vanishing 〈F 1A,F dA〉 = 0 implies that φ factors through the
quotient

A −→ A/F 1A = gr0
F A .

One checks easily that the arising surjection ψ : gr0
F A � (grdF A)∨ is induced

by the pairing 〈·, ·〉0 : gr0
F A⊗ grdF A→ Z. Since gr0

F A and grdF A are free
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finitely generated abelian groups of the same rank, we see that ψ is an isomor-
phism, whence the pairing 〈·, ·〉0 is unimodular. This implies also the equality
(F dA)⊥ = F 1A. Usng this and the fact that the filtration splits, we see that

the isomorphism A
∼−→ A∨ defines the isomorphisms

F 1A
∼−→ (A/F dA)∨ , F 1A/F dA

∼−→ (F 1A/F dA)∨ .

Thus the induced pairing F 1A/F dA ⊗ F 1A/F dA → Z is unimodular and we
complete the induction step replacing A by F 1A/F dA and decreasing d by
2. �

Remark 4.2. (i) Actually, Lemma 4.1 and its proof do not involve the
ring structure on A and are valid in a more general case. Namely,
one can replace the ring structure on A, the linear map χ, and the
multiplicative property of the filtration F •A by the following: 〈·, ·〉
is any unimodular pairing on A and the filtration F •A satisfies the
condition 〈F iA,F jA〉 = 0 for all i, j > 0 with i+ j > d+ 1.

(ii) A more direct but less invariant proof of Lemma 4.1 is to choose a
splitting of the filtration and to choose a basis of A by choosing bases
of all adjoint quotients. In this basis of A, the Gram matrix G of the
pairing 〈·, ·〉 has the form

G =


∗ ∗ . . . ∗ G0

∗ G1 0
... . .

. ...
∗ Gd−1 0
Gd 0 . . . 0 0

 ,

where Gi is the matrix of the pairing 〈·, ·〉i for each i, 0 6 i 6 d. The
equality between ranks implies that each Gi is a square matrix. Hence
det(G) equals up to sign to the product det(G0) · · · det(Gd), which
proves the lemma.

Lemma 4.3. Suppose that rk(gr0
F A) = 1 (and so rk(grdF A) = rk(F dA) = 1

as well) and that there is i0, 0 6 i0 6 d, such that the quotients A/F i0A and
A/F d−i0A are torsion-free. Then χ : F dA → Z is an isomorphism and the
quotient A/F dA is torsion-free.

Proof. Modify the filtration F •A as follows: for each i, 0 6 i 6 d, let F̃ iA ⊂ A
be the saturation of F iA in A, that is, F̃ iA is the preimage of the torsion

subgroup under the quotient map A → A/F iA. Clearly, the filtration F̃ •A is
multiplicative and for each i, 0 6 i 6 d, there are equalities

rk(gri
F̃
A) = rk(griF A) = rk(grd−iF A) = rk(grd−i

F̃
A) .

Also, by construction, the filtration F̃ •A splits. Thus by Lemma 4.1, for each i,

0 6 i 6 d, the pairing 〈̃·, ·〉i : gri
F̃
A⊗ grd−i

F̃
A→ Z is unimodular. In particular,

this map is surjective.
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Since the quotients A/F i0A and A/F d−i0A are torsion-free, there are equal-

ities F i0A = F̃ i0A and F d−i0A = F̃ d−i0A. Hence the natural maps

F i0A −→ gri0
F̃
A , F d−i0A −→ grd−i0

F̃
A

are surjective. The composition of surjective maps

F i0A⊗ F d−i0A −→ gri0
F̃
A⊗ grd−i0

F̃
A
〈̃·,·〉i0−→ Z

also factors as the composition

F i0A⊗ F d−i0A −→ F dA
χ−→ Z .

This implies that the map χ : F dA → Z is surjective. Since the rank of F dA
is one and F dA is torsion-free, we see that this map is an isomorphism. This
implies directly that the quotient A/F dA ' Ker(χ) is torsion-free. �

Corollary 4.4. Suppose that gr0
F A = A/F 1A ' Z, the adjoint quotient

gr1
F A is torsion-free, and that d = 3. Then χ : F 3A → Z is an isomor-

phism, the adjoint quotients gr1
F A and gr2

F A are torsion-free, and the pairing
〈·, ·〉1 : gr1

F A⊗ gr2
F A→ Z is unimodular.

Proof. The quotient A/F 2A is torsion-free being an extension of gr0
F A ' Z by

the torsion-free group gr1
F A. Hence by Lemma 4.3 with i0 = 1, we have that

χ : F 3A→ Z is an isomorphism and the quotient A/F 3A is torsion-free. Thus
the filtration F •A splits and we conclude the proof using Lemma 4.1. �

Remark 4.5. Suppose that gr0
F A = A/F 1A ' Z and d = 2. A similar argument

as in the proof of Corollary 4.4 implies that χ : F 2A→ Z is an isomorphism, the
adjoint quotient gr1

F A is torsion-free, and the pairing 〈·, ·〉1 :gr1
F A⊗ gr1

F A→ Z
is unimodular.

Let V be a smooth projective variety of dimension d. We apply the above
results with A being the ring K0(V ) and χ being the Euler characteristic, so
that 〈·, ·〉 is the pairing τ (see formula (2.1)). Let F iK0(V ), i > 0, be the
filtration on K0(V ) by codimension of support, that is, F iK0(V ) is generated
by classes of coherent sheaves whose support has codimension at least i. Recall
the following important facts, see, e.g., [6, Exp. 0] or [14, Ex. 15.1.5, Ex. 15.3.6].

Proposition 4.6. For each i > 0, there is a surjective homomorphism

ϕi : CHi(V )� griF K0(V )

that sends the class of an irreducible subvariety Z ⊂ V of codimension i to
the class of its structure sheaf OZ . The homomorphism ϕi commutes in a
natural sense with scalar extensions with respect to extensions of the field k.
The kernel of the homomorphism ϕi is contained in (i−1)!-torsion of CHi(V ).
In particular, ϕi is an isomorphism for i = 0, 1, 2 and the kernel of ϕ3 is
contained in 2-torsion of CH3(V ).
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Let us mention that for each i > 0, there is also a Chern class map ci :
griF K0(V )→ CHi(V ) and we have relations ci ◦ ϕi = ϕi ◦ ci = (−1)i−1(i− 1)!.
In particular, this implies that the kernel of ϕi is contained in (i− 1)!-torsion
of CHi(V ).

The filtration F •K0(V ) is multiplicative. For each i, 0 6 i 6 d, the pairing

τ on K0(V ) induces a pairing τi : griF K0(V )⊗ grd−iF K0(V )→ Z. The com-
position of the map ϕi ⊗ ϕd−i with τi equals the intersection pairing between

Chow groups. In particular, the composition CHd(X)
ϕd−→ F dK0(X)

χ−→ Z
equals the degree of zero-cycles.

The following statement, as well as its proof, is an analogue of [19, Lem. 2.1]
and a general version of this fact had been proved by Panin in [33, Lem. 7.4].
We provide a proof for convenience of the reader.

Lemma 4.7. Let V be a smooth projective variety such that the K-motive
KM(V ) is of unit type. Then K0(V ) is a free finitely generated abelian group
and the pairing τ on K0(V ) is unimodular.

Proof. Since K0-groups are well-defined for K-motives, there are isomorphisms

K0(V ) ' K0

(
KM(V )

)
' K0(1)⊕r ' Z⊕r ,

where KM(V ) ' 1
⊕r. Moreover, the functor K0 provides a symmetric monoi-

dal equivalence of symmetric monoidal categories between the category of K-
motives of unit type and the category of free finitely generated abelian groups
(notice that the functor K0 is not monoidal on the whole category KM(k)).

On the other hand, the K-motive KM(V ) is canonically self-dual in KM(k).
The corresponding evaluation morphism equals the composition

KM(V )⊗KM(V ) −→ KM(V ) −→ 1 ,

where the first morphism is given by the pull-back with respect to the diagonal
embedding V ↪→ V × V and the second morphism is given by the class [OV ] ∈
K0(V ) = K0

(
V ×Spec(k)

)
. One checks directly that the functor K0 sends this

evaluation morphism to the pairing τ .
We obtain that the pairing τ provides a self-duality of the group K0(V ),

that is, τ is unimodular. �

The following useful result is proved in [15, Lem. 2.2].

Proposition 4.8. Let V be a smooth projective variety such that the group
K0(V ) is torsion-free. Then the group CH1(V ) ' gr1

F K0(V ) is torsion-free as
well.

Now consider the case of a threefold with K-motive of unit type. Given an
abelian group Γ and a natural number l, by Γl denote the l-torsion subgroup
of Γ.

Proposition 4.9. Let X be an irreducible smooth projective variety of dimen-
sion 3 such that the K-motive KM(X) is of unit type. Then the following
holds true:
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(i) the degree map gives an isomorphism

deg : CH3(X)/CH3(X)2
∼−→ Z ;

in particular, X has a zero-cycle of degree 1;
(ii) the Chow groups CH1(X) and CH2(X) are free finitely generated

abelian groups and the intersection pairing

CH1(X)⊗ CH2(X) −→ Z
is unimodular;

(iii) for any field extension k ⊂ L and for i = 0, 1, 2, the natural homomor-
phism

CHi(X) −→ CHi(XL)

is an isomorphism.

Proof. By Lemma 4.7, K0(X) is a free finitely generated abelian group and
the pairing τ on K0(X) is unimodular. By Proposition 3.2, the rational Chow
motive of X is of Lefschetz type. Hence by Lemma 3.1(i) and Proposition 4.6,
for each i, 0 6 i 6 d, there are equalities

rk
(

griF K0(X)
)

= rk
(
CHi(X)

)
= rk

(
CHd−i(X)

)
= rk

(
grd−iF K0(X)

)
.

Since X is irreducible, there is an isomorphism Z ' CH0(X) ' gr0
F K0(X). By

Proposition 4.8, CH1(X) ' gr1
F K0(X) is torsion-free. Hence by Corollary 4.4

and Proposition 4.6, we obtain (i) and (ii). Also, we see that the filtration
F •K0(X) splits.

Consider a field extension k ⊂ L. Using Lemma 3.1(ii) and the fact that
(ϕi)Q are isomorphisms and commute with extension of scalars by Proposi-
tion 4.6, we see that the arising morphism of filtered groups η : F •K0(X) →
F •K0(XL) is an isomorphism after tensoring with Q. In addition, the homo-
morphism K0(X) → K0(XL) is an isomorphism, because KM(X) is of unit
type. As it was shown above, the filtration F •K0(X) splits. Altogether this
implies that the morphism of filtered groups η is an isomorphism. By Propo-
sition 4.6, this proves (iii). �

Remark 4.10. A similar argument as in the proof of Proposition 4.9(i) shows
that if X is a smooth projective variety X of dimension 4 with K-motive of unit
type, then the degree map gives an isomorphism deg : CH4(X)/CH4(X)6

∼−→
Z. Namely, using Proposition 4.8, one applies Lemma 4.3 with i0 = 2.

The following standard argument shows that Proposition 4.9 allows to split
a Lefschetz type motive out of M(X).

Corollary 4.11. Under assumptions of Proposition 4.9, there is an isomor-
phism of Chow motives

M(X) 'M ⊕N ,

where M is of Lefschetz type and N is such that for any field extension k ⊂ L,
we have CHi(NL) = 0 for i = 0, 1, 2 and CH3(NL) coincides with CH3(XL)2.
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Proof. By Proposition 4.9(i), there is a zero-cycle α ∈ CH3(X) of degree 1. By
Proposition 4.9(ii), we may choose a basis D1, . . . , Dr in the free abelian group
CH1(X), and the dual basis C1, . . . , Cr in the free abelian group CH2(X).
Given elements a ∈ CHi(X) and b ∈ CHj(X), put

a× b := p∗1a · p∗2b ∈ CHi+j(X ×X) ,

where p1, p2 : X ×X → X are the natural projections. Define an element

π := X × α+
r∑
i=1

Di × Ci +
r∑
i=1

Ci ×Di + α×X ∈ CH3(X ×X) .

One checks easily that π is an idempotent as a correspondence from X to itself.
Let N be a Chow motive that splits out of M(X) by the idempotent 1− π.
We obtain a decomposition

M(X) ' 1⊕ L⊕r ⊕ (L2)⊕r ⊕ L3 ⊕N .

Note that the natural homomorphism

CH3(X)/CH3(X)2 → CH3(XL)/CH3(XL)2

is an isomorphism, being the identity map from Z to itself by Proposition 4.9(i).
Thus Proposition 4.9(iii) implies that the motive N satisfies all conditions
claimed in the corollary. �

Remark 4.12. Let P be a Chow motive over k such that for any field extension
k ⊂ L, all Chow groups of the Chow motive PL vanish. Using the same
argument as in the proof of [18, Lem. 1], one concludes that P = 0. Thus in
order to prove Theorem 2.1 with the help of Corollary 4.11, it remains to show
that CH3(XL)2 = 0 for any field extension k ⊂ L.

Remark 4.13. The same arguments as above apply in dimensions 1 and 2 as
well. Namely, we have the following reasonings.

(i) Let X be an irreducible smooth projective curve such that the K-
motive KM(X) is of unit type. The filtration F •K0(X) splits, because
gr0
F K0(X) ' Z. By Lemma 4.1 with d = 1, we see that the pairing

CH0(X)⊗CH1(X)→ Z is unimodular. This implies that the Jacobian
of X vanishes and that X has a zero-cycle of degree 1. Thus X ' P1

and henceforth the Chow motive of X is of Lefschetz type.
(ii) Let X be an irreducible smooth projective surface such that the K-

motive KM(X) is of unit type. One easily modifies the argument in the
proof of Proposition 4.9 replacing Corollary 4.4 by Remark 4.5 (in this
case, one does not use Proposition 4.8). Thus one obtains that there
is an isomorphism CH2(X) ' Z, the Chow group CH1(X) is a free
finitely generated group, the intersection pairing CH1(X)⊗CH1(X)→
Z is unimodular, and for any field extension k ⊂ L and for i = 0, 1, 2,
the natural homomorphism CHi(X) −→ CHi(XL) is an isomorphism.
Then a splitting argument as in the proof of Corollary 4.11 together
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with Remark 4.12 imply directly that the Chow motive of X is of
Lefschetz type.

5. Absence of torsion zero-cycles

In this section, we show that the group CH3(X) is torsion-free for any
threefold X as in Theorem 2.1. Together with results of the previous section,
this allows us to prove the theorem.

Here is the plan of the proof of the vanishing of torsion in CH3(X). It
follows from Proposition 4.6 that CH3(X) has only 2-torsion and it is equal
to the kernel of ϕ3. This kernel coincides with the image of the differential
d2 : H1(X,K2) → CH3(X) in the Brown–Gersten spectral sequence, which
factors through the quotient H1(X,K2)/2. It turns out that the product map

µ : k∗/2⊗ CH1(X)/2 −→ H1(X,K2)/2

is an isomorphism, which implies that d2 vanishes. To show that µ is an
isomorphism, first we use that by the Merkurjev–Suslin theorem, one has an
embedding

H1(X,K2)/2 ↪→ H3
ét(X,Z/2) .

For simplicity, assume for a moment that the characteristic of k is zero. The
Hochschild–Serre spectral sequence expresses étale cohomology of X in terms
of étale cohomology of the scalar extension Xk̄ of X to the algebraic closure k̄ of
k. By the Lefschetz principle, we can assume that k̄ ⊂ C, so that étale cohomol-
ogy of Xk̄ with coefficients in Z/2 can be computed in terms classical complex
cohomology of X(C) with coefficients in Z. Now the Atiyah–Hirzeburch spec-
tral sequence relates integral cohomology of X(C) with topological K-groups
of X(C). Note that the Atiyah–Hirzeburch spectral sequence degenerates for
smooth projective complex threefolds. Finally, since the K-motive of X is of
unit type, topological K-groups of X(C) have a very simple structure, which
allows to work effectively with the Atiyah–Hirzebruch spectral sequence.

Now let us fulfil this plan. We start by analyzing cohomology of a threefold
whose K-motive is of unit type when the ground field is either C, or, more
generally, is separably closed. For complex varieties, we will use topological K-
theory, while, for varieties over an arbitrary separably closed field, we will use
étale K-theory developed by Friedlander in [12], [13], Dwyer and Friedlander
in [10], and Thomason in [39] (see also a survey in [16, § 1.5]).

Let V be a smooth algebraic variety over a separably closed field L. Let l be
a prime number different from the characteristic of L and choose a generator
of the Tate module Zl(1), that is, a compatible system of l-primary roots of
unity in L. The choice allows us to ignore Tate twists in étale cohomology.

By Hi(V ), i > 0, denote either the classical complex cohomology group
Hi
(
V (C),Z

)
when L = C, or the étale cohomology group Hi

ét(V,Zl) when L
is an arbitrary separably closed field. Respectively, by KTi(V ), i > 0, de-

note either the topological K-group Ktop
i

(
V (C)

)
, or the étale K-group K̂ ét

i (V )
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related with the prime number l. Namely, let U(∞) be the infinite unitary
group, BU(∞) be its classifying space, and let Map denote the space of continu-
ous maps between topological spaces (or simplicial sets, pro-simplicial sets, etc).
By Map

(
V,Z×BU(∞)

)
denote either the space Map

(
V (C),Z×BU(∞)

)
, or

the space Map
(
Vét, (Z×BU(∞))̂ l

)
, where a pro-simplicial set Vét is the étale

homotopy type of V defined by Artin and Mazur in [1] and
(
Z× BU(∞)

)̂
l is

an l-adic completion of the space Z×BU(∞) defined in an appropriate way,
see more detail in [12, § 1]. Then there are isomorphisms

KTi(V ) ' πi Map
(
V,Z×BU(∞)

)
, i > 0 .

The topological K-group Ktop
0

(
V (C)

)
is the Grothendieck group of complex

vector bundles on the manifold V (C).
Note that the loop space Ω

(
Z × BU(∞)

)
is homotopy equivalent to U(∞)

and, by Bott periodicity, ΩU(∞) is homotopy equivalent to Z×BU(∞). Hence
there are isomorphisms KT2i(V ) ' KT0(V ) and KT2i+1(V ) ' KT1(V ), i > 0.

One has the Atiyah–Hirzebruch spectral sequence

Eij2 = Hi(V, j/2)⇒ KT−i−j(V ) ,

where Hi(V, j/2) := Hi(V ) for j even and Hi(V, j/2) = 0 for j odd. The
differential d2 is zero and the E3-term looks as follows:

0 0 0 0 0 0 0

H0(V )

d3

((

H1(V )

d3

((

H2(V )

d3

((

H3(V )

d3

((

H4(V ) H5(V ) H6(V )

0 0 0 0 0 0 0

H0(V ) H1(V ) H2(V ) H3(V ) H4(V ) H5(V ) H6(V )

The spectral sequence is periodic with respect to the vertical shift by two and
degenerates in the E2-term after tensoring with Q. In particular, the images
of all differentials are torsion groups.

Originally, the Atiyah–Hirzebruch spectral sequence was constructed in [2]
by taking the increasing skeletal filtration on V (C) (when L = C). One obtains
the same spectral sequence by taking the decreasing Postnikov filtration on Z×
BU(∞) (see, e.g., [20, Theor. B.8] for the equivalence of these two approaches).
Note that the j-th step of the Postnikov filtration on Z×BU(∞) is homotopy
equivalent to the Eilenberg–Maclane space K(Z, j) for j even and is trivial for
j odd and there are natural isomorphisms

πi Map
(
V,K(Z, j)

)
' Hj−i(V ) , i 6 j ,

πi Map
(
V,K(Z, j)

)
= 0 , i > j .
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The first two non-trivial steps of the Postnikov filtration on Z × BU(∞) look
as follows:

Z×BU(∞) −→ Z ∼ K(Z, 0) ,

BU(∞) −→ BU(1) ∼ K(Z, 2) ,

where the first map is the natural projection, the second map is induced by
the determinant U(∞)→ U(1), and ∼ denotes homotopy equivalence. Clearly,
both maps have splittings (for the second map one uses the embedding U(1)→
U(∞) defined by any diagonal entry).

It follows that the Atiyah–Hirzebruch spectral sequence defines surjective
homomorphisms

KT0(V )→ H0(V ) , KT1(V ) −→ H1(V ) , K̃T0(V ) −→ H2(V ) ,

where K̃T0(V ) denotes the kernel of the homomorphism KT0(V ) → H0(V ).
We conclude that all differentials in the Atiyah–Hirzebruch spectral sequence
that come out of H0(V ), H1(V ), and H2(V ) are zero.

When L = C, the homomorphism Ktop
0

(
V (C)

)
→ H0

(
V (C),Z

)
is given by

the rank of vector bundles and the homomorphism K̃top
0

(
V (C)

)
→ H2

(
V (C),Z

)
is the usual first Chern class of vector bundles.

Lemma 5.1. For any a smooth projective threefold V over a separably closed
field, the Atiyah–Hirzebruch spectral sequence degenerates in the E2-term.

Proof. The only potentially non-zero differential in the Atiyah–Hirzebruch spec-
tral sequence is the differential d3 : H3(V ) → H6(V ). However, since V is a
smooth projective threefold, the group H6(V ) is torsion-free, whence this dif-
ferential is zero. �

We have a homomorphism of rings K0(V ) → KT0(V ), which commutes
with pull-backs. Moreover, it commutes with push-forwards with respect to
morphisms between smooth projective varieties. For topological K-groups, this
was proved by Atiyah and Hirzebruch in [3, Theor. 4.2]. For étale K-groups,
this holds just by definition of the push-forward on them, which, in turn, is
based on a comparison theorem by Thomason between algebraic K-groups and
étale K-groups, see [40, §§ 1.13, 2.2] (see also [38] for a more general definition
of the push-forward on étale K-groups, which is also compatible with the push-
forward on algebraic K-groups). We obtain a homomorphism between the rings
of correspondences K0(V × V )→ KT0(V × V ), where the product is defined
by composition of correspondences. Since the groups KTi(V ), i = 0, 1, are
modules over the ring of correspondences KT0(V ×V ), we see that topological
K-groups and étale K-groups are well-defined for K-motives.

In what follows, let a ring R be either Z when L = C, or Zl when L is an
arbitrary separably closed field.

Lemma 5.2. Let V be a smooth projective variety over a separably closed
field L such that the K-motive KM(V ) is of unit type. Then the natural map
K0(V )R → KT0(V ) is an isomorphism and we have KT1(V ) = 0.
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Proof. Let r be such that KM(V ) ' 1
⊕r. Since the groups KT0 and KT1 are

well-defined for K-motives, we see that there are isomorphisms

KTi(V ) ' KTi(∗)⊕r , i = 0, 1 ,

where ∗ = Spec(L) is the point. Further, we have that KT0(∗) = R and
KT1(∗) = 0 (for topological K-groups this is easily seen, while for étale K-
groups this follows, for instance, from, the Atiyah–Hirzebruch spectral se-
quence). �

Lemma 5.3. Let V be a smooth projective threefold over a separably closed
field L such that the K-motive KM(V ) is of unit type and let l be a prime
number different from the characteristic of L. Then the following holds true:

(i) we have Hi(V ) = 0 for i odd and Hi(V ) is torsion-free for i even;
(ii) the cycle class map CH1(V )R → H2(V ) is an isomorphism;
(iii) we have Hi

ét(V,Z/l) = 0 for i odd and the canonical map Hi(V )/l →
Hi
ét(V,Z/l) is an isomorphism for i even;

(iv) the cycle class map CH1(V )/l→ H2
ét(V,Z/l) is an isomorphism.

Proof. (i) By Lemma 5.2, the group KT1(V ) vanishes. Hence by Lemma 5.1,
we see that Hi(V ) = 0 for i odd. By Poincaré duality, the torsion subgroup
of Hi(V ) is Pontryagin dual to the torsion subgroup of H7−i(V ) for any i > 0.
Thus Hi(V ) is torsion-free for i even.

(ii) By Proposition 4.9(ii), the intersection pairing

CH1(V )R ⊗ CH2(V )R → R

is non-degenerate. Hence the cycle class map CH1(V )R → H2(V ) is injective,
because the intersection pairing factors through cohomology and R ' H6(V ).

By Lemma 5.2, the natural map θ : K0(V )R → KT0(V ) is an isomorphism.
In addition, the map θ respects (non-strictly) the filtration F •K0(V )R by
codimension of support and the filtration F •KT0(V ) induced by the Atiyah–
Hirzebruch spectral sequence. The corresponding map from gr0

F K0(V )R '
CH0(V )R ' R to gr0

F KT0(V ) ' H0(V ) ' R is the identity. Hence we have

an isomorphism θ : F 1K0(V )R
∼−→ F 1KT0(V ). This implies that the map

from gr1
F K0(V )R ' CH1(V )R to gr1

F KT0(V ) ' H2(V ) is surjective. Also,
one checks directly that this map is equal to the cycle class map.

(iii) This is implied by (i) and the universal coefficient theorem (recall that
for complex varieties, étale cohomology groups with finite constant coefficients
coincide with classical complex cohomology groups, see [29, Theor. III.3.12]).

(iv) This follows directly from (ii) and (iii). �

Remark 5.4. If the characteristic of L is zero, then Lemma 5.3 can be proved
with the help of topological K-groups only. Indeed, the variety V is defined
over a field which is finitely generated over Q and can be embedded into C and
étale cohomology groups with torsion coefficients are invariant under extensions
of algebraically closed fields of characteristic zero, see [29, Cor. VI.4.3].
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Now we describe third étale cohomology of a threefold as in Theorem 2.1.
All statements and arguments below make sense with coefficients Z/n after
appropriate Tate twists, where n is any natural number not divisible by the
characteristic of the ground field, but coefficients Z/2 are enough for our pur-
poses.

Given a field F , by GF we denote the absolute Galois group of F . For
short, by Hi(F,Z/2) denote the canonically isomorphic groups Hi(GF ,Z/2) '
Hi
ét

(
Spec(F ),Z/2

)
.

Let V be a smooth variety over an arbitrary field k of characteristic not 2.
Consider the composition

(5.1) k∗/2⊗ CH1(V )/2 −→ H1
ét(V,Z/2)⊗H2

ét(V,Z/2) −→ H3
ét(V,Z/2) ,

where the first map is the tensor product of the Kummer isomorphism followed
by the pull-back map

(5.2) k∗/2
∼−→ H1(k,Z/2) −→ H1

ét(V,Z/2)

and the cycle class map

(5.3) CH1(V )/2 −→ H2
ét(V,Z/2)

and the second map is product in cohomology. Since CH1
(

Spec(k(V ))
)

= 0,

the image of composition (5.1) is contained in the kernel NH3
ét(V,Z/2) of the

restriction map H3
ét(V,Z/2) −→ H3

(
k(V ),Z/2

)
. Thus we obtain a homomor-

phism
ζ : k∗/2⊗ CH1(V )/2 −→ NH3

ét(V,Z/2) .

Proposition 5.5. Let X be an irreducible smooth projective variety of dimen-
sion 3 over a field k such that the K-motive KM(X) is of unit type and the
characteristic of k is not 2. Then we have an isomorphism

ζ : k∗/2⊗ CH1(X)/2
∼−→ NH3

ét(X,Z/2) .

Proof. In order to compute H3
ét(X,Z/2) and NH3

ét(X,Z/2), we analyze the
Hochschild–Serre spectral sequence

Eij2 = Hi
(
Gk, H

j
ét(Xksep ,Z/2)

)
⇒ Hi+j

ét (X,Z/2) ,

where ksep is a separable closure of k.
Clearly, the K-motive of Xksep is of unit type. Therefore, by Lemma 5.3(iii),

we have the vanishing

H1
ét(Xksep ,Z/2) = H3

ét(Xksep ,Z/2) = 0 .

By Proposition 4.9(iii) and Lemma 5.3(iv), the cycle class map defines an iso-
morphism

CH1(X)/2
∼−→ H2

ét(Xksep ,Z/2) .

Since the action of Gk on CH1(X)/2 is trivial, we obtain the isomorphisms

H1
(
Gk, H

2
ét(Xksep ,Z/2)

)
' H1(k,Z/2)⊗ CH1(X)/2 ' k∗/2⊗ CH1(X)/2 .
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Hence the E3-term of the Hochschild–Serre spectral sequence looks as follows:

0 0 0 0

CH1(X)/2

d3

**

k∗/2⊗ CH1(X)/2 ∗ ∗

0 0 0 0

Z/2 k∗/2 H2(k,Z/2) H3(k,Z/2)

Note that the composition

H2
ét(X,Z/2) −→ H0

(
Gk, H

2(Xksep ,Z/2)
) d3−→ H3(Gk,Z/2)

vanishes. Since the isomorphism CH1(X)/2
∼−→ H0

(
Gk, H

2(Xksep ,Z/2)
)

fac-

tors through the cycle class map CH1(X)/2 → H2
ét(X,Z/2), we obtain that

the differential d3 : CH1(X)/2→ H3(k,Z/2) vanishes. Thus we see that the
Hochschild–Serre spectral sequence yields an exact sequence

0 −→ H3(k,Z/2) −→ H3
ét(X,Z/2)

ξ−→ k∗/2⊗ CH1(X)/2 .

It follows from multiplicativity of the Hochschild–Serre spectral sequence that
the composition ξ ◦ ζ is equal (up to sign) to the identity and, in particular, ξ
is surjective.

We obtain a commutative diagram (up to sign) with exact column and raw:

0

��
NH3

ét(X,Z/2)

��
0 // H3(k,Z/2) //

γ

''

H3
ét(X,Z/2)

ξ //

��

k∗/2⊗ CH1(X)/2 //

ζ
ii

0

H3
(
k(X),Z/2

)
Thus in order to prove that ζ is an isomorphism, it remains to show that the
map γ is injective. Recall that the unramified cohomology group is defined by
the formula

H3
nr(X,Z/2) :=

⋂
D⊂X

Ker
(
H3(k(X),Z/2)→ H2(k(D),Z/2)

)
,

where the intersection is taken over all prime divisors D ⊂ X and the maps
H3(k(X),Z/2)→ H2(k(D),Z/2) are residues, see, e.g, [9, § 4.1]. It follows
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from the localization exact sequence for étale cohomology that γ factors as the
composition

H3(k,Z/2)
γ̃−→ H3

nr

(
k(X),Z/2

)
↪→ H3

(
k(X),Z/2

)
.

By Proposition 4.9(i), X has a zero-cycle α of degree one. Since unramified
cohomology groups are contravariant with respect to varieties, see [9, § 2.1], the
zero-cycle α defines the map

α∗ : H3
nr(X,Z/2)→ H3

nr

(
Spec(k),Z/2

)
= H3(k,Z/2) .

The composition α∗ ◦ γ̃ is the identity, whence γ̃ is injective and γ is injective
as well. �

Now we pass to K-cohomology, that is, cohomology of sheaves of K-groups.
Let V be an irreducible smooth projective variety over k. Let Ki, i > 0,
denote the Zariski sheaf on V associated with the presheaf that sends an open
subset U ⊂ V to the algebraic K-group Ki(U) (in particular, K0 = Z and
K1 = O∗V ). By a result of Quillen in [35, § 7.5], K-cohomology groups Hi(V,Kj)
are canonically isomorphic to cohomology groups of a Gersten complex, which
implies that Hi(V,Kj) = 0 if i > j and that there are canonical isomorphisms

Hi(V,Ki) ' CHi(V ) , i > 0 .

One has the Brown–Gersten spectral sequence

Eij2 = Hi(V,K−j)⇒ K−i−j(V )

such that the arising filtration on K-groups is the filtration by codimension of
support, see [8]. Product between algebraic K-groups defines naturally product
between K-cohomology groups and the Brown–Gersten spectral sequence is
multiplicative in a natural sense (see, e.g., [17, Theor. 69]).

For each i > 0, there are no differentials in the Brown–Gersten spectral se-
quence that come out of Hi(V,Ki) and the arising map CHi(V ) ' Hi(V,Ki)→
griF K0(V ) coincides (up to sign) with the map ϕi from Proposition 4.6. All
differentials that come out of H0(V,K1) ' k∗ are zero by functoriality of the
Brown–Gersten spectral sequence applied to the morphism V → Spec(k). Thus
the E2-term looks as follows:

Z 0

k∗ CH1(V ) 0

H0(V,K2)

d2

++

H1(V,K2)

d2

++

CH2(V ) 0

H0(V,K3) H1(V,K3) H2(V,K3) CH3(V ) 0
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We see that there is an exact sequence

(5.4) H1(V,K2)
d2−→ CH3(V )

ϕ3−→ gr3
F K0(V ) .

Since the kernel of the homomorphism ϕ3 is 2-torsion by Proposition 4.6, the
differential d2 factors through the quotient H1(V,K2)/2.

By a result of Merkurjev and Suslin, see [28, § 18], there is an exact sequence

(5.5) 0 −→ H1(V,K2)/2
ν−→ NH3

ét(V,Z/2) −→ CH2(V )2 −→ 0 ,

where, as above, CH2(V )2 denotes the 2-torsion subgroup of CH2(V ).
Let us describe the map ν in more detail. Let Hi denote the Zariski sheaf

on V associated with the presheaf that sends an open subset U ⊂ V to étale
cohomology Hi

ét(U,Z/2). We have the étale Chern classes Ki → Hi, see [36,
§ II.2.3], which define the corresponding map between cohomology

(5.6) H1(V,K2)/2 −→ H1(V,H2) .

Note that for i = 1 the étale Chern class is given by the Kummer theory, while
for i = 2 this is the norm residue symbol on decomposable elements. Further,
the direct image of sheaves from the étale topology to the Zariski topology
defines the Leray spectral sequence

Eij2 = Hi(V,Hj)⇒ Hi+j
ét (V,Z/2) .

By the main result of Bloch and Ogus in [7], we have Hi(V,Hj) = 0 for i > j.
Therefore the E2-term of the Leray spectral sequence looks as follows:

H0(V,H3)

d2

++

H1(V,H3) H2(V,H3)

H0(V,H2) H1(V,H2) H2(V,H2)

H0(V,H1) H1(V,H1) 0

Z/2 0 0

Thus we obtain an injective map

(5.7) H1(V,H2) ↪→ H3
ét(V,Z/2) .

The composition of the maps (5.6) and (5.7) gives ν. Also, note that the
compositions

k∗/2
∼−→ H0(V,K1)/2 −→ H0(V,H1)

∼−→ H1
ét(V,Z/2) ,

CH1(V )/2
∼−→ H1(V,K1)/2 −→ H1(V,H1) ↪→ H2

ét(V,Z/2)

coincide with the maps (5.2) and (5.3), respectively.
Proposition 5.5 implies the following result.
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Corollary 5.6. Under assumptions of Proposition 5.5, the group CH3(X) is
torsion-free.

Proof. The composition of the product map between K-cohomology

µ : k∗/2⊗ CH1(X)/2 −→ H1(X,K2)/2

with the injective map ν : H1(X,K2)/2→ NH3
ét(X,Z/2) from the exact se-

quence (5.5) is equal (up to sign) to the isomorphism ζ from Proposition 5.5
(this follows from multiplicativity of the étale Chern classes and the multi-
plicativity of the Leray spectral sequence). Hence µ is an isomorphism (also,
we obtain that ν is an isomorphism as well, which follows alternatively from
Proposition 4.9 and the exact sequence (5.5)).

Recall that the differential d2 : H1(X,K2)→ CH3(X) factors as a composi-
tion

H1(X,K2) −→ H1(X,K2)/2 −→ CH3(X) .

Since µ is an isomorphism and the Brown–Gersten spectral sequence is multi-
plicative, we see that the differential d2 : H1(X,K2)→ CH3(X) vanishes. Thus
the exact sequence (5.4) implies that ϕ3 is injective and CH3(X) is torsion-free,
because so is K0(X). �

Now we are ready to prove our main result.

Proof of Theorem 2.1. We may assume that X is irreducible because, clearly,
a direct summand of a unit type K-motive is of unit type as well (look at the
endomorphisms algebra of a unit type K-motive).

By Remark 4.13, we need to consider the case when X is a threefold. By
Corollary 4.11, we have an isomorphism M(X) ' M ⊕ N , where the Chow
motive M is of Lefschetz type and for any field extension k ⊂ L, the only
non-trivial Chow group of the Chow motive NL is CH3(NL), which coincides
with CH3(XL)2. By Corollary 5.6, this group vanishes as well, because the
K-motive of XL in KM(L) is of unit type. Now by Remark 4.12, we have
N = 0, which finishes the proof of the theorem. �
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