Acknowledgement
Supported by : NRF, Institute for Basic Science in Korea
References
- T. Bauer, A. Kuronya, and T. Szemberg, Zariski chambers, volumes and stable base loci, J. Reine Angew. Math. 576 (2004), 209-233.
- S. Boucksom, Corps D'Okounkov (d'apres Okounkov, Lazarsfeld-Mustata et Kaveh-Khovanskii), Seminaire Bourbaki, 65eme annee, 2012-2013, no. 1059.
- S. Choi, Y. Hyun, J. Park, and J. Won, Okounkov bodies associated to pseudoeffective divisors, preprint, arXiv:1508.03922.
- L. Ein, R. Lazarsfeld, M. Mustata, M. Nakamaye, and M. Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier 56 (2006), no. 6, 1701-1734. https://doi.org/10.5802/aif.2225
- L. Ein, R. Lazarsfeld, M. Mustata, M. Nakamaye, and M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), no. 3, 607-651. https://doi.org/10.1353/ajm.0.0054
- K. Kaveh and A. G. Khovanskii, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2) 176 (2012), no. 2, 925-978. https://doi.org/10.4007/annals.2012.176.2.5
- A. Kuronya and V. Lozovanu, Local positivity of linear series on surfaces, preprint, arXiv:1411.6205.
- A. Kuronya, V. Lozovanu, and C. Maclean, Convex bodies appearing as Okounkov bodies of divisors, Adv. Math. 229 (2012), no. 5, 2622-2639. https://doi.org/10.1016/j.aim.2012.01.013
- R. Lazarsfeld, Positivity in algebraic geometry I & II, Ergeb. Math. Grenzgeb. 48 & 49 (2004), Springer-Verlag, Berlin.
- R. Lazarsfeld and M. Mustata, Convex bodies associated to linear series, Ann. Sci. Ec. Norm. Super. (4) 42 (2009), no. 5, 783-835. https://doi.org/10.24033/asens.2109
- B. Lehmann, Comparing numerical dimensions, Algebra Number Theory 7 (2013), no. 5, 1065-1100. https://doi.org/10.2140/ant.2013.7.1065
- P. Luszcz-Swidecka and D. Schmitz Minkowski decomposition of Okounkov bodies on surfaces, J. Algebra 414 (2014), 159-174. https://doi.org/10.1016/j.jalgebra.2014.05.024
- N. Nakayama, Zariski-decomposition and abundance, MSJ Memoirs 14. Mathematical Society of Japan, Tokyo, 2004.
- A. Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), no. 3, 405-411. https://doi.org/10.1007/s002220050081
- A. Okounkov, Why would multiplicities be log-concave?, in The orbit method in geometry and physics (Marseille, 2000), 329-347, Progr. Math., 213, Birkhuser Boston, Boston, MA, 2003.
- Y. Prokhorov, On the Zariski decomposition problem, Tr. Mat. Inst. Steklova 240 (2003) no. Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 43-72 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 1 (240) (2003), 37-65.
- D. Schmitz and H. Seppanen, On the polyhedrality of global Okounkov bodies, Adv. Geom. 16 (2016), no. 1, 83-91. https://doi.org/10.1515/advgeom-2015-0042