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EFFICIENTLY COMPUTING TORUS CHARTS IN

LANDAU–GINZBURG MODELS OF COMPLETE

INTERSECTIONS IN GRASSMANNIANS OF PLANES

Thomas Prince

Abstract. In this note, companion to the paper [10], we describe an

alternative method for finding Laurent polynomials mirror-dual to com-

plete intersections in Grassmannians of planes, in the sense discussed in
[10]. This calculation follows a general method for finding torus charts

on Hori–Vafa mirrors to complete intersections in toric varieties, detailed

in [5] generalising the method of [8].

In [10] the authors demonstrate that Givental’s integrals for the Landau–
Ginzburg models for complete intersections in Grassmannians of planes pro-
posed by Batyrev, Ciocan-Fontanine, Kim, and van Straten in [2, 3] are periods
of pencils defined by Laurent polynomials. In this note we present an alter-
native, efficient, calculation of torus charts on these Landau–Ginzburg models
and show in examples that the periods of the Laurent polynomials found by
restricting the superpotential coincide with those of [10].

Theorem 1.1. Fix values k ∈ Z≥1 and di ∈ Z≥1, i ∈ [1, l] such that the com-
plete intersection Y defined by a general section of

⊕
i∈[1,l]O(di) in Gr(2, 2+k)

is a Fano variety. The algorithm presented in [5] defines a mirror-dual Laurent
polynomial to this complete intersection. In particular, the period integral of
this Laurent polynomial is equal to Givental’s integral for Y .

The algorithm presented in [5] gives a general method for finding torus
charts on Landau–Ginzburg models for complete intersections in toric varieties,
generalising the method of [8]. In this note we apply this method to the flat toric
degeneration of [2]. As well as the construction of [10] the problem of finding
torus charts in Landau–Ginzburg models mirror-dual to complete intersections
in Grassmannians of planes is considered in [6], [9] and [11]. We first recall the
general form of the procedure from [5].
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Following the observation made just after [10, Theorem 4.1] we may replace
a complete intersection in Gr(2, 2 + k) with one in P (2, 2 + k). We recall the
general setup for Givental’s procedure, with the conventions used in [10, Section
3], in the slightly more general setting which applies to complete intersections
in P (2, 2 + k).

Assume we have fixed a Fano toric variety X, and a collection L1, . . . , Ll
of nef line bundles on X. As in [10, Section 3] we let N ∼= ZN denote the
lattice containing the fan of X and D ∼= ZN+ρ be a based lattice, with basis
Di, i ∈ [1, N + ρ]. Assuming the ray map is surjective we have the following
exact sequence:

0 // L D∗ // D r // N // 0.

Defining L as the kernel, recall that we have an identification Cl(X)⊗ZQ ∼=
L∨ ⊗Z Q, the identification induced by the identification of D with the lattice
of torus invariant divisors. We shall denote both the basis of D∨ and the
image of these basis elements in L∨, under the dual map D : D∨ → L∨ by
Di, i ∈ [1, N + ρ]. We shall denote by D′i the dual basis in D. We shall assume
that (X;L1, . . . , Ll) satisfies the following conditions:

(1) There is a torus fixed point of X not contained in the singular locus.
This determines a maximal-dimensional smooth cone in N , and hence
there is a subset E ⊂ [1, N + ρ] such that the vectors Di, i ∈ E are a
basis of L∨. This condition implies that the ray map r is surjective.

(2) Each Li is a non-negative combination of the Di, i ∈ E, under the
standard identification of L∨ with linear systems of divisors on X.

(3) For each Li, i ∈ [1, l] there is a set Ei ⊂ [1, N + ρ] such that Li =∑
j∈Ei

Dj , and the collection of subsets Ek together with E is pairwise
disjoint.

Observe that the second condition is independent of the third since the sets Ei
are necessarily disjoint from E. In other words we can define a nef-partition
for L1, . . . , Ll analogously to [10, Section 3]. We shall also fix an element
sj ∈ Ej for each j and let E◦j = Ej\{sj}. The map D : D∨ → L∨ is now a map
of based lattices, and from now on we shall use D to refer to this matrix and
for the corresponding map of (split) tori, obtained by tensoring with C∗.

Givental’s Landau–Ginzburg model is defined by setting the superpotential

w = u1 + · · ·+ uN+ρ ∈ C[D],

where the ui are variables corresponding to the basis elements, and restricting
to the subvariety defined by D = 1, Fm = 1 for m ∈ [1, l], where the Fm are
defined by the following:

Fm =
∑
j∈Em

uj .

Observe that the conditions D(u1, . . . , uN+ρ) = 1 are monomial, and applying
only these equations yields the complex torus TM = SpecC[N ], equipped with
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the regular function

w =
∑

i∈[1,N+ρ]

zr(D
′
i),

where za denotes the monomial in C[N ] corresponding to a ∈ N . This is a
reformulation of the condition [10, (3.3)], setting q = 1. Since we have fixed an
echelon form for D, TM has coordinates {ui | i /∈ E}. To pass to the subvariety
defined by {Fm = 1}m∈[1,l] we introduce new variables yi for i ∈

⋃
m∈[1,l]E

◦
m

defined by the following:

ui =


1

1+
∑

k∈E◦m
yk

if i = sm,

yi
1+

∑
k∈E◦m

yk
if i ∈ E◦m.

So there is a birational torus chart on Givental’s Landau–Ginzburg model
given by the torus with coordinates yj , j ∈

⋃
m∈[1,l]E

◦
m and uj for j /∈ E ∪⋃

m∈[1,l]Em. It is easy to see from our assumptions that w remains Laurent

after applying this change of coordinates.
We now apply this procedure explicitly to complete intersections in P (2, 2+

k), this is singular, but we recall replacing Gr(2, 2+k) with P (2, 2+k) is justified
in [10, Section 4]. Indeed, inspecting its definition, P (2, 2 + k) satisfies the
condition (1) above. Given line bundles defining a Fano complete intersection
we shall represent each line bundle as a sum of divisors Di satisfying conditions
(2) and (3). Recall that the superpotential w =

∑
i∈[1,N+ρ] z

r(D′i) for P (2, 2+k),

in the coordinates ai,j introduced in [10, Section 4], is given by the Laurent
polynomial

fGr(2,2+k) = a1,1 +

k∑
j=2

a1,j
a1,j−1

+

k∑
j=1

a2,j
a1,j

+

k∑
j=2

a2,j
a2,j−1

+
1

a2,k
.

Also consider the k + 2 equations

f1 = a1,1, fj =
a1,j
a1,j−1

+
a2,j
a2,j−1

, j ∈ [2, k], fk+1 =
1

a2,k
.

Given a complete intersection of hypersurfaces of degree di, i ∈ [1, l] we fix a
partition

[1, k + 1] = E0 t E1 t · · · t El
with |Ej | = dj for j > 0, and we form Givental’s Landau–Ginzburg mirror to
the complete intersection in Gr(2, 2 + k) by restricting to the subvarietyFj =

∑
r∈Ej

fr = 1 | j = 1, . . . , l

 .

In order to apply the method explained above for finding a birational torus
chart we apply a change of variables

x1,1 = a1,1, x1,j =
a1,j
a1,j−1

, j ∈ [2, k],
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x2,j =
a2,j
a2,j−1

, j ∈ [2, k], x2,k+1 =
1

a2,k
.

With these changes of variables, of the 3k terms of fGr(2,2+k), we see that
2k are now simply variables xi,j and the remaining k terms are monomials

Mi =
a2,i
a1,i

=
(∏
j≤i

x1,j
∏
j≥i

x2,j
)−1

.

The polynomials fj have become the following:

f1 = x1,1, fj = x1,j + x2,j , j ∈ [2, k], fk+1 = x2,k+1.

We may now apply the general procedure given above, namely we define the Em
and E used there according to the terms appearing in the polynomials Fm and∑k
j=1Mj . Observe that all three requirements for finding a birational torus

chart in the first section are met, so we may apply the change of co-ordinates
above. This provides a completely explicit way of forming, potentially several,
Laurent polynomial mirrors for a given complete intersection in Gr(2, k + 2).
To complete the proof of Theorem 1.1 we need to compare Givental’s integral
with the period of the candidate Laurent polynomial. This however is a well
known residue calculation see, for example, the proof of [10, Theorem 10.4] for
details. We now consider some examples of this method.

Example 1.2 (see also [10, Example 12.12]). Consider a cubic intersected with
the quadric Gr(2, 4). The weight matrix D for P (2, 4) is the following:(

1 0 0 1 1 1
1 1 1 0 0 1

)
.

The Picard group is the sublattice generated by the column (1, 1)t. The Laurent
polynomial mirror may be obtained either by applying the condition D = 1
above, or by changing fGr(2,4) to the xi,j variables, in either case there is a
Laurent polynomial presentation given by the following:

fGr(2,4) = x1,1 + x1,2 +
1

x1,1x1,2x2,3
+

1

x1,1x2,2x2,3
+ x2,2 + x2,3.

In general the first k and final k columns of D correspond to basis elements in
N and to variables x1,j , j ∈ [1, l] and x2,j , j ∈ [2, l + 1] respectively. In this
example (k = 2) the column vector (3, 3)t may be obtained by adding the first,
second, fifth, and sixth columns, giving the relation

x1,1 + x1,2 + x2,2 + x2,3 = 1.

Let E1 = {1, 2, 5, 6}, E = {3, 4}, and s1 = 1. Denoting the new variables yi,j ,
consistent with the variables xi,j we have the following:

x1,1 =
1

1 + y1,2 + y2,2 + y2,3
, x1,2 =

y1,2
1 + y1,2 + y2,2 + y2,3

,

x2,2 =
y2,2

1 + y1,2 + y2,2 + y2,3
, x2,3 =

y2,3
1 + y1,2 + y2,2 + y2,3

.



EFFICIENTLY COMPUTING TORUS CHARTS 1723

Let ψ be the (rational) map defined by this co-ordinate change, pulling back
the superpotential we find

ψ∗fGr(2,4) =
(1 + y1,2 + y2,2 + y2,3)3

y1,2y2,3
+

(1 + y1,2 + y2,2 + y2,3)3

y2,2y2,3

=
(y2,2 + y1,2)

y1,2y2,2y2,3
(1 + y1,2 + y2,2 + y2,3)3.

We shall now show this is equivalent to the result of [10, Example 12.12] up
to symplectomorphisms of cluster type ([4], [7]) and in fact factorizes into two
algebraic mutations (as defined in [1]). To see this first consider the birational
map φ1, defined by the following:

φ∗1y1,2 = y1,2, φ∗1y2,2 = y2,2, φ∗1y2,3 = (y1,2 + y2,2)y2,3.

Computing φ∗1ψ
∗fGr(2,4) we obtain

gGr(2,4) = φ∗1ψ
∗fGr(2,4) =

1

y1,2y2,2y2,3
(1 + y1,2 + y2,2 + (y1,2 + y2,2)y2,3)3.

Now, changing the co-ordinates on this torus,

y1,2 = a2,1, y2,2 =
a22,1
a1,1

, y2,3 = a1,2

we have that

gGr(2,4) =
a1,1
a1,2

(
1

a2,1
+

(
1 +

a2,1
a1,1

)
(1 + a1,2)

)3

.

Apply another birational change of coordinates φ2, sending

φ2 : ai,j 7→ ai,j

(
1 +

a2,1
a1,1

)−1
for each (i, j). We obtain

hGr(2,4) = φ∗2gGr(2,4) =
a1,1
a1,2

(
a1,2 +

1 + a1,1a2,1 + a1,1 + a2,1
a1,1a2,1

)3

.

Which is the resulting polynomial of [10, Example 12.12].

Example 1.3 (see also [10, Example 12.6]). A fourfold of index 2 given by 4
hyperplane sections of Gr(2, 6). The matrix D for P (2, 6) is

1 0 0 0 0 0 0 1 1 1 1 1
1 1 0 0 0 0 1 0 0 1 1 1
1 1 1 0 0 1 0 0 0 0 1 1
1 1 1 1 1 0 0 0 0 0 0 1

 .

The four bundles Li are all equal to (1, 1, 1, 1) ∈ L∨. We fix the nef-partition by
taking the collections of basis elements Di corresponding to columns {1}, {12},
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{2, 9}, {3, 10} of the matrix D. Applying the notation employed in Example 1.2
we compute

ψ∗fGr(2,6) = x1,4 + x2,4 +
(1 + y2,2)(1 + y2,3)

y2,2y2,3x2,4
(1 + y2,2 + y2,2y2,3)

+
(1 + y2,2)(1 + y2,3)

x1,4
,

noting that columns 4, 11 are in neither E nor any of the sets Em, so the
variables x1,4 and x2,4 persist. As in the previous example, this polynomial
also agrees with the result of [10, Example 12.6] up to symplectomorphisms of
cluster type, which in particular preserve the period sequence of the Laurent
polynomial.
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