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SECOND CHERN NUMBERS OF VECTOR BUNDLES AND

HIGHER ADELES

Denis V. Osipov

Abstract. We give a construction of the second Chern number of a vec-

tor bundle over a smooth projective surface by means of adelic transition
matrices for the vector bundle. The construction does not use an alge-

braic K-theory and depends on the canonical Z-torsor of a locally linearly
compact k-vector space. Analogs of certain auxiliary results for the case

of an arithmetic surface are also discussed.

1. Introduction

In [16] A. N. Parshin constructed Chern classes of vector bundles on a scheme
Y which is finite type over the field Q using higher adeles. In particular,
Chern classes, which he constructed, were in Hm(Y,ΩmY ). Taking the higher
residues when m = dimY , we obtain the Chern numbers, see [16, § 4.3]. This
construction can be carried out when Y is a scheme over any field k, but because
of the higher residues the values of the Chern numbers of vector bundles will
be in the image of the ring Z in the field k. Thus, if char k = p > 0, then we
will obtain the Chern numbers only modulo p.

Much later there appeared adelic constructions of second Chern classes on
certain two-dimensional regular schemes be means of K2-groups. In particular,
R. Ya. Budylin in [3] constructed the second Chern classes of vector bundles of
rank 2 on a smooth algebraic surface Y over any perfect field using K2-groups
of rational adeles on Y . Besides, T. Chinburg, G. Pappas and M. J. Taylor
gave in [5] a construction of the second Chern classes of vector bundles of arbi-
trary rank on a regular two-dimensional scheme Y with projective morphism of
relative dimension 1 to the spectrum of a Dedekind ring by means of K2-adeles
on Y originated from [9].

In this paper we provide a quite elementary construction of the second Chern
numbers of vector bundles on a smooth projective surface X over a perfect field
k. This construction does not use algebraic K-theory, but uses only Z-torsors
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and central extensions of a group GLn(AX) by the group Z, where AX is the
adelic ring of X, which is also called the Parshin-Belinson adeles of X.

More exactly, any locally linearly compact vector space over a field k gives a
canonical Z-torsor of dimension theories. The adelic space AX has a filtration
given by divisors on X with the quotient spaces being locally linearly compact
vector spaces over k. The same is also true for AnX for any integer n ≥ 0.
Therefore from the action of the group GLn(AX) on the k-vector space AnX
we obtain a canonical central extensions ˜GLn(AX) and then ̂GLn(AX) of this
group by the group Z. The trivializations of a vector bundle at scheme points
of X give transition matrices which are elements of GLn(AX) and satisfy the

cocycle condition. Using canonical splittings of the central extension ̂GLn(AX)
over certain subgroups of GLn(AX), we obtain lifts of these transition matrices

to ̂GLn(AX), where their product is an element over 1 ∈ GLn(AX), i.e., it
belongs to the subgroup Z. This is the second Chern number of the vector
bundle, see Theorem 1.

The advantage of our approach is similarity to the constructions from [15],
where an “analytic” proof of the Riemann-Roch theorem for linear bundles on
a smooth projective surface X over a finite field was given. One of the main
ingredients in this proof was the definition of the intersection index of two
divisors on X via the commutator of lifts of certain elements from the group

A∗X to a central extension which is similar to the central extension ˜GL1(AX).
We note that the Noether formula was not obtained in [15]. Therefore one of
the first expected applications of our construction of the second Chern numbers
will be the proof of the Noether formula in the spirit of [15].

The next direction for the applications is the transfer of our constructions to
the case of an arithmetic surface such that the fibres over Archimedean points
of the base are taken into account. In particular, in the case of an arithmetic
surface X over SpecZ and the adelic ring Aar

X which includes an adelic object
of the fibre over ∞-point of SpecZ, we prove in this paper in Proposition 5

splittings of central extensions ˜GLn(Aar
X) and ̂GLn(Aar

X) over certain subgroups
of GLn(Aar

X). These splittings are analogs of splittings considered above for
the construction of second Chern number of a vector bundle over an algebraic

surface. The central extensions ˜GLn(Aar
X) and ̂GLn(Aar

X) are central extensions
by the group of positive real numbers R∗+ and were also considered in [13].

The paper is organized as follows. In Section 2.1 we recall certain facts on
the Parshin-Beilinson adeles of an algebraic surface X. In Section 2.2 we recall
the notion of Z-torsor of dimension theories for a locally linearly compact k-
vector space. In Section 2.3 we give a construction of the central extension
˜GLn(A∆), where A∆ is the adelic ring which depends on a subset ∆ of all pairs

x ∈ C, where x is a point and C is an irreducible curve on X. In Section 2.4

we connect the commutator of lifts of elements from A∗X to ˜GL1(AX) with
the intersection index of divisors on X by proving a result which was given
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without proof in [15], see Proposition 2. In Section 3.1 we give a construction

of the central extension ̂GLn(A∆) and prove some properties of this central
extension, see Proposition 3. In Section 3.2 we prove canonical splittings of

the central extensions ˜GLn(AX) and ̂GLn(AX) over certain subgroups, see
Proposition 4. In Section 3.3 we give a construction of the second Chern
number, see Theorem 1. In Section 4 we prove certain results on splittings of
central extensions in the case of an arithmetic surface, see Proposition 5.

2. Central extension and intersection index of divisors

2.1. Parshin-Beilinson adeles

Let X be a smooth algebraic surface over a perfect field k. Let AX be the
Parshin-Beilinson adelic ring of X (see, for example, a survey in [11]).

Let x ∈ C be a pair, where x is a point on X, and C is an irreducible curve on

X such that C contains x. Let Kx,C =
∏l
i=1Ki, where an index i corresponds

to a formal irreducible branch Ci of the curve C in the formal neighbourhood

of x (i.e., C |Spec Ôx,X
=

l⋃
i=1

Ci, where Ôx,X is the completion of the local ring

Ox,X of x on X), and Ki is a two-dimensional local field that is the completion

of the fraction field Frac Ôx,X with respect to the discrete valuation given by
Ci.

We note that

(2.1) AX ⊂
∏
x∈C

Kx,C ,

where the product is over all pairs x ∈ C described as above.
Let ∆ be a subset in the set of all pairs x ∈ C described as above. There

are the following subrings of the ring
∏
x∈C Kx,C :

(2.2) A∆ = AX ∩
∏

{x∈C}∈∆

Kx,C , OA∆
= AX ∩

∏
{x∈C}∈∆

OKx,C
,

where OKx,C
=
∏l
i=1OKi

, and OKi
is the discrete valuation ring of the field

Ki. Clearly, if ∆ is the set of all pairs x ∈ C, then A∆ = AX . Moreover, if ∆
is a single pair x ∈ C, then A∆ = Kx,C .

Let D =
∑
i aiCi be a divisor on X. (Here ai ∈ Z and Ci is an irreducible

curve on X for any i.) We call ai = νCi
(D) for any i. We define

OA∆(D) = AX ∩
∏

{x∈C}∈∆

t
−νC(D)
C OKx,C

,

where tC = 0 is an equation of an irreducible curve C on some open subset of
X. (The definition of OA∆

(D) does not depend on the choice of tC .)
We note (see [7, Prop. 2.1.5]) that if ∆ = ∆1 ∪∆2 and ∆1 ∩∆2 = ∅, then

A∆ = A∆1
× A∆2

, OA∆
= OA∆1

×OA∆2
.
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Hence we obtain for any integer n ≥ 1

(2.3) GLn(A∆) = GLn(A∆1
)×GLn(A∆2

).

2.2. Dimension theories

Our first goal is to construct central extensions ˜GLn(A∆) and ̂GLn(A∆) of
the group GLn(A∆) by the group Z. These central extensions are similar to

central extensions ˜GLn(A∆)R∗
+

and ̂GLn(A∆)R∗
+

from [13, § 3]. (More close

relation will be given in Section 4 below.) The main tool for this construction
is a Z-torsor Dim of dimension theories on a locally linearly compact k-vector
space V (or, in other words, on 1-Tate k-vector space V ). This Z-torsor was
defined by M. Kapranov in [8].

We recall the definition of Dim(V ). A dimension theory d on V is a map
from the set of all open linearly compact k-subspaces of V to the group Z such
that d(U2) = d(U1) + dimk(U2/U1) whenever U2 ⊃ U1 are two open linearly
compact k-subspaces of V . (We note that dimk(U2/U1) < ∞.) The set of all
dimension theories on V is denoted by Dim(V ). The group Z acts on Dim(V )
by adding constant maps. This makes Dim(V ) into a Z-torsor.

We consider an exact sequence of k-vector spaces

(2.4) 0 −→ V1 −→ V2 −→ V3 −→ 0,

where Vi (1 ≤ i ≤ 3) are locally linearly compact k-vector spaces and all the
maps in the above sequence are continuous. Besides, let V1 be a closed subspace
of V2, and topology on V3 coincides with the quotient topology. In this case,
there is a canonical isomorphism

(2.5) Dim(V1)⊗Z Dim(V3) −→ Dim(V2)

given as d1⊗ d3 7→ d2, where d2(U) = d1(U ∩V1) + d3(U/(U ∩V1)) for an open
linearly compact k-subspace U of V2.

2.3. Central extension ˜GLn(A∆)

By construction,

A∆ = lim
−→
D1

lim
←−

D2≤D1

OA∆(D1)/OA∆(D2),

and the k-vector spaceOA∆(D1)/OA∆(D2) is a locally linearly compact k-vector
space for any divisors D2 ≤ D1 on X. Besides, for any divisors D1 ≥ D2 ≥ D3

on X the corresponding exact sequence

0 −→ OA∆(D2)/OA∆(D3) −→ OA∆(D1)/OA∆(D3) −→ OA∆(D1)/OA∆(D2) −→ 0

has the same properties as the exact sequence (2.4). This means that A∆, and
correspondingly An∆, is a complete C2-vector space over k (or a 2-Tate vector
space over k) from [12]. In particular, for any elements g1 and g2 from GLn(A∆)
such that g1OnA∆

⊂ g2OnA∆
we have that the k-vector space g2OnA∆

/g1OnA∆
is a

locally linearly compact with the induced and quotient topology from a locally
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linearly compact k-vector space OA∆
(D1)n/OA∆

(D2)n for appropriate divisors
D1 ≥ D2 on X. Therefore a Z-torsor

(2.6) Dim(g1OnA∆
| g2OnA∆

)
def
= Dim(g2OnA∆

/g1OnA∆
)

is well-defined. We define also

(2.7) Dim(g2OnA∆
| g1OnA∆

)
def
= Dim(g2OnA∆

/g1OnA∆
)∨,

where the sign ∨ means the dual Z-torsor. Now for any elements g1 and g2

from GLn(A∆) a Z-torsor Dim(g1OnA∆
| g2OnA∆

) is canonically defined by the
following property (using that there is an element g3 from GLn(A∆) such that
g3OnA∆

⊂ giOnA∆
, where i = 1 and i = 2). For any elements g1, g2, g3 from

GLn(A∆) there is a canonical isomorphism of Z-torsors
(2.8)

Dim(g1OnA∆
| g2OnA∆

)⊗Z Dim(g2OnA∆
| g3OnA∆

) −→ Dim(g1OnA∆
| g3OnA∆

).

Any element g from GLn(A∆) defines an isomorphism of Z-torsors for any
elements g1, g2 from GLn(A∆):

Dim(g1OnA∆
| g2OnA∆

) −→ Dim(gg1OnA∆
| gg2OnA∆

), where d 7→ g(d).

We obtain a central extension

(2.9) 0 −→ Z −→ ˜GLn(A∆)
θ−→ GLn(A∆) −→ 1,

where the group ˜GLn(A∆) is defined as the set of all pairs (g, d), where g ∈
GLn(A∆) and d ∈ Dim(OnA∆

| gOnA∆
), with the multiplication law given as

(g1, d1)(g2, d2) = (g1g2, d1 ⊗ g1(d2)),

and θ((g, d)) = g.
The following lemma is an important property which follows from the con-

struction and formulas (2.3) and (2.5) (compare also with the proof of [13,
Prop. 2]).

Lemma 1. If ∆ = ∆1 ∪∆2 such that ∆1 ∩∆2 = ∅, then the central extension
˜GLn(A∆) is the Baer sum (i.e., it corresponds to the sum of 2-cocycles) of cen-

tral extensions p∗1
˜GLn(A∆1

) and p∗2
˜GLn(A∆1

), where p1 and p2 are projections
in decomposition (2.3).

2.4. Commutator of the lift of elements and intersection index

Using central extension (2.9) when n = 1, for arbitrary elements f, g from
A∗∆ we define an element from Z:

〈f, g〉∆
def
= [f̃ , g̃] = f̃ g̃f̃−1g̃−1,

where elements f̃ , g̃ are from ˜GL1(A∆) such that θ(f̃) = f and θ(g̃) = g. The

element 〈f, g〉∆ does not depend on the choice of f̃ , g̃. The map 〈·, ·〉∆ is a
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bilinear and alternating map from A∗∆×A∗∆ to Z. From Lemma 1 we have the
following property (under conditions and notations of this lemma):

(2.10) 〈f, g〉∆ = 〈p1(f), p1(g)〉∆1 + 〈p2(f), p2(g)〉∆2 .

If ∆ coincides with the set of all pairs x ∈ C on X, then we will use also
notation 〈·, ·〉X for the map 〈·, ·〉∆.

Let K = k′((u))((t)) be a two-dimensional local field, where k′ ⊃ k is a
finite extension of fields. By νK(·, ·) : K∗ ×K∗ → Z we denote a bilinear and
alternating map given as

(2.11) νK(f, g)
def
= [k′ : k] · νK̄

(
π(fνK(g)g−νK(f))

)
,

where f, g ∈ K∗, the maps νK : K∗ → Z and νK̄ : K̄∗ = k′((u))∗ → Z are
discrete valuations, and π : OK → K̄ is the natural homomorphism.

Remark 1. There is another explicit formula for the expression νK(f, g) given
as the product of the number [k′ : k] and the determinant of 2 × 2-matrix of
discrete valuations of rank 2 for the elements f and g. See this and another
properties of the map νK(·, ·) in [16, § 2.2] and, for example, in [6, § 8.1].

For Kx,C =
∏l
i=1Ki, where Ki is a two-dimensional local field, we define a

map νx,C : K∗x,C ×Kx,C → Z as

(2.12) νx,C(f, g)
def
=

l∑
i=1

νKi
(fi, gi),

where f, g are from K∗x,C , and fi, gi are corresponding projections of elements
f, g from K∗x,C to K∗i .

Proposition 1. (1) Let ∆ be a single pair x ∈ C. In this case 〈·, ·〉∆ =
−νx,C(·, ·).

(2) For any set ∆ of pairs x ∈ C (as in the beginning of the paper) we have

(2.13) 〈f, g〉∆ =
∑

{x∈C}∈∆

〈fx,C , gx,C〉x∈C ,

where f, g are from A∗∆, the elements fx,C , gx,C are corresponding projections
of elements f, g from A∗∆ to K∗x,C (see formulas (2.1) and (2.2)), and the sum

in formula (2.13) contains only a finite number of non-zero terms.

Proof. (1) Let Kx,C =
∏l
i=1Ki, where Ki is a two-dimensional local field.

Using a direct analog of formula (2.10) we reduce the statement to the fol-
lowing: 〈fi, gi〉Ki

= −νKi
(fi, gi), where the map 〈·, ·〉Ki

is constructed by the
central extension which is obtained as the restriction of the central extension

˜GL1(Kx,C) from the group GL1(Kx,C) to the subgroup GL1(Ki). Now this
statement follows from Theorem 1 of [10]. (We note that there is a misprint
with the sign in the statement and in the last line of the proof of Theorem 1
from [10].)
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(2) Let ∆2 be the set of all pairs x ∈ C from ∆ such that fx,COKx,C
= OKx,C

and gx,COKx,C
= OKx,C

. Let ∆1 be the complement set to ∆1 inside the

set ∆. By construction, the central extensions ˜GL1(A∆2
) and ˜GL1(Kx,C),

where {x ∈ C} ∈ ∆2, split. Therefore 〈f∆2 , g∆2〉∆2 = 0, where f∆i , g∆i

(i = 1, 2) are corresponding projections of elements f, g from A∗∆ to A∗∆i
,

and 〈fx,C , gx,C〉x,C = 0 when {x ∈ C} ∈ ∆2. Besides, from formulas (2.11)
and (2.12) it follows that νx,C(fx,C , gx,C) = 0 when {x ∈ C} ∈ ∆2.

Therefore from formula (2.10) we obtain 〈f, g〉∆ = 〈f∆1 , g∆1〉∆1 . Thus we
can change ∆ to ∆1 in formula (2.13). From construction of the set ∆1 we
have that the set of irreducible curves C which appear in pairs x ∈ C from ∆1

is finite. Again by formula (2.10) we can restrict ourself to a fixed irreducible
curve C, i.e., we consider a set ∆ such that a curve C is fixed for pairs x ∈ C
from ∆.

Since f ∈ A∆ and f−1 ∈ A∆, from adelic conditions we obtain that there
is a finite set of integers such that νKx,C

(fx,C) belongs to this set when x runs
over all smooth points on C from pairs {x ∈ C} ∈ ∆. (If x is a smooth point
on C, then Kx,C is a two-dimensional local field with the discrete valuation
νKx,C

.) The same is true for the element g ∈ A∗∆, but with possibly another
finite set. Therefore, subdividing the set ∆ into a finite number of subsets and
using formula (2.10) we will suppose that ∆ satisfies conditions of one of the
following two cases. In the former case, the set ∆ consists of one pair x ∈ C
(when x is a singular point on C), and therefore formula (2.13) is tautological
and we will not consider this case further. In the remaining case, the integers
νKx,C

(fx,C) and νKx,C
(gx,C) do not change when x runs over all smooth points

on C such that {x ∈ C} ∈ ∆.
Let tC = 0 be an equation of the irreducible curve C on some open sub-

set of X. Then using bilinear and alternating property of both hand sides of
formula (2.13), and also the above properties of the set ∆, we obtain that it
is enough to consider two cases: 1) f and g are from O∗A∆

; 2) f ∈ O∗A∆
and

g = tC . In the first case, fx,C and gx,C are from O∗Kx,C
for all pairs x ∈ C from

∆. Therefore, by construction, central extensions ˜GL1(A∆) and ˜GL1(Kx,C),
where {x ∈ C} ∈ ∆, split. Hence 〈f, g〉∆ = 0 and 〈fx,C , gx,C〉x,C = 0 when
{x ∈ C} ∈ ∆, and formula (2.13) follows. In the second case, the right hand
side of formula (2.13) equals to

∑
{x∈C}∈∆−νx,C(fx,C , tC) by the first state-

ment of this proposition, and this sum contains only a finite number of non-zero
terms by formulas (2.11) and (2.12) and adelic conditions on f . On the other
hand, by definition of 〈·, ·〉∆ we have 〈f, t−1

C 〉∆ = d(π(f)−1(U) − d(U), where
π is the natural homomorphism OA∆

→ OA∆
/tCOA∆

, d is a dimension theory
on OA∆/tCOA∆ and U is an open linearly compact k-subspace in OA∆/tCOA∆ .
(Compare with the calculation of case 2 in the proof of Theorem 1 of [10].)
Fixing an open set U as the product of rings of integers of one-dimensional
local fields, and dimension theory d such that d(U) = 0, it is easy to see
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that d(π(f)−1(U) − d(U) =
∑
{x∈C}∈∆ νx,C(fx,C , tC). Thus we obtain for-

mula (2.13) in this case. �

For a surface X, an irreducible curve C ⊂ X, and a point x ∈ X, let KC

be the completion of the field k(X) of rational functions on X with respect to

the discrete valuation given by C, let Kx = k(X) · Ôx,X be a subring of the

fraction field Frac Ôx,X .
Let D be a divisor on X.
For an irreducible curve C ⊂ X let jDC ∈ K∗C be an equation of the divisor

D after the restriction to SpecKC . For any point y ∈ C we have an embedding
KC ⊂ Ky,C . It is easy to check that a collection {jDC }, where C runs over the
set of all irreducible curves on X, defines a well-defined element from A∗X under
the natural diagonal embedding

∏
C⊂X KC ↪→

∏
y∈C Ky,C .

For a point x ∈ X let jDx ∈ K∗x be an equation of the divisor D after the
restriction to SpecKx. For any irreducible curve E 3 x we have an embedding
Kx ⊂ Kx,E . It is easy to check that a collection {jDx }, where x runs over the
set of all points of X, defines a well-defined element from A∗X under the natural
diagonal embedding

∏
x∈X Kx ↪→

∏
x∈E Kx,E .

Using the definition of the intersection index of divisors given by A. N.
Parshin in [16, § 2.2] by means of sum of local maps νx,C , we immediately
obtain from Proposition 1 the following proposition. (We note that the analog
of this proposition was used without written proof in [15].)

Proposition 2. Let S and T be divisors on a smooth projective surface X,
and (S, T ) ∈ Z be their intersection index. We have

〈{jSx }, {jTC}〉X = −(S, T ).

3. Second Chern numbers

3.1. Central extension ̂GLn(A∆)

For any ∆ which is a subset of all pairs x ∈ C, where C is an irreducible
curve on X. We have natural isomorphism of groups

GLn(A∆) = SLn(A∆) oA∗∆,

where the group A∗∆ is embedded into the upper left corner of the group
GLn(A∆) and acts on the group SLn(A∆) by conjugation, i.e., by inner auto-
morphisms h 7→ aha−1, where a ∈ A∗∆ and h ∈ SLn(A∆). By means of the
central extension (2.9) the action of the group A∗∆ is lifted to the action on the

group θ−1(SLn(A∆)) (by inner automorphisms of the group ˜GLn(A∆). We
define a group

̂GLn(A∆)
def
= θ−1(SLn(A∆)) oA∗∆,

whose natural homomorphism to GLn(A∆) gives a central extension

0 −→ Z −→ ̂GLn(A∆)−→GLn(A∆) −→ 1,
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which, by construction, splits over the subgroup A∗∆ of GLn(A∆).

Remark 2. To construct central extension ̂GLn(A∆) we used an embedding
of A∗∆ to GLn(A∆) as a 7→ diag(a, 1, . . . , 1), where a ∈ A∗∆. Since an inner
automorphism of the group GLn(A∆) induces a canonical automorphism of
the group that is a central extension of GLn(A∆), another embedding a 7→
diag(1, . . . , a, . . . , 1) of A∗∆ to GLn (into other place on the diagonal) produces
a construction of the central extension which is canonically isomorphic to the

central extension ̂GLn(A∆) (compare also with Remark 3 from [13]).

Remark 3. From formula (2.3) and Lemma 1 we obtain the property which is
similar to the statement of Lemma 1 when we replace the central extensions
˜GLn(A∆), ˜GLn(A∆1) and ˜GLn(A∆2) to ̂GLn(A∆), ̂GLn(A∆1) and ̂GLn(A∆2)

correspondingly (compare with [13, Prop. 2]).

The analogy with the next proposition (and with remark after them) can
be found in [1, § A5] and [5, Appendix], where it was considered a central
extension of a group GLn(A) by a group K2(A) for a ring A with the property
SK1(A) = 0. We note that it is not clear how to deduce the next proposition
(and remark after them) from [1, § A5] and [5, Appendix].

We consider a central extension

(3.1) 0 −→ Z −→ ̂A∗∆ × A∗∆ −→ A∗∆ × A∗∆ −→ 1,

where ̂A∗∆ × A∗∆
def
= A∗∆×A∗∆×Z as a set, and with the multiplication law given

as

(f, g; r)(f ′, g′; r′)
def
= (ff ′, gg′; r + r′ + 〈f ′, g〉∆),

where f, g, f ′, g′ are from A∗∆, and r, r′ are from Z.

For any a ∈ A∗∆ we denote by φ1(a) the element from ̂GLn(A∆) which equals

to the canonical section of the central extension ̂GLn(A∆) over the subgroup
A∗∆ applied to the element a. For any integer l such that 1 ≤ l ≤ n we denote

φl(a) = ΦlaΦ−1
l , where Φl is a lift to ̂GLn(A∆) of the matrix from GLn(A∆)

which acts as transposition on standard coordinates of An∆ permuting the first
and the l-th coordinates. Clearly, φl(a) does not depend on a lift of such matrix,
and the image of φl(a) under the standard homomorphism to GLn(A∆) equals
to diag(1, . . . , a, . . . , 1) with the element a is located on the l-th place of the
diagonal.

Proposition 3. (1) We fix integers 1 ≤ i < j ≤ n and embed the group
A∗∆×A∗∆ into the group GLn(A∆) as (f, g) 7→ diag(1, . . . , f, . . . , g, . . . , 1), where
elements f and g from A∗∆ are located on i-th and j-th places on the diagonal.

We obtain that the restriction of the central extension ̂GLn(A∆) to the subgroup
A∗∆ × A∗∆ is isomorphic to the central extension (3.1) via the map

rφi(f)φj(g) 7−→ (f, g; r),
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where r is from Z, which is a subgroup of the center of the group ̂GLn(A∆).
(2) For positive integers n1 and n2 such that n = n1 + n2 we consider a

subgroup

Pn1,n2
(A∆)

def
=

{(
GLn1

(A∆) ∗
0 GLn2

(A∆)

)}
⊂ GLn(A∆).

Let pi : Pn1,n2
(A∆) → GLni

(A∆) be the projections, where i = 1 and i = 2.

We obtain that the restriction of the central extension ̂GLn(A∆) to the subgroup

Pn1,n2
(A∆) is isomorphic to the Baer sum of central extensions p∗1( ̂GLn1

(A∆)),

p∗2( ̂GLn2
(A∆)) and (det(p1)× det(p2))∗ ̂A∗∆ × A∗∆.

Proof. (1) For any element a ∈ A∗ and integer i such that 1 ≤ i ≤ n, we denote
di(a) = diag(1, . . . , a, . . . , 1) ∈ GLn(A∆), where a is located on i-th place in
the diagonal matrix.

It is enough to prove the following equality inside the group ̂GLn(A∆) for
any elements f, g, f ′, g′ from GLn(A∆):

φi(f)φj(g)φi(f
′)φj(g

′) = 〈f ′, g〉∆ · φi(ff ′)φj(gg′).
Clearly, this equality follows from an equality φj(g)φi(f

′)=〈f ′, g〉∆·φi(f ′)φj(g).
Thus, we have to prove that [φj(g), φi(f

′)] = 〈f ′, g〉∆ or [φi(f
′), φj(g)] =

〈g, f ′〉∆. Applying the conjugation by Φi, we obtain that it is enough to
prove an equality [φ1(f ′),Φi · φj(g) · Φ−1

i ] = 〈g, f ′〉∆. We note that the im-

age of Φi · φj(g) · Φ−1
i under the standard homomorphism to GLn(A∆) equals

to dj(g). Since the commutator of lifts of two elements does not depend on
the choice of lifts of these elements to the central extension, we have that
[φ1(f ′),Φi · φj(g) · Φ−1

i ] = [φ1(f ′), φj(g)]. Further, using the bilinear property
of the commutator of lifts of commuting elements, we obtain

[φ1(f ′), φj(g)] = [φ1(f ′), φ1(g)φ1(g)−1φj(g)]

= [φ1(f ′), φ1(g)] · [φ1(f ′), φ1(g)−1φj(g)](3.2)

= [φ1(f ′), φ1(g)−1φj(g)].

We denote by h the image of the element φ1(g)−1φj(g) under the homomor-
phism to GLn(A∆). Since h belongs to the subgroup SLn(A∆), by construction

of the group ̂GLn(A∆) the last commutator in formula (3.2) equals to commu-

tator [d̃1(f ′), h̃] computed in the group ˜GLn(A∆), where d̃1(f ′) and h̃ are lifts

of elements d1(f ′) and h from the group GLn(A∆) to the group ˜GLn(A∆). We

obtain in the group ˜GLn(A∆) an equality

[d̃1(f ′), h̃] = [d̃1(f ′), ˜d1(g−1) · d̃j(g)] = [d̃1(f ′), ˜d1(g−1)] · [d̃1(f ′), d̃j(g)].

Now from construction of the group ˜GLn(A∆) we obtain that the commuta-
tor of the lift of diagonal matrices can be calculated componentwise (first,
separately for each place on the diagonal, and then multiply the results).
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Therefore we obtain [d̃1(f ′), ˜d1(g−1)] = 〈g, f ′〉∆, and since j 6= 1, we have

[d̃1(f ′), d̃j(g)] = 1.
(2) We embed the group A∗∆×A∗∆ into the group Pn1,n2

(A∆) in the following
way: (f, g) 7→ diag(f, . . . , g, . . . , 1), where elements f and g from A∗∆ are located
on the first and (n1 + 1)-th places on the diagonal, and other places of the
diagonal are occupied by 1. We can write the group Pn1,n2

(A∆) as a semidirect
product:

(3.3)

{(
SLn1(A∆) ∗

0 SLn2(A∆)

)}
o (A∗∆ × A∗∆).

According to Construction 1.7 from [2], a central extension ĜoH of a
semidirect product GoH by a group A is equivalent to the following data: 1)

a central extension Ĝ of G by A; 2) a central extension Ĥ of H by A; 3) an

action of H on Ĝ → G, lifting the action of H on G. We note that central

extensions Ĝ and Ĥ are obtained as restrictions of the central extension ĜoH
to the subgroups G and H correspondingly.

To prove the second statement of Proposition 3, we apply the above con-
struction to the case of semidirect product given by formula (3.3), where

H = A∗∆ × A∗∆ and G =

{(
SLn1

(A∆) ∗
0 SLn2

(A∆)

)}
. Then condition 2)

of the construction follows from the first statement of Proposition 3. To obtain

condition 1) we note that the restriction of the central extension ˜GLn(A∆) to
the subgroup Pn1,n2

(A∆) is canonically isomorphic to the Baer sum of central

extensions p∗1
˜GLn1

(A∆) and p∗2
˜GLn2

(A∆). This fact easily follows from a nat-
ural action of Pn1,n2

(A∆) on an exact triple (exact triple of complete C2-vector
spaces over k)

(3.4) 0 −→ An1

∆ −→ An∆ −→ An2

∆ −→ 0,

from formula (2.5), and from the construction of the group ˜GLn(A∆). To
finish the checking of condition 2) we note that the restrictions of the central

extensions ˜GLn(A∆) and ̂GLn(A∆) to the subgroup SLn(A∆) coincide (or
canonically isomorphic). To obtain condition 3) we note that an action of the

group H on Ĝ → G comes from the action by conjugations of elements from

A∗∆ × A∗∆ (lifted to ˜GLn(A∆)) on ˜GLn(A∆) restricted as central extension to
Pn1,n2

(A∆). Besides, it is important that the group H naturally acts on exact

triple (3.4), and therefore the action of H on Ĝ is compatible with the action
on the corresponding Baer sum with respect to projections p1 and p2. �

Remark 4. (1) From the first statement of Proposition 3 it is easy to obtain
the following generalization. For any integer k such that 1 ≤ k ≤ n we consider
a central extension

(3.5) 0 −→ Z −→ (̂A∗∆)k −→ (A∗∆)k −→ 1,
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where (A∗∆)k is the direct product A∗∆ × . . .A∗∆ with A∗∆ being taken k times,

and (̂A∗∆)k
def
= (A∗∆)k × Z as a set, where the group multiplication law is given

as

(f1, . . . , fk; r)(f ′1, . . . , f
′
k; r′)

def
= (f1f

′
1, . . . , fkf

′
k; r + r′ +

∑
i<j

〈f ′i , fj〉∆),

where f1, . . . , fk, f
′
1, . . . , f

′
k are from A∗∆, and r, r′ are from Z. We fix integers

1 ≤ j1 < · · · < jk ≤ n, and consider an embedding of the group (A∗∆)k to
the group GLn(A∆) given as: (f1, . . . , fk) is mapped to the diagonal matrix
diag(a1, . . . , an), where aji = fi (for 1 ≤ i ≤ k), and al = 1 otherwise. Then

the restriction of the central extension ̂GLn(A∆) to the subgroup (A∗∆)k is
isomorphic to the central extension (3.5) via the map

rφj1(f1) · . . . · φjk(fk) 7−→ (f1, . . . , fk; r).

(2) The central extension ̂GLn(A∆) canonically splits over A∗∆, where this
group is embedded into the i-th place of the diagonal, via the map a 7→ φi(a).
From this fact and the second statement of Proposition 3 we obtain that the cen-

tral extension ̂GLn(A∆) canonically splits over the subgroup Un =
{(

1 ∗
1

0 1

)}
.

3.2. Canonical splittings

Now we give the generalization of non-commutative reciprocity laws from [13,
§ 3.5] when X is a smooth algebraic surface over k.

We recall (see the end of Section 2.4) that we have diagonal embeddings∏
C⊂X

KC ↪→
∏
x∈C

Kx,C and
∏
x∈X

Kx ↪→
∏
x∈C

Kx,C .

There are the following subrings of the adelic ring AX :

(3.6) AX,01 = (
∏
C⊂X

KC) ∩ AX , AX,02 = (
∏
x∈X

Kx) ∩ AX , and AX,12 = OAX
,

where the intersection is taken inside the ring
∏
x∈C Kx,C .

Proposition 4. (1) For any set ∆ of pairs x ∈ C the central extensions

˜GLn(A∆) and ̂GLn(A∆) canonically split over the subgroup GLn(OA∆
)

of the group GLn(A∆).

(2) The central extensions ˜GLn(AX) and ̂GLn(AX) canonically split over
the subgroup GLn(AX,02) of the group GLn(AX).

(3) Suppose that X is projective. Then the central extensions ˜GLn(AX)

and ̂GLn(AX) canonically split over the subgroup GLn(AX,01) of the
group GLn(AX).

(4) Splittings of the central extension ̂GLn(AX) from statements (2)-(3)
coincide over the subgroup GLn(k(X)). The analogous results are
also true for the splittings from statements (1)-(2) and the subgroup
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GLn(AX,12 ∩ AX,02), and for the splittings from statements (1), (3)
and the subgroup GLn(AX,12 ∩ AX,01).

(5) Under the same conditions as in statements (1)-(3), the central exten-

sion ̂A∗∆ × A∗∆ (see formula (3.1)) splits over the subgroups O∗A∆
×O∗A∆

,
A∗X,02 × A∗X,02 and A∗X,01 × A∗X,01 via the map (f, g) 7→ (f, g; 0).

(6) For the central extension ̂GLn(AX) restricted to a subgroup

Pn1,n2
(AX) ⊂ GLn(AX),

splittings from statements (1)-(3) and (5) are compatible with respect to
the isomorphism constructed in the second statement of Proposition 3.

Proof. (1) The splittings follow from the constructions of the central extensions

˜GLn(A∆) and ̂GLn(A∆), since for any element f ∈ GLn(OA∆
) we have fOnA∆

=
OnA∆

.

(2) First we prove that the central extension ˜GLn(AX) splits over the sub-
group GLn(AX,02). We note that for any two divisors D1 ≥ D2 the subspace

(OAX
(D2) ∩ AX,02)/(OAX

(D1) ∩ AX,02) ⊂ OAX
(D2)/OAX

(D1)

is an open linearly compact k-vector space. Hence for any g1, g2 ∈ GLn(AX)
such that g2OnAX

⊃ g1OnAX
the subspace

(g2OnAX
∩ AnX,02)/(g1OnAX

∩ AnX,02) ⊂ g2OnAX
/g1OnAX

is an open linearly compact k-vector space. We define

dg1,g2
∈ Dim(g2OnAX

/g1OnAX
)

by the rule dg1,g2
((g2OnAX

∩AnX,02)/(g1OnAX
∩AnX,02)) = 0. Using formulas (2.6)-

(2.8), we obtain a well-defined element dg1,g2
∈ Dim(g1OnAX

| g2OnAX
) for any

elements g1, g2 ∈ GLn(AX). Now it is easy to see that the map

(3.7) GLn(AX,02) −→ ˜GLn(A∆) : g 7→ (g, d1,g)

is a group splitting.

To prove the splitting of the central extension ̂GLn(AX) over the subgroup
GLn(AX,02) we note that GL(n,AX,02) = SL(n,AX,02) o A∗X,02. For any a ∈
A∗X,02, the conjugation by the element (a, d1,a) ∈ ˜GLn(A∆) does not change the

section over the group SL(n,AX,02) which was constructed in formula (3.7).

By construction, this gives the splitting of ̂GLn(AX) over GLn(AX,02), where
we take the trivial section over A∗X,02.

(3) The idea for the proof of this statement is analogous to the proof of state-
ment (2), but instead of element dg1,g2

∈ Dim(g1OnAX
| g2OnAX

) we have to use
another element d′g1,g2

∈ Dim(g1OnAX
| g2OnAX

) which is constructed by means
of the following property. For any two divisors D1 ≥ D2 the subspace U =
(OAX

(D2) ∩ AX,01)/(OAX
(D1) ∩ AX,01) of the space V = OAX

(D2)/OAX
(D1)

is a discrete k-vector subspace such that V/U is a linearly compact k-vector
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space. (It is important that on the projective curve C the field of rational func-
tions k(C) is a discrete subspace inside the adelic ring of C, and the quotient
space is a linearly compact k-vector space that follows, for example, from the
adelic complex on the curve C and the fact that k-vector spaces H0(C,OC)
and H1(C,OC) are finite-dimensional over k.) Hence for any g1, g2 ∈ GLn(AX)
such that g2OnAX

⊃ g1OnAX
we have an exact triple of k-vector spaces

0 −→ Y −→W −→W/Y −→ 0,

where W = g2OnAX
/g1OnAX

is a locally linearly compact k-vector space, k-
vector space Y = (g2OnAX

∩ AnX,01)/(g1OnAX
∩ AnX,01) is a discrete subspace in

induced topology, and the space W/Y endowed with the quotient topology
is a linearly compact k-vector space. Using formulas (2.4)-(2.5) we define an
element d′g1,g2

∈ Dim(W ) as dY ⊗ dW/Y , where dY ∈ Dim(Y ) is defined as
dY ((0)) = 0 (here (0) is the zero subspace), and dW/Y ∈ Dim(W/Y ) is de-
fined as dW/Y (W/Y ) = 0. To finish we proceed further as in the proof of
statement (2).

(4) The group SLn(k(X)) is perfect. Therefore any two sections of the cen-

tral extension ˜GLn(AX) restricted to the group SLn(k(X)) coincide. Hence,

two sections of the central extension ̂GLn(AX) restricted to the group
GLn(k(X)) coincide, because over the subgroup k(X)∗ : a 7→ diag(a, 1, . . . , 1)
two sections are trivial by constructions in the proof of statements (2)-(3).

Various splittings of the central extension ˜GLn(AX) over the subgroup
GLn(AX,01 ∩ AX,12) and over the subgroup GLn(AX,02 ∩ AX,12) coincide, be-
cause for any element f ∈ GLn(OA∆) we have fOnA∆

= OnA∆
, and then we have

to use the constructions of the splittings. Hence, again by construction, the

same is true for the central extension ̂GLn(AX).

(5) By statements (1)-(3) the central extension ˜GL1(A∆) splits over O∗A∆
,

the central extension ˜GL1(AX) splits over A∗X,02 and over A∗X,01 (when X is

projective). Hence 〈f, g〉∆ = 0 for f, g ∈ O∗A∆
, and 〈f, g〉X = 0 for f, g ∈ A∗X,02

and when X is projective for f, g ∈ A∗X,01. Now we finish by the definition of

the multiplication law in ̂A∗∆ × A∗∆.
(6) This statement follows from constructions of sections in proofs of state-

ments (1)-(3) and of the second statement of Proposition 3. It is important
that together with exact sequence (3.4) we can write exact sequences

0 −→ An1

X,02 −→ AnX,02 −→ An2

X,02 −→ 0 and

0 −→ An1

X,01 −→ AnX,01 −→ An2

X,01 −→ 0

and the corresponding groups Pn1,n2
(AX) ∩ GLn(AX,02) and Pn1,n2

(AX) ∩
GLn(AX,01) act on these sequences.

Besides, concerning the central extension ̂A∗X × A∗X , we note that for any
integer l such that 1 ≤ l ≤ n if an element a is from A∗X,ij with ij equal to
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12 or 02 or 01, then the element φl(a) ∈ ̂GLn(AX) (see its definition before
Proposition 3) equals to a section over the element diag(1, . . . , a, . . . , 1), where
this section is constructed in statements (1), (2) or (3) correspondingly, and
a is located on the l-th place of the diagonal in diag(1, . . . , a . . . , 1). This is
because the matrix of transposition of coordinates which was used to construct
φl(a) belongs to any of the groups: GLn(AX,12), GLn(AX,02) and GLn(AX,01).
Hence, the map diag(f, . . . , g, . . . , 1) 7→ φ1(f)φn1+1(g) equals to a section from
the proof of statements (1), (2) and (3) when f, g ∈ A∗X,ij , where ij equal to 12

or 02 or 01 correspondingly (compare with the proof of the second statement
of Proposition 3). �

Remark 5. For a smooth projective surface X we have AX,02 ∩AX,01 = k(X),
see [4, Th. 6(iii)] (after T. Fimmel and A. N. Parshin). Therefore we obtain
GLn(k(X)) = GLn(AX,02) ∩GLn(AX,01). Hence we can reformulate the state-
ment (4) of Proposition 4 in the following way: splittings of the central ex-

tension ̂GLn(AX) from statements (1)-(3) coincide over the intersections of
corresponding subgroups.

3.3. Second Chern number

Now we give a construction of the second Chern number for a vector bundle
on a smooth algebraic surface X over k.

Let E be a locally free sheaf of OX -modules of rank n on X. Follow [16] we
introduce transition matrices for E . For any point x ∈ X let ex be a basis of the
free Ôx,X -module E ⊗OX

Ôx,X . For any irreducible curve C on X let eC be a
basis of the free OKC

-module E ⊗OX
OKC

, where OKC
is the discrete valuation

ring of the field KC . Let e0 be a basis of the free k(X)-module E ⊗OX
k(X).

These expressions can be considered as completions of the stalks of E at scheme
points of X. Each of above basis consists of n elements.

For any point x ∈ X we have the transition matrix αx ∈ GLn(Kx) defined
as e0 = αxex. For any irreducible curve C on X we have the transition matrix
αC ∈ GLn(KC) defined as e0 = αCeC . For any pair x ∈ C we have the
transition matrix αx,C ∈ GLn(OKx,C

) defined as ex = αx,CeC .
When we vary points x ∈ X, we obtain the matrix

α02 = {αx} ∈ GLn(
∏
x∈C

Kx,C)

via the diagonal embedding. When we vary irreducible curves C on X, we
obtain the matrix α01 = {αC} ∈ GLn(

∏
x∈C Kx,C) via the diagonal embed-

ding. When we vary pairs x ∈ C, we obtain the matrix α21 = {αx,C} ∈
GLn(

∏
x∈C Kx,C). We define α20 = α−1

02 , α10 = α−1
01 , α12 = α−1

21 . We have an
evident equality:

(3.8) α02α21α10 = 1,

where 1 is the identity matrix.
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If we change the basis:

{ex} 7−→ α2{ex}, {eC} 7−→ α1{eC}, e0 7−→ α0e0,

where α2 ∈ GLn(
∏
x∈X Ôx,X) = GLn(AX,02 ∩AX,12), α1 ∈ GLn(

∏
C⊂X OKC

)
= GLn(AX,01 ∩ AX,12), and α0 ∈ GLn(k(X)), then we obtain the change of
matrices:

(3.9) α02 7−→ α0α02α
−1
2 , α21 7−→ α2α21α

−1
1 , α10 7−→ α1α10α

−1
0 .

It is easy to see that α01 and α02 are from GLn(AX), because by for-
mula (3.9) we can change the basis e0, {ex} and {eC} to a more convenient
basis, for example, to take a trivialization of E on some open cover of X in
Zariski topology, and then e0 equal to the trivialization of E on a fixed open
subset from this open cover, and ex, eC also come from the trivialization of
E on this open cover of X. Hence and using formula (3.8) we obtain that
α21 ∈ GLn(AX). Therefore we have that

α02 ∈ GLn(AX,02), α21 ∈ GLn(AX,12), α10 ∈ GLn(AX,01).

Let α̂02 ∈ ̂GLn(AX) be the canonical section applied to α02 and which was

constructed in statement (2) of Proposition 4. Let α̂21 ∈ ̂GLn(AX) be the
canonical section applied to α21 and which was constructed in statement (1)

of Proposition 4. Let α̂02 ∈ ̂GLn(AX) be the canonical section applied to α02

and which was constructed in statement (3) of Proposition 4.

Theorem 1. Let E be a locally free sheaf of OX-modules of rank n on a smooth
projective surface X over a perfect field k.

(1) An expression α̂02 α̂21 α̂10 ∈ ̂GLn(AX) gives an element from Z and
does not depend on the choose of basis e0, {ex} and {eC} of E.

(2) An expression α̂02 α̂21 α̂10 equals to the second Chern number c2(E) of
E.

Proof. (1) Since the image of α̂02 α̂21 α̂10 in GLn(AX) equals to α02α21α10 = 1,
we obtain that α̂02 α̂21 α̂10 ∈ Z. The independence on the choice of basis follows
from formula (3.9) and the statement (4) of Proposition 4.

(2) It is known that for any locally free sheaf F of OX -modules of rank
more than 1 there is a smooth surface Y and a morphism f : Y → X, where
Y is obtained by means of chain of blow-ups of points, such that there is a
locally free subsheaf F1 ⊂ f∗F with (f∗F)/F1 is again a locally free subsheaf
of OY -modules. (Indeed, it is enough to find a section s ∈ H0(Y, f∗E) such
that s(y) 6= 0 for any point y ∈ Y , then the sheafM = (f∗E)/(OY ·s) is locally

free, because Tor
Oy,Y

1 (k(y),My) = 0 for any point y ∈ Y .)
Therefore from the general theory of the Chern classes it follows that the

number c̃2(E) coincides with the second Chern number c2(E) on a smooth
projective algebraic surface if and only if the following conditions are satisfied:

1) c̃2(L) = 0 for any locally free sheaf L of rank 1;
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2) c̃2(N ) = c̃2(π∗(N )), where N is a locally free sheaf and π is a blow-up of
a point;

3) for any exact sequence of locally free sheaves

(3.10) 0 −→ E1 −→ E2 −→ E3 −→ 0

we have c̃2(E2) = c̃2(E1)+ c̃2(E3)+(det(E1),det(E3)), where (·, ·) is the intersec-
tion index of two divisors which are rational sections of corresponding invertible
sheaves.

In our case c̃2 equals to α̂02 α̂21 α̂10. The first condition is satisfied, because,

by construction, ̂GL1(AX) = Z× A∗X .
To check the second condition we note that if π : Y → X is a blow-up

of a point x ∈ X, then AY = AX × A∆ with the set ∆ which consists of
all pairs y ∈ R, where π(R) = x. By the first statement of this theorem,
c̃2 does not depend on the choice of the basis. Therefore we choose the spe-
cial basis. We fix a trivialization of E on an open neighbourhood of x on X.
This trivialization gives us the same basis e0, ex, eR and ey, where y ∈ R,
for E and π∗E . We identify the other basis for E and π∗E . The decom-
position GLn(AY ) = GLn(AX)×GLn(A∆) implies the canonical embedding
γ : GLn(AX) ↪→ GLn(AY ). From construction of the central extension we have
canonical isomorphism (compare also with Remark 3):

δ : ̂GLn(AX) −→ γ∗( ̂GLn(AY ).

It is easy to see that from our choice of the basis for E and π∗E we have

γ(α02,E) = α02,π∗E , γ(α21,E) = α21,π∗E , γ(α10,E) = α10,π∗E ,

where we put an additional index E or π∗E to specify a locally free sheaf.
Besides, from the construction of the central extension and the splittings we
obtain

δ(α̂02,E) = α̂02,π∗E , δ(α̂21,E) = ̂α21,π∗E), δ(α̂10,E) = α̂10,π∗E ,

where we consider elements α̂02,π∗E , α̂21,π∗E and α̂10,π∗E as elements from the

group γ∗( ̂GLn(AY ). This finishes the checking of the second condition.
Since we can take the basis compatible with exact sequence (3.10) and c̃2

does not depend on the choice of the basis, the third condition for c̃2 follows
from statements (5) and (6) of Proposition 4, the second statement of Propo-
sition 3 and the following fact. Let C and D be invertible sheaves on a smooth
projective surface X, and α02,C , α21,C , α10,C , α02,D, α21,D, α10,D be transition
matrices, in fact elements from A∗X , for sheaves C and D correspondingly (after
the choice of basis for these sheaves). Then there is an equality in the group
̂A∗X × A∗X :

(3.11) (α02,C , α02,D; 0)(α21,C , α21,D; 0)(α10,C , α10,D; 0) = (C,D) ∈ Z.

We prove this equality now. The left hand side of expression (3.11) equals to

(α02,C · α21,C , α02,D · α21,D; 〈α21,C , α02,D〉X) · (α10,C , α10,D; 0)
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= (α01,C , α01,D, 〈α21,C , α02,D〉X) · (α10,C , α10,D; 0)

= (1, 1; 〈α21,C , α02,D〉X) + 〈α10,C , α01,D〉X).

Since by statements (1)-(3) of Proposition 4 the central extension ˜GL1(AX)
canonically splits over subgroups A∗X,12, A∗X,01 and A∗X,02, we have

〈α10,C , α01,D〉X = 0.

Therefore it is enough to prove that 〈α21,C , α02,D〉X = (C,D). We have

〈α21,C , α02,D〉X = 〈α02,D, α12,C〉X
= 〈α02,D, α12,C〉X + 〈α21,D, α12,C〉X
= 〈α01,D, α12,C〉X
= 〈α01,D, α01,C〉X + 〈α01,D, α12,C〉X
= 〈α01,D, α02,C〉X = (C,D),

where the last equality follows from Proposition 2.
Thus we have proved the theorem. �

4. Case of arithmetic surface

Now we will give analogs of certain statements of Proposition 4 for arith-
metic surfaces. We note that Proposition 4 is one of key propositions used in
Theorem 1.

By an arithmetic surface we mean here a two-dimensional integral regular
scheme of finite type over Z with the proper surjective morphism to SpecZ.
For an arithmetic surface X there is an adelic arithmetic ring Aar

X introduced
in [14, Example 11] (see also explanations in [13, § 3.4]):

Aar
X

def
= AX × AX,∞,

where the ring

AX,∞
def
= AXQ ⊗̂R = lim

−→
D2

lim
←−

D1≥D2

(AXQ(D2)/AXQ(D1))⊗Q R,

and AXQ is the adelic ring of the curve XQ = X ×SpecZ SpecQ, which is the
generic fibre, D1 and D2 are divisors on the curve XQ.

The central extensions ˜GLn(Aar
X)R∗

+
and ̂GLn(Aar

X)R∗
+

of the group GLn(Aar
X)

by the (multiplicative) group of positive real numbers R∗+ were constructed
in [13]. The constructions of these central extensions can be done similarly to

constructions of central extensions ˜GLn(A∆) and ̂GLn(A∆) from Sections 2.3
and 3.1, but we have to use that Aar

X is an object of the category Car
2 from [14,

§ 5] (instead of the category C2 which we used before). Correspondingly, instead
of locally linearly compact k-vector spaces we have to use locally compact
Abelian groups, and instead of Z-torsor of dimension theories Dim(V ) for a
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locally linearly compact k-vector space V we have to use R∗+-torsor µ(W ) of
Haar measures for a locally compact Abelian group W .

We note that the similar construction can be done for an algebraic surface
over a finite field Fq. In this case a locally linearly compact Fq-vector space V
is also an Abelian locally compact group. A homomorphism Z→ R∗+ : a 7→ qa

induces the map Dim(V ) → µ(V ) of corresponding torsors. This gives the

homomorphism from the central extensions ˜GLn(AX) and ̂GLn(AX) to the

central extensions ˜GLn(Aar
X)R∗

+
and ̂GLn(Aar

X)R∗
+

correspondingly.

Similarly to Lemma 1 we have that the cental extension ˜GLn(Aar
X)R∗

+
is the

Baer sum of the central extensions ˜GLn(AX)R∗
+

and ˜GLn(AX,∞)R∗
+

, where the

last two central extensions are obtained by restrictions of the central extension
˜GLn(Aar

X)R∗
+

to subgroups GLn(AX) and GLn(AX,∞) of the group GLn(Aar
X).

Analogously to this statement and similarly to Remark 3, the central exten-

sion ̂GLn(Aar
X)R∗

+
is the Baer sum of the central extensions ̂GLn(AX)R∗

+
and

̂GLn(AX,∞)R∗
+

.

We have a subring AX,∞(0) = lim
←−
D≤0

(AXQ(0)/AXQ(D))⊗QR of the ring AX,∞,

where 0 is zero divisor on XQ, and D is a divisor on XQ which is less or equal
than 0.

The ring AX,02 (with the definition as in formula (3.6)) is a subring of the

ring AX . Besides, the restrictions of the central extensions ˜GLn(Aar
X)R∗

+
and

̂GLn(Aar
X)R∗

+
to the subgroup GLn(AX,02) embedded to the group GLn(AarX )

as g 7→ g × 1 coincide (or canonically isomorphic) with the restrictions of the

central extensions ˜GLn(AX)R∗
+

and ̂GLn(AX)R∗
+

to the subgroup GLn(AX,02)

of the group GLn(AX).
The ring AX,01 (with the definition as in formula (3.6)) is a subring of the

ring AX . Besides, there is a homomorphism from the ring AX,01 to the ring Aar
X

induced by the natural embeddingKC ↪→ AX,∞ for any “horizontal” curve C on
X (or, in other words, C is an integral one dimensional subscheme of X which
maps surjectively onto SpecZ), see more explanations in [13, § 3.4-§ 3.5]. Thus
we consider AX,01 as a subring of Aar

X , where AX,01 is mapped in the both parts
of Aar

X . The last embedding induces the embedding GLn(AX,01) ↪→ GLn(Aar
X).

We obtain the following proposition, which contains analogs of statements
(1)-(3) from Proposition 4 and generalizes Theorem 1 from [13].

Proposition 5. Let X be an arithmetic surface. The central extensions
˜GLn(Aar

X)R∗
+

and ̂GLn(Aar
X)R∗

+
canonically split over the subgroups GLn(AX,12)×

GLn(AX,∞(0)), GLn(AX,02) and GLn(AX,01) of the group GLn(Aar
X).
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The proof of this proposition is completely similar to the proof of analogous
statements of Proposition 4. We note only that the splitting over the subgroup

GLn(AX,02) is enough to prove for the central extensions ˜GLn(AX)R∗
+

and

̂GLn(AX)R∗
+

.
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