CYLINDERS IN DEL PEZZO SURFACES WITH DU VAL SINGULARITIES

Grigory Belousov

Abstract

We consider del Pezzo surfaces with du Val singularities. We'll prove that a del Pezzo surface X with du Val singularities has a $-K_{X}$-polar cylinder if and only if there exist tiger such that the support of this tiger does not contain anti-canonical divisor. Also we classify all del Pezzo surfaces X such that X has not any cylinders.

1. Introduction

A log del Pezzo surface is a projective algebraic surface X with only quotient singularities and ample anti-canonical divisor $-K_{X}$. In this paper we assume that X has only du Val singularities and we work over complex number field \mathbb{C}. Note that a del Pezzo surface with only du Val singularities is rational.

Definition 1.1. Let X be a proper normal variety. Let D be an effective \mathbb{Q}-divisor on X such that $D \equiv-K_{X}$ and the pair (X, D) is not \log canonical. Such divisor D is called non-log canonical special tiger (see [4]).
Remark 1.2. In this paper, a non-log canonical special tiger we will call a tiger.
Definition 1.3 (see. [5]). Let M be a \mathbb{Q}-divisor on a projective normal variety X. An M-polar cylinder in X is an open subset $U=X \backslash \operatorname{Supp}(D)$ defined by an effective \mathbb{Q}-divisor D in the \mathbb{Q}-linear equivalence class of M such that $U \cong Z \times \mathbb{A}^{1}$ for some affine variety Z.

In this paper, we consider del Pezzo surfaces with du Val singularities over complex number field \mathbb{C}. Our interest is a connection between existence of a $-K_{X}$-polar cylinder in the del Pezzo surface and tigers on this surface.

The existence of a H-polar cylinder in X is important due to the following fact.

Theorem 1.4 (see [6], Corollary 3.2). Let Y be a normal algebraic variety over \mathbb{C} projective over an affine variety S with $\operatorname{dim}_{S} Y \geq 1$. Let $H \in \operatorname{Div}(Y)$ be an ample divisor on Y, and let $V=\operatorname{Spec} A(Y, H)$ be the associated affine

Received August 17, 2016; Revised November 14, 2016; Accepted December 26, 2016. 2010 Mathematics Subject Classification. 14E07, 14E25, 14J45.
Key words and phrases. cylinder, del Pezzo surface.
quasicone over Y. Then V admits an effective G_{a}-action if and only if Y contains an H-polar cylinder.

There exists a classification of del Pezzo surfaces X such that X has a $-K_{X^{-}}$ polar cylinder (see [1], [2]). Also, in the papers [1], [2] the authors have proved that if a del Pezzo surface X has not $-K_{X}$-polar cylinder, then all tigers contain a support at least one element of $\left|-K_{X}\right|$. Now we prove the inverse statement.

The main result of Section 3 is the followings.
Theorem 1.5. Let X be a del Pezzo surface with du Val singularities. Then X has a $-K_{X}$-polar cylinder if and only if there exist a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

The main result of Section 4 is the followings.
Theorem 1.6. Let X be a del Pezzo surface with du Val singularities. Then

- X has not cylinders if $\rho(X)=1$ and X has one of the followings collections of singularities: $4 A_{2}, 2 A_{1}+2 A_{3}, 2 D_{4}$;
- In the rest cases there exist an ample divisor H such that X has a H-polarization.

The author is grateful to professor I. A. Cheltsov for suggesting me this problem and for his help.

2. Preliminary results

We work over complex number field \mathbb{C}. We employ the following notation:

- $(-n)$-curve is a smooth rational curve with self intersection number $-n$.
- K_{X} : the canonical divisor on X.
- $\rho(X)$: the Picard number of X.

Theorem 2.7 (Riemann-Roch, see, for example, [3], Theorem 1.6, Ch. 5). Let D be a divisor on the surface X. Then

$$
\chi(D)=\frac{1}{2} D\left(D-K_{X}\right)+\chi\left(\mathcal{O}_{X}\right) .
$$

Theorem 2.8 (Kawamata-Viehweg Vanishing Theorem, see, for example, [7], Theorem 5-2-3). Let X be a non-singular projective variety, A an ample \mathbb{Q} divisor such that the fractional part $\lceil A\rceil-A$ has the support with only normal crossings. Then

$$
H^{p}\left(X, K_{X}+\lceil A\rceil\right)=0, \quad p>0
$$

Let X be a del Pezzo surface with du Val singularities. Let d be the degree of X, i.e., $d=K_{X}^{2}$.
Theorem 2.9 (see [1], Theorem 1.5). Let X be a del Pezzo surface of degree d with at most du Val singularities.
I. The surface X does not admit $a-K_{X}$-polar cylinder when
(1) $d=1$ and X allows only singular points of types $A_{1}, A_{2}, A_{3}, D_{4}$ if any;
(2) $d=2$ and X allows only singular points of types A_{1} if any;
(3) $d=3$ and X allows no singular point.
II. The surface X has $a-K_{X}$-polar cylinder if it is not one of the del Pezzo surfaces listed in I.

3. The proof of Theorem 1.5

In the papers [1] and [2] authors have classified del Pezzo surfaces X such that X has a $-K_{X}$-polar cylinder. Moreover, they prove that if a del Pezzo surface X has not a $-K_{X}$-polar cylinder, then every tiger on X contains an element of $\left|-K_{X}\right|$. So, we need prove that if a del Pezzo surface X has a $-K_{X}$-polar cylinder, then there exist a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Lemma 3.10. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d \geq 7$. Then X has $a-K_{X}$-polar cylinder and there exist a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Proof. By Theorem 2.9, we see that X has a $-K_{X}$-polar cylinder. Now, we construct a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$. Consider $\left|-2 K_{X}\right|$. By Theorem 2.7 and Theorem 2.8, $\operatorname{dim}\left|-2 K_{X}\right|=\frac{-2 K_{X} \cdot\left(-2 K_{X}-K_{X}\right)}{2}=3 d$. Let P be an arbitrary smooth point on X. Consider a set Ω of elements $L \in\left|-2 K_{X}\right|$ such that $\operatorname{mult}_{P} L \geq 5$. Then Ω is a linear subsystem of the linear system $\left|-2 K_{X}\right|$. Note that $\operatorname{dim}|\Omega|=3 d-15 \geq 6$ for $d \geq 7$. Hence, Ω is not empty. Let $N \in \Omega$ be a general element of the linear system Ω.

Note that N does not contain a support of anti-canonical divisor. Indeed, assume that there exist an element $M_{1} \in\left|-K_{X}\right|$ such that Supp $M_{1} \subseteq \operatorname{Supp} N$. Then $N=M_{1}+M_{2}$, where $M_{2} \in\left|-K_{X}\right|$. We see that $\operatorname{dim}\left|-K_{X}\right|=$ $\frac{-K_{X} \cdot\left(-K_{X}-K_{X}\right)}{2}=d$. Therefore, $\operatorname{mult}_{P} M_{1} \leq 3$ and $\operatorname{mult}_{P} M_{2} \leq 3$. Hence, we may assume that $\operatorname{mult}_{P} M_{1}=2$, mult ${ }_{P} M_{2}=3$. Let \tilde{M}_{1} be the linear subsystem of $\left|-K_{X}\right|$ such that \tilde{M}_{1} consist of elements with multiply two in the point P. Let \tilde{M}_{2} be the linear subsystem of $\left|-K_{X}\right|$ such that \tilde{M}_{2} consist of elements with multiply three in the point P. Then

$$
\operatorname{dim}\left|\tilde{M}_{1}+\tilde{M}_{2}\right|=\operatorname{dim}\left|\tilde{M}_{1}\right|+\operatorname{dim}\left|\tilde{M}_{2}\right|=(d-3)+(d-6)=2 d-9
$$

Note that $3 d-15>2 d-9$ for $d \geq 7$. Hence, a general element N of the linear system Ω does not contain a support of anti-canonical divisor. Then $\frac{1}{2} N$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.
Lemma 3.11. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d=4,6$. Then X has $a-K_{X}$-polar cylinder
and there exists a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Proof. By Theorem 2.9, we see that X has a $-K_{X}$-polar cylinder. Now, we construct a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$. Let $f: \bar{X} \rightarrow X$ be the minimal resolution. Let E be a (-1)-curve on \bar{X} and $E^{\prime}=f(E)$. Put $-3 K_{\bar{X}} \sim 2 E+F$. Then $-3 K_{\bar{X}} \cdot E=2 E^{2}+F \cdot E$. Since $K_{\bar{X}} \cdot E=-1$ and $E^{2}=-1$, we see that $F \cdot E=5$. We have $-3 K_{\bar{X}}^{2}=2 E \cdot K_{\bar{X}}+F \cdot K_{\bar{X}}$. Since $K_{\bar{X}} \cdot E=-1$ and $K_{\bar{X}}^{2}=d$, we see that $F \cdot K_{\bar{X}}=-(3 d-2)$. We obtain $-3 K_{\bar{X}} \cdot F=2 E \cdot F+F^{2}$. Since $F \cdot E=5$ and $F \cdot K_{\bar{X}}=-(3 d-2)$ we see that $F^{2}=9 d-16$. Hence, by Theorem 2.7 and Theorem 2.8, $\operatorname{dim}|F|=6 d-9$. Let P^{\prime} be a general smooth point on E^{\prime} and $P^{\prime}=f(P)$. Consider a set Ω of elements $L \in|F|$ such that mult $_{P} L \geq 5$. Note that $\operatorname{dim}|\Omega|=6 d-9-15=6 d-24 \geq 0$ for $d \geq 4$, i.e., Ω is non-empty. We see that Ω contains an element N such that $N+E$ does not contain a support of anti-canonical divisor. Indeed, assume that for all $N \in \Omega$ there exist $M_{1} \in\left|-K_{\bar{X}}\right|$ such that $\operatorname{Supp} M_{1} \subseteq \operatorname{Supp}(N+E)$. Then $N+2 E=M_{1}+M_{2}$, where $M_{2} \in\left|-2 K_{\bar{X}}\right|$. We have the followings three cases.

Case 1. $M_{1}=2 E+F_{1}, M_{2}$ does not contain the curve E. Hence, $F_{1} \cdot E=3$, $F_{1} \cdot K_{\bar{X}}=-(d-2), F_{1}^{2}=d-8 \leq-2$, a contradiction.

Case 2. $M_{1}=E+F_{1}, M_{2}=E+F_{2}$. Then $F_{1} \cdot E=2, F_{1} \cdot K_{\bar{X}}=-(d-1)$, $F_{1}^{2}=d-3, F_{2} \cdot E=3, F_{2} \cdot K_{\bar{X}}=-(2 d-1), F_{2}^{2}=4 d-5$. Hence, $\operatorname{dim}\left|F_{1}\right|=d-2$, $\operatorname{dim}\left|F_{2}\right|=3 d-3$. Note that the multiplicities F_{1} and F_{2} in the point P are equaled 2 and 3 correspondingly. Let \tilde{F}_{1} be the linear subsystem of $\left|F_{1}\right|$ such that the multiplicity of elements of \tilde{F}_{1} is equaled two in the point P, let \tilde{F}_{2} be the linear subsystem of $\left|F_{2}\right|$ such that the multiplicity of elements of \tilde{F}_{2} is equaled three in the point P. Then $\operatorname{dim}\left|\tilde{F}_{1}\right|=d-5$. Hence, $d=6$. Note that

$$
\operatorname{dim}\left|\tilde{F}_{1}+\tilde{F}_{2}\right|=\operatorname{dim}\left|\tilde{F}_{1}\right|+\operatorname{dim}\left|\tilde{F}_{2}\right|=(d-5)+(3 d-9)=4 d-14=10
$$

On the other hand, $\operatorname{dim}|\Omega|=6 d-24=12>10$. Therefore, a general element $N \in \Omega$ does not contain $\operatorname{Supp}\left(-K_{\bar{X}}\right) \backslash \operatorname{Supp}(E)$.

Case 3. $M_{2}=2 E+F_{2}, M_{1}$ does not contain the curve E. Then $F_{2} \cdot E=4$, $F_{2} \cdot K_{\bar{X}}=-(2 d-2), F_{2}^{2}=4 d-12$. Hence, $\operatorname{dim}\left|F_{2}\right|=3 d-7, \operatorname{dim}\left|M_{1}\right|=d$. Note that the multiplicities M_{1} and F_{2} in the point P are equal to 1 and 4 correspondingly. Let \tilde{M}_{1} be the set of elements of the linear system $\left|-K_{\bar{X}}\right|$ that pass through the point P, let \tilde{F}_{2} be the set of elements of the linear system $\left|F_{2}\right|$ that have multiplicity four in the point P. Note that \tilde{F}_{1} and \tilde{M}_{2} are the linear system. Then $\operatorname{dim}\left|\tilde{F}_{2}\right|=3 d-17$. Hence, $d=6$. Note that

$$
\operatorname{dim}\left|\tilde{M}_{1}+\tilde{F}_{2}\right|=\operatorname{dim}\left|\tilde{M}_{1}\right|+\operatorname{dim}\left|\tilde{F}_{2}\right|=(d-1)+(3 d-17)=4 d-18=6 .
$$

On the other hand, $\operatorname{dim}|\Omega|=6 d-24=12>6$. Therefore, a general element $N \in \Omega$ does not contain any elements of $\left|-K_{\bar{X}}-E\right|$.

So, a general element $N \in \Omega$ does not contain any elements of $\left|-K_{\bar{X}}-E\right|$. Denote this element by N. Note that $\operatorname{mult}_{P}(2 E+N) \geq 7$. Then $\frac{1}{3} f(N)+\frac{2}{3} E^{\prime}$
is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Lemma 3.12. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d=5$. Then X has $a-K_{X}$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Proof. By Theorem 2.9, we see that X has a $-K_{X}$-polar cylinder. Now, we construct a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$. Consider $\left|-4 K_{X}\right|$. By Theorem 2.7 and Theorem 2.8, we see that $\operatorname{dim}\left|-4 K_{X}\right|=50$. Let P be an arbitrary smooth point on X. Consider a set Ω of elements $L \in\left|-4 K_{X}\right|$ such that mult ${ }_{P} L \geq 9$. Then Ω is the linear subsystem of the linear system of $\left|-4 K_{X}\right|$. Note that $\operatorname{dim}|\Omega|=50-45=5$. Hence, Ω is non-empty. Let $N \in \Omega$ be a general element of the linear system Ω. We see that N does not contain a support of anti-canonical divisor. Indeed, assume that there exists an element $M_{1} \in\left|-K_{X}\right|$ such that Supp $M_{1} \subseteq \operatorname{Supp} N$. Then $N=M_{1}+M_{2}$, where $M_{2} \in\left|-3 K_{X}\right|$. Note that $\operatorname{dim}\left|-K_{X}\right|=5$, $\operatorname{dim}\left|-3 K_{X}\right|=30$. Put $d_{1}=\operatorname{mult}_{P} M_{1}$ and $d_{2}=\operatorname{mult}_{P} M_{2}$. Since

$$
\operatorname{dim}\left|-K_{X}\right|-\frac{d_{1} \cdot\left(d_{1}+1\right)}{2}=5-\frac{d_{1} \cdot\left(d_{1}+1\right)}{2} \geq 0
$$

and

$$
\operatorname{dim}\left|-3 K_{X}\right|-\frac{d_{2} \cdot\left(d_{2}+1\right)}{2}=30-\frac{d_{2} \cdot\left(d_{2}+1\right)}{2} \geq 0
$$

we see that $\operatorname{mult}_{P} M_{1} \leq 2$ and mult $P_{P} M_{1} \leq 7$. Hence, $\operatorname{mult}_{P} M_{1}=2$, $\operatorname{mult}_{P} M_{2}=7$. Let \tilde{M}_{1} be the set of elements of the linear system $\left|-K_{X}\right|$ that have multiply 2 in the point P, let \tilde{M}_{2} be the set of elements of the linear system $\left|-3 K_{X}\right|$ that have multiply 7 in the point P. Note that \tilde{M}_{1} and \tilde{M}_{2} are the linear system. Then $\operatorname{dim}\left|\tilde{M}_{1}\right|=5-3=2 \operatorname{dim}\left|\tilde{M}_{2}\right|=30-28=2$. Hence,

$$
\operatorname{dim}\left|\tilde{M}_{1}+\tilde{M}_{2}\right|=4<5=\operatorname{dim}|\Omega| .
$$

So, a general element N of Ω does not contain the support of anti-canonical divisor. Then $\frac{1}{4} N$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Lemma 3.13. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d \geq 3$ and there exists a singular point of type A_{1}. Then X has $a-K_{X}$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type A_{1}. By Lemmas $3.10,3.11$ and 3.12 we may assume that $d=3$. Let $f: \bar{X} \rightarrow X$ be the minimal resolution of singularities of X, and let $D=\sum_{i=1}^{n} D_{i}$ be the exceptional divisor of f, where D_{i} is a (-2)curve. We may assume that $P=f\left(D_{1}\right)$. By Theorem 2.9, we see that X
has a $-K_{X}$-polar cylinder. Now, we construct a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$. Consider $-4 K_{\bar{X}}$. Put $-4 K_{\bar{X}} \backsim 3 D_{1}+F$. Then $F \cdot D_{1}=6, F \cdot K_{\bar{X}}=-12, F^{2}=30$. Hence, $\operatorname{dim}|F|=21$. Let Q be a point on D_{1}. Note that there exists an element $N \in|F|$ such that $\operatorname{mult}_{Q} N=6$. Now, we prove that $N+D_{1}$ does not contain the support of anti-canonical divisor. Indeed, assume that for all $N \in \Omega$ there exists an element $M_{1} \in\left|-K_{\bar{X}}\right|$ such that $\operatorname{Supp} M_{1} \subseteq \operatorname{Supp}\left(N+D_{1}\right)$. Then $N+3 D_{1}=M_{1}+M_{2}$, where $M_{2} \in\left|-3 K_{\bar{X}}\right|$. So, we have the following four cases.

Case 1. $M_{2}=3 D_{1}+F_{2}, M_{1}$ does not contain the curve D_{1}. Then $F_{2} \cdot D_{1}=6$, $F_{2} \cdot K_{X}=-9, F_{2}^{2}=9$. Hence, $\operatorname{dim}\left|F_{2}\right|=9$. Therefore, mult ${ }_{Q} F_{2} \leq 3$. Since M_{1} does not meet D_{1}, we have a contradiction.

Case 2. $M_{1}=D_{1}+F_{1}, M_{2}=2 D_{1}+F_{2}$. Then $F_{1} \cdot D_{1}=2, F_{1} \cdot K_{X}=-d$, $F_{1}^{2}=1$. Therefore, $\operatorname{dim}\left|F_{1}\right|=2$. Hence, mult ${ }_{Q} F_{2} \leq 1$, a contradiction.

Case 3. $M_{1}=2 D_{1}+F_{1}, M_{2}=D_{1}+F_{2}$. Then $F_{1} \cdot D_{1}=4, F_{1} \cdot K_{X}=-3$, $F_{1}^{2}=-5$, a contradiction.

Case 4. $M_{1}=3 D_{1}+F_{2}, M_{2}$ does not contain the curve D_{1}. Then $F_{1} \cdot D_{1}=6$, $F_{1} \cdot K_{X}=-3, F_{1}^{2}=-15$, a contradiction.

So, $\operatorname{Supp}\left(N+D_{1}\right)$ does not contain the support of anti-canonical divisor. Note that $\operatorname{mult}_{Q}\left(3 D_{1}+N\right)=9$. Then $\frac{1}{4} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Lemma 3.14. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d \geq 2$ and there exists a singular point of type A_{2} or A_{3}. Then X has a $-K_{X}$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.
Proof. As above, we may assume that $d=2$ or $d=3$. By Theorem 2.9, we see that X contains $-K_{X}$-polar cylinder. Let $f: \bar{X} \rightarrow X$ be the minimal resolution of singularities of X, and let $D=\sum_{i=1}^{n} D_{i}$ be the exceptional divisor of f, where D_{i} is a (-2)-curve. Consider two cases.

Case 1. There exists a point $P \in X$ such that P of type A_{2}. We may assume that D_{1} and D_{2} correspond to P. So, $D_{1} \cdot D_{2}=1$. Let Q be the point of intersection of D_{1} and D_{2}. Consider $-2 K_{\bar{X}}$. Put $-2 K_{\bar{X}} \backsim 2 D_{1}+2 D_{2}+F$. Then $F \cdot D_{1}=F \cdot D_{2}=2, F \cdot K_{\bar{X}}=-2 d, F^{2}=4 d-8$. Hence, $\operatorname{dim}|F|=3 d-4$. Consider the set Ω of elements $L \in|F|$ such that $Q \in L$. Then $\operatorname{dim} \Omega=3 d-4-$ $1=3 d-5$. Put $-K_{\bar{X}} \sim D_{1}+D_{2}+\tilde{F}$. Then $\tilde{F} \cdot D_{1}=\tilde{F} \cdot D_{2}=1, \tilde{F} \cdot K_{\bar{X}_{\tilde{F}}}=-d$, $\tilde{F}^{2}=d-2$. Hence, $|\tilde{F}|=d-1$. Consider the set $\tilde{\Omega}$ of elements $L \in|\tilde{F}|$ such that $Q \in L$. Then $\operatorname{dim} \tilde{\Omega}=d-2$. Note that $\operatorname{dim} \Omega=3 d-5>\operatorname{dim} \tilde{\Omega}=d-2$. So, there exists an element N of Ω such that $f(N)$ does not contain the support of anti-canonical divisor. Note that mult $Q_{Q}\left(2 D_{1}+2 D_{2}+N\right) \geq 5$. Then $\frac{1}{2} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 2. There exists a point $P \in X$ such that P of type A_{3}. We may assume that D_{1}, D_{2} and D_{3} correspond to P. So, $D_{1} \cdot D_{2}=D_{2} \cdot D_{3}=1$. Let
Q be the point of intersection of D_{1} and D_{2}. Consider $-2 K_{\bar{X}}$. Put $-2 K_{\bar{X}} \backsim$ $2 D_{1}+2 D_{2}+D_{3}+F$. Then $F \cdot D_{1}=2, F \cdot D_{2}=1, F \cdot D_{3}=0 F \cdot K_{\bar{X}}=-2 d$, $F^{2}=4 d-6$. Hence, $\operatorname{dim}|F|=3 d-3$. So, there exists an element N of $|F|$ such that $Q \in N$. Note that the support $N+2 D_{1}+2 D_{2}+D_{3}$ does not contain any elements $\left|-K_{\bar{X}}\right|$. So, $f(N)$ does not contain the support of anti-canonical divisor. Note that $\operatorname{mult}_{Q}\left(2 D_{1}+2 D_{2}+D_{3}+N\right) \geq 5$. Then $\frac{1}{2} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.
Lemma 3.15. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that $d \geq 2$ and there exists a singular point of type D_{4}. Then X has a $-K_{X}$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type D_{4}. By Theorem 2.9, we see that X has a $-K_{X}$-polar cylinder. Let $f: \bar{X} \rightarrow X$ be the minimal resolution of singularities of X, and let $D=\sum_{i=1}^{n} D_{i}$ be the exceptional divisor of f, where D_{i} is a (-2)-curve. We may assume that D_{1}, D_{2}, D_{3} and D_{4} correspond to P. Moreover, D_{1} is the central component. Put $-3 K_{\bar{X}} \backsim 4 D_{1}+3 D_{2}+2 D_{3}+2 D_{4}+F$. Then $F \cdot D_{1}=1, F \cdot D_{2}=2, F \cdot D_{3}=F \cdot D_{4}=0 F \cdot K_{\bar{X}}=-3 d, F^{2}=9 d-10>0$ for $d \geq 2$. Note that $4 D_{1}+3 D_{2}+2 D_{3}+2 D_{4}+F$ does not admit representation as $M_{1}+M_{2}$, where $M_{1} \in\left|-K_{\bar{X}}\right|$ and $M_{2} \in\left|-2 K_{\bar{X}}\right|$. Let N be an element of $|F|$. Note that the support $N+4 D_{1}+3 D_{2}+2 D_{3}+2 D_{4}$ does not contain any elements $\left|-K_{\bar{X}}\right|$. So, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult $_{Q}\left(4 D_{1}+3 D_{2}+2 D_{3}+2 D_{4}+N\right) \geq 7$, where Q is the intersection of D_{1} and D_{2}. Then $\frac{1}{3} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.
Lemma 3.16. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that there exists a singular point of type A_{k}, where $k=4,5,6,7,8$. Then X has $a-K_{X}$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.
Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type A_{k}. By Theorem 2.9, we see that X has a $-K_{X}$-polar cylinder. Let $f: \bar{X} \rightarrow X$ be the minimal resolution of singularities of X, and let $D=\sum_{i=1}^{n} D_{i}$ be the exceptional divisor of f, where D_{i} is a (-2)-curve. We may assume that $D_{1}, D_{2}, \ldots, D_{k}$ correspond to P. Moreover, $D_{i} \cdot D_{i+1}=1$ for $i=1,2, \ldots, k-1$. Consider the following cases.

Case 1. $k=4$. Put $-2 K_{\bar{X}} \sim D_{1}+2 D_{2}+2 D_{3}+D_{4}+F$. Let Q be the intersection of D_{2} and D_{3}. We obtain $F \cdot D_{1}=F \cdot D_{4}=0, F \cdot D_{2}=$ $F \cdot D_{3}=1, F \cdot K_{\bar{X}}=-2 d, F^{2}=4 d-4$. Then $\operatorname{dim}|F|=3 d-2$. So, there exists an element $N \in|F|$ such that N passes through Q. Note that $D_{1}+2 D_{2}+2 D_{3}+D_{4}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1}, M_{2} \in\left|-K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult $Q_{Q}\left(D_{1}+2 D_{2}+2 D_{3}+D_{4}+N\right) \geq 5$. Then $\frac{1}{2} f(N)$ is
a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 2. $k=5$. Put $-3 K_{\bar{X}} \sim D_{1}+2 D_{2}+3 D_{3}+3 D_{4}+2 D_{5}+F$. Let Q be the intersection of D_{3} and D_{4}. We obtain $F \cdot D_{1}=F \cdot D_{2}=0, F \cdot D_{3}=$ $F \cdot D_{4}=F \cdot D_{5}=1, F \cdot K_{\bar{X}}=-3 d, F^{2}=9 d-8$. Then $\operatorname{dim}|F|=6 d-4$. So, there exists an element $N \in|F|$ such that N passes through Q. Note that $D_{1}+2 D_{2}+3 D_{3}+3 D_{4}+2 D_{5}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1} \in\left|-K_{\bar{X}}\right|$ and $M_{2} \in\left|-2 K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult $Q_{Q}\left(D_{1}+2 D_{2}+3 D_{3}+3 D_{4}+\right.$ $\left.2 D_{5}+N\right) \geq 7$. Then $\frac{1}{3} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 3. $k=6$. Put $-3 K_{\bar{X}} \backsim D_{1}+2 D_{2}+3 D_{3}+3 D_{4}+2 D_{5}+D_{6}+F$. Let Q be the intersection of D_{3} and D_{4}. We obtain

$$
\begin{gathered}
F \cdot D_{1}=F \cdot D_{2}=F \cdot D_{5}=F \cdot D_{6}=0, \\
F \cdot D_{3}=F \cdot D_{4}=1, F \cdot K_{\bar{X}}=-3 d, F^{2}=9 d-6 .
\end{gathered}
$$

Then $\operatorname{dim}|F|=6 d-3$. So, there exists an element $N \in|F|$ such that N passes through Q. Note that $D_{1}+2 D_{2}+3 D_{3}+3 D_{4}+2 D_{5}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1} \in\left|-K_{\bar{X}}\right|$ and $M_{2} \in\left|-2 K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that $\operatorname{mult}_{Q}\left(D_{1}+2 D_{2}+3 D_{3}+3 D_{4}+2 D_{5}+D_{6}+N\right) \geq 7$. Then $\frac{1}{3} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 4. $k=7$. Put

$$
-4 K_{\bar{X}} \backsim D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+F
$$

Let Q be the intersection of D_{4} and D_{5}. We obtain

$$
\begin{gathered}
F \cdot D_{1}=F \cdot D_{2}=F \cdot D_{3}=F \cdot D_{6}=0 \\
F \cdot D_{4}=F \cdot D_{5}=F \cdot D_{7}=1, F \cdot K_{\bar{X}}=-4 d, F^{2}=16 d-10 .
\end{gathered}
$$

Then $\operatorname{dim}|F|=10 d-5$. So, there exists an element $N \in|F|$ such that N passes through Q. Note that $D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1} \in\left|-K_{\bar{X}}\right|$ and $M_{2} \in\left|-3 K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that

$$
\operatorname{mult}_{Q}\left(D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+N\right) \geq 9
$$

Then $\frac{1}{4} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 5. $k=8$. Put

$$
-4 K_{\bar{X}} \backsim D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+D_{8}+F .
$$

Let Q be the intersection of D_{4} and D_{5}. We obtain

$$
\begin{gathered}
F \cdot D_{1}=F \cdot D_{2}=F \cdot D_{3}=F \cdot D_{6}=F \cdot D_{7}=F \cdot D_{8}=0, \\
F \cdot D_{4}=F \cdot D_{5}=1, F \cdot K_{\bar{X}}=-4 d, F^{2}=16 d-8 .
\end{gathered}
$$

Then $\operatorname{dim}|F|=10 d-4$. So, there exists an element $N \in|F|$ such that N passes through Q. Note that $D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+D_{8}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1} \in\left|-K_{\bar{X}}\right|$ and $M_{2} \in\left|-3 K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that

$$
\operatorname{mult}_{Q}\left(D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+D_{8}+N\right) \geq 9
$$

Then $\frac{1}{4} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Lemma 3.17. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that there exists a singular point of type D_{k}, where $k=5,6,7,8$. Then X has $a-K_{X}$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type D_{k}. By Theorem 2.9, we see that X has a $-K_{X}$-polar cylinder. Let $f: \bar{X} \rightarrow X$ be the minimal resolution of singularities of X, and let $D=\sum_{i=1}^{n} D_{i}$ be the exceptional divisor of f, where D_{i} is a (-2)-curve. We may assume that $D_{1}, D_{2}, \ldots, D_{k}$ correspond to P. Moreover, D_{3} is the central component, D_{1}, D_{2} meet only D_{3}, and $D_{i} \cdot D_{i+1}=1$ for $i=3,4, \ldots, k-1$. Consider the following cases.

Case 1. $k=5$. Put $-2 K_{\bar{X}} \backsim 2 D_{1}+2 D_{2}+3 D_{3}+2 D_{4}+D_{5}+F$. Then $F \cdot D_{1}=F \cdot D_{2}=1, F \cdot D_{3}=F \cdot D_{4}=F \cdot D_{5}=0, F \cdot K_{\bar{X}}=-2 d, F^{2}=4 d-4$. Then $\operatorname{dim}|F|=3 d-2$. So, there exists an element $N \in|F|$. Note that $2 D_{1}+2 D_{2}+3 D_{3}+2 D_{4}+D_{5}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1}, M_{2} \in\left|-K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anticanonical divisor. Note that mult $Q_{Q}\left(2 D_{1}+2 D_{2}+3 D_{3}+2 D_{4}+D_{5}+N\right) \geq 5$, where Q is the intersection of D_{3} and D_{4}. Then $\frac{1}{2} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 2. $k=6$. Put $-2 K_{\bar{X}} \backsim 2 D_{1}+2 D_{2}+4 D_{3}+3 D_{4}+2 D_{5}+D_{6}+F$. Then $F \cdot D_{3}=1, F \cdot D_{i}=0$ for $i \neq 3, F \cdot K_{\bar{X}}=-2 d, F^{2}=4 d-4$. Then $\operatorname{dim}|F|=3 d-2$. So, there exists an element $N \in|F|$. Note that $2 D_{1}+2 D_{2}+4 D_{3}+3 D_{4}+2 D_{5}+D_{6}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1}, M_{2} \in\left|-K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anticanonical divisor. Note that mult $Q_{Q}\left(2 D_{1}+2 D_{2}+4 D_{3}+3 D_{4}+2 D_{5}+D_{6}+N\right) \geq 7$, where Q is the intersection of D_{3} and D_{4}. Then $\frac{1}{2} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 3. $k=7$. Put

$$
-3 K_{\bar{X}} \backsim 3 D_{1}+3 D_{2}+6 D_{3}+5 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+F .
$$

Then $F \cdot D_{3}=F \cdot D_{7}=1, F \cdot D_{i}=0$ for $i \neq 3,7, F \cdot K_{\bar{X}}=-3 d, F^{2}=9 d-8$. Then $\operatorname{dim}|F|=6 d-4$. So, there exists an element $N \in|F|$. Note that $3 D_{1}+3 D_{2}+6 D_{3}+5 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1} \in\left|-K_{\bar{X}}\right|$ and $M_{2} \in\left|-2 K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult $Q_{Q}\left(3 D_{1}+3 D_{2}+\right.$
$\left.6 D_{3}+5 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+N\right) \geq 11$, where Q is the intersection of D_{3} and D_{4}. Then $\frac{1}{3} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 4. $k=8$. Put

$$
-3 K_{\bar{X}} \backsim 3 D_{1}+3 D_{2}+6 D_{3}+5 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+D_{8}+F .
$$

Then $F \cdot D_{3}=1, F \cdot D_{i}=0$ for $i \neq 3, F \cdot K_{\bar{X}}=-3 d, F^{2}=9 d-6$. Then $\operatorname{dim}|F|=6 d-3$. So, there exists an element $N \in|F|$. Note that $3 D_{1}+3 D_{2}+6 D_{3}+5 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+D_{8}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1} \in\left|-K_{\bar{X}}\right|$ and $M_{2} \in\left|-2 K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult ${ }_{Q}\left(3 D_{1}+3 D_{2}+\right.$ $\left.6 D_{3}+5 D_{4}+4 D_{5}+3 D_{6}+2 D_{7}+D_{8}+N\right) \geq 11$, where Q is the intersection of D_{3} and D_{4}. Then $\frac{1}{3} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Lemma 3.18. Let X be a del Pezzo surface with du Val singularities and let d be the degree of X. Assume that there exists a singular point of type E_{k}, where $k=6,7,8$. Then X has $a-K_{X}$-polar cylinder and there exists a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Proof. Let X be a del Pezzo surface with du Val singularities, and let P be a singular point of type D_{k}. By Theorem 2.9, we see that X has a $-K_{X}$-polar cylinder. Let $f: \bar{X} \rightarrow X$ be the minimal resolution of singularities of X, and let $D=\sum_{i=1}^{n} D_{i}$ be the exceptional divisor of f, where D_{i} is a (-2)-curve. We may assume that $D_{1}, D_{2}, \ldots, D_{k}$ correspond to P. Moreover, D_{4} is the central component, D_{1} meets only D_{4}, D_{3} meets D_{2} and D_{4}, D_{2} meets only D_{3}, and $D_{i} \cdot D_{i+1}=1$ for $i=3,4, \ldots, k-1$. Consider the following cases.

Case 1. $k=6$. Put $-2 K_{\bar{X}} \backsim 2 D_{1}+D_{2}+2 D_{3}+3 D_{4}+2 D_{5}+D_{6}+F$. Then $F \cdot D_{1}=1, F \cdot D_{i}=0$ for $i \geq 2, F \cdot K_{\bar{X}}=-2 d, F^{2}=4 d-2$. Then $\operatorname{dim}|F|=3 d-1$. So, there exists an element $N \in|F|$. Note that $2 D_{1}+D_{2}+2 D_{3}+3 D_{4}+2 D_{5}+D_{6}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1}, M_{2} \in\left|-K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anticanonical divisor. Note that mult $Q\left(2 D_{1}+D_{2}+2 D_{3}+3 D_{4}+2 D_{5}+D_{6}+N\right) \geq 5$, where Q is the intersection of D_{4} and D_{5}. Then $\frac{1}{2} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 2. $k=7$. Put

$$
-2 K_{\bar{X}} \backsim 2 D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+3 D_{5}+2 D_{6}+D_{7}+F .
$$

Then $F \cdot D_{2}=1, F \cdot D_{i}=0$ for $i \neq 2, F \cdot K_{\bar{X}}=-2 d, F^{2}=4 d-2$. Then $\operatorname{dim}|F|=3 d-1$. So, there exists an element $N \in|F|$. Note that $2 D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+3 D_{5}+2 D_{6}+D_{7}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1}, M_{2} \in\left|-K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that $\operatorname{mult}_{Q}\left(2 D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+3 D_{5}+\right.$ $\left.2 D_{6}+D_{7}+N\right) \geq 7$, where Q is the intersection of D_{4} and D_{5}. Then $\frac{1}{2} f(N)$
is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

Case 3. $k=8$. Put

$$
-2 K_{\bar{X}} \backsim 3 D_{1}+2 D_{2}+4 D_{3}+6 D_{4}+5 D_{5}+4 D_{6}+3 D_{7}+2 D_{8}+F .
$$

Then $F \cdot D_{8}=1, F \cdot D_{i}=0$ for $i \neq 8, F \cdot K_{\bar{X}}=-2 d, F^{2}=4 d-2$. Then $\operatorname{dim}|F|=3 d-1$. So, there exists an element $N \in|F|$. Note that $3 D_{1}+2 D_{2}+$ $4 D_{3}+6 D_{4}+5 D_{5}+4 D_{6}+3 D_{7}+2 D_{8}+N$ does not admit representation as $M_{1}+M_{2}$, where $M_{1}, M_{2} \in\left|-K_{\bar{X}}\right|$. Hence, $f(N)$ does not contain the support of anti-canonical divisor. Note that mult ${ }_{Q}\left(2 D_{1}+2 D_{2}+3 D_{3}+4 D_{4}+3 D_{5}+\right.$ $\left.2 D_{6}+D_{7}+N\right) \geq 7$, where Q is the intersection of D_{4} and D_{5}. Then $\frac{1}{2} f(N)$ is a tiger such that the support of this tiger does not contain any elements of $\left|-K_{X}\right|$.

So, Theorem 1.5 follows from Lemmas 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, and 3.18.

4. The proof of theorem 1.6

Assume that $\rho(X)=1$. Then X has a H-polar cylinder if and only if X has a $-K_{X}$-polar cylinder, where H is an arbitrary ample divisor. On the other hand, there exists a classification of del Pezzo surfaces X such that X has a $-K_{X}$-polar cylinder (see [1]). By a classification of a del Pezzo surface X has not cylinders if X has one of the following collections of singularities: $4 A_{2}, 2 A_{1}+2 A_{3}, 2 D_{4}$. So, we may assume that $\rho(X)>1$.

Let $f: \bar{X} \rightarrow X$ be the minimal resolution of singularities of X, and let $D=\sum_{i=1}^{n} D_{i}$ be the exceptional divisor of f, where D_{i} is a (-2)-curve.
Lemma 4.19. Assume that there exists a \mathbb{P}^{1}-fibration $g: \bar{X} \rightarrow \mathbb{P}^{1}$ such that at most one irreducible component of the exceptional divisor D not contained in any fiber of g. Moreover, this component is an 1-section. Then there exists an ample divisor H such that X has a H-polar cylinder.
Proof. Let F be a unique exception curve not contained in any fiber of g (if there exist no such component, then F is an arbitrary 1-section). Put

$$
-K_{\bar{X}} \sim_{\mathbb{Q}} 2 F+\sum a_{i} E_{i}
$$

Note that all E_{i} are contained in fibers of g. Consider an ample divisor $H=$ $-K_{\bar{X}}+m C$, where C is a fiber of g, m is a sufficiently large number. Then there exists a divisor $\hat{H} \sim_{\mathbb{Q}} H$ such that

$$
\hat{H}=2 F+\sum b_{i} \hat{E}_{i}
$$

where $b_{i}>0$ and the set of \hat{E}_{i} contains all irreducible curves in singular fibers of g. Then

$$
\bar{X} \backslash \operatorname{Supp}(\hat{H}) \cong \mathbb{A}^{1} \times\left(\mathbb{P}^{1} \backslash\left\{p_{1}, \ldots, p_{k}\right\}\right)
$$

where p_{1}, \ldots, p_{k} correspond to singular fibers of g. So, \bar{X} has a H-polarization. Hence, X has a $f(\hat{H})$-polarization.

Run MMP for X. We obtain

$$
X=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{n}
$$

Assume that $X_{n}=\mathbb{P}^{1}$. Consider the composition of the minimal resolution and MMP. We have a \mathbb{P}^{1}-fibration $g: \bar{X} \rightarrow \mathbb{P}^{1}$. Note that all exception curves of f are contained in fibers of g. Hence, by Lemma 4.19, we see that there exists an ample divisor H such that X has a H-polar cylinder.

So, we may assume that X_{n} is a del Pezzo surface with $\rho\left(X_{n}\right)=1$ and du Val singularities.

Lemma 4.20. Assume that X_{n} has $a-K_{X_{n}}$-polar cylinder. Then there exists an ample divisor H such that X has a H-polar cylinder.

Proof. Put $h: X \rightarrow X_{n}$. Assume that h contracts extremal rays in points $p_{1}, p_{2}, \ldots, p_{m}$. Let M be an anti-canonical divisor such that $X_{n} \backslash \operatorname{Supp}(M) \cong$ $Z \times \mathbb{A}^{1}$. Let $\phi: X_{n} \backslash \operatorname{Supp}(M) \rightarrow Z$ be the projection on first factor. Let $C_{1}, C_{2}, \ldots, C_{k}$ be the fibers of ϕ such that $C_{1}, C_{2}, \ldots, C_{k}$ contain $p_{1}, p_{2}, \ldots, p_{m}$, and let $\bar{C}_{1}, \bar{C}_{2}, \ldots, \bar{C}_{k}$ be the closure of $C_{1}, C_{2}, \ldots, C_{k}$ on X_{n}. Since $\rho\left(X_{n}\right)=1$, we see that $C_{i} \sim_{\mathbb{Q}}-a_{i} K_{X_{n}}$. Consider the divisor

$$
L=M+m_{1} \bar{C}_{1}+m_{2} \bar{C}_{2}+\cdots+m_{k} \bar{C}_{k},
$$

where $m_{1}, m_{2}, \ldots, m_{k}$ are sufficiently large numbers. Note that the divisor $L \sim_{\mathbb{Q}}-\alpha K_{X_{n}}$. Let \hat{L} be the proper transform of the divisor L. Consider $H=\hat{L}+\sum \epsilon_{i} E_{i}$, where E_{i} are irreducible components of the exceptional divisor of h and ϵ_{i} are positive numbers. Note that for sufficiently large m_{i} and for sufficiently small ϵ_{i}, the divisor H is ample. Moreover, $X \backslash \operatorname{Supp}(H) \cong$ $\left(Z \backslash\left\{q_{1}, \ldots, q_{k}\right\}\right) \times \mathbb{A}^{1}$, where q_{1}, \ldots, q_{k} are k points on Z. So, X has a H-polar cylinder.

Let X be a del Pezzo surface with du Val singularities. Assume that $\rho(X)=$ 1. Then X has a H-polar cylinder if and only if X has a $-K_{X}$-polar cylinder, where H is an arbitrary ample divisor. On the other hand, there exists a classification of del Pezzo surfaces X such that X has a $-K_{X}$-polar cylinder (see [1]). By a classification of a del Pezzo surface X has not cylinders if X has one of the following collections of singularities: $4 A_{2}, 2 A_{1}+2 A_{3}, 2 D_{4}$. So, we may assume that $\rho(X)>1$ and X has not cylinders. Run MMP for X. We obtain

$$
X=X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{n}
$$

By Lemma 4.19 we may assume that X_{n} is a del Pezzo surface with $\rho\left(X_{n}\right)=1$ and du Val singularities. By Lemma 4.20 we see that X_{n} is a del Pezzo surface with one of the following collect of singularities: $4 A_{2}, 2 A_{1}+2 A_{3}, 2 D_{4}$. On the other hand, the surface X has a smaller degree than X_{n}. But degree of X_{n} is equal to one. So, $X=X_{n}$. On the other hand, $\rho\left(X_{n}\right)=1$, a contradiction.

This completes the proof of Theorem 1.6.

References

[1] I. Cheltsov, J. Park, and J. Won, Cylinders in singular del Pezzo surfaces, Compos. Math. 152 (2016), no. 6, 1198-1224.
[2] , Affine cones over smooth cubic surfaces, J. Eur. Math. Soc. 18 (2016), no. 7, 1537-1564.
[3] R. Hartshorne, Algebraic Geometry, Springer Science+Business Media, Inc., 1977.
[4] S. Keel and J. McKernan, Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc. 140 (1999), no. 669, 153 pp.
[5] T. Kishimoto, Yu. Prokhorov, and M. Zaidenberg, Group actions on affine cones, Affine algebraic geometry, 123-163, CRM Proc. Lecture Notes, 54, Amer. Math. Soc., Providence, RI, 2011.
[6] , G_{a}-actions on affine cones, Transform. Groups 18 (2013), no. 4, 1137-1153.
[7] K. Matsuki, Introduction to the Mori Program, Springer-Verlag New York, Inc., 2002.
Grigory Belousov
Plekhanov Russian University of Economics
Moscow, Russia
E-mail address: belousov_grigory@mail.ru

