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ON THREE-DIMENSIONAL SEMI-TERMINAL

SINGULARITIES

Kento Fujita

Abstract. We classify three-dimensional non-normal semi-terminal sin-

gularities.

1. Introduction

The notion of terminal singularities is very important in the minimal model
program. For the two-dimensional case, the notion of terminal singularities
is equivalent to the notion of smoothness. Three-dimensional terminal sin-
gularities are understood by explicit equations and was given by [8] and the
sufficiency of the conditions was checked in [6].

On the other hand, the importance of the class of certain non-normal va-
rieties, which are called demi-normal varieties (see Definition 2.2), has been
well-understood (see [4, §5]). For example, it is natural to allow semi-log-
canonical singularities, that is, demi-normal with a log-canonicity condition,
in order to consider families of canonically polarized varieties (see [6]). In [2],
the author introduced the notion of semi-terminal singularities (see Definition
2.3) which is a natural generalization of terminal singularities. It is important
to consider the notion of semi-terminal singularities since the author proved
in [2] that there exists a semi-terminal modification for any demi-normal pair.
However, it has not been known so much about semi-terminal singularities. In
this paper, we classify all of the non-normal three-dimensional semi-terminal
singularities.

Theorem 1.1. Let 0 ∈ X be a three-dimensional non-normal semi-terminal
singularity. Then 0 ∈ X is analytically isomorphic to one of the following
singularities:

(1) Double normal crossing point, that is, 0 ∈ (x1x2 = 0) ⊂ A4.
(2) Pinch point, that is, 0 ∈ (x2

1 − x2
2x3 = 0) ⊂ A4.
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1472 K. FUJITA

(3) 2-twirl point, that is, 0 ∈ (x1x3 − x2
2 = x1x

2
4 − x2

5 = x2x
2
4 − x5x6 =

x3x
2
4 − x2

6 = 0) ⊂ A6.

Remark 1.2. Both double normal crossing point and pinch point are hyper-
surface singularities. Thus both are Gorenstein. However, as we will see in
Section 6, for a 2-twirl point 0 ∈ X, X is not Gorenstein but 2KX is Cartier.
A general element 0 ∈ S ∈ | − KX | has a pinch point at 0 ∈ S, the index 1

cover π : X̃ → X of 0 ∈ X is double normal crossing, and π∗S is double normal
crossing. See Example 2.7, Remark 2.9 and Section 6 in detail.

Now we organize the strategy of the proof of Theorem 1.1. The strategy
is similar to the earlier works in [7–10]. For a demi-normal variety X, it is
natural to consider its normalization X̄, the conductor divisor DX̄ of X̄/X
and the involution ιX : D̄X̄ → D̄X̄ obtained by the natural double cover, where
D̄X̄ is the normalization of DX̄ . In fact, the study of demi-normal varieties
X can reduced to the study of such (X̄,DX̄) and ιX : D̄X̄ → D̄X̄ by [4, §9].
From Section 3 to Section 4, we consider germs 0 ∈ (X̄, D̄) of normal pairs
in place of considering non-normal singularities. For a germ 0 ∈ (X̄, D̄) of
normal semi-terminal pair, by taking the index 1 cover, we reduce to the case
that KX̄ + D̄ is Cartier (see Theorem 4.4). Then a general hypersurface 0 ∈
S ⊂ X̄ satisfies that the germ 0 ∈ (S, S ∩ D̄) has either canonical singularities
or log-elliptic singularities (see Definition 3.1). In Section 3, we analyze log-
elliptic singularities. In Section 4, we classify three-dimensional normal semi-
terminal pairs with nonzero reduced boundaries. In Section 5, we see how
those pairs in Section 4 glue and we prove Theorem 1.1. In Section 6, we see
ring-theoretical properties of twirl singularities, which are important examples
of higher-dimensional semi-terminal singularities.

Acknowledgments. The author thanks the referee for comments and
suggestions. This work was supported by JSPS KAKENHI Grant Number
JP16H06885.

Throughout the paper, we work over the complex number field C. In the
paper, a variety means a reduced, separated and of finite type scheme over C.
For any variety X, the morphism νX : X̄ → X denotes the normalization of X.
For the minimal model program, we refer the readers to [4] and [5].

2. Preliminaries

We collect some basic definitions and results in this section.

Definition 2.1. (1) Let X be a variety, let x ∈ X be a closed point, and

let ÔX,x be the formal completion of the local ring OX,x. We say that

x ∈ X is a double normal crossing (dnc, for short) point if ÔX,x '
C[[x1, . . . , xn+1]]/(x1x2); a pinch point if ÔX,x ' C[[x1, . . . , xn+1]]/(x2

1

−x2
2x3), respectively.
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(2) A variety X is called a double normal crossing variety (dnc variety, for
short) if any closed point x ∈ X is either a smooth or a dnc point; a
semi-smooth variety if any closed point x ∈ X is one of a smooth, a
dnc or a pinch point, respectively.

Definition 2.2 ([4, §5.1]). (1) Let X be an equi-dimensional variety. We
call that X is a demi-normal variety if X satisfies Serre’s S2 condition
and X is dnc outside codimension 2.

(2) Assume that an equi-dimensional variety X is dnc outside codimension
2. Then there exists a unique finite and birational morphism d : Xd →
X such that Xd is a demi-normal variety and the morphism d is an
isomorphism in codimension 1 over X. We call the morphism d the
demi-normalization of X.

(3) Let X be a demi-normal variety and νX : X̄ → X be the normal-
ization of X. The conductor ideal of X is defined to be condX :=
HomOX

((νX)∗OX̄ ,OX) ⊂ OX . This ideal can be seen as an ideal
sheaf condX̄ on X̄. Set

DX := SpecX(OX/ condX) and DX̄ := SpecX̄(OX̄/ condX̄).

We call the subscheme DX (resp., DX̄) as the conductor divisor of X
(resp., of X̄/X). It has been known that both DX̄ and DX are reduced
and of pure codimension 1. Moreover, for the normalization morphism
νDX̄

: D̄X̄ → DX̄ , we get the Galois involution ιX : D̄X̄ → D̄X̄ defined
from νX unless νX is an isomorphism.

Definition 2.3. (1) The pair (X,∆) is called a demi-normal pair if X is

a demi-normal variety, ∆ is a formal Q-linear sum ∆ =
∑k
i=1 ai∆i of

reduced and irreducible closed subvarieties ∆i of codimension 1 with
∆i 6⊂ SuppDX and ai ∈ [0, 1] ∩Q for all 1 ≤ i ≤ k. Moreover, if X is
normal, then the pair (X,∆) is called a normal pair.

(2) Let (X,∆) be a demi-normal pair, let νX : X̄ → X be the normalization
of X, and set ∆X̄ := (νX)−1

∗ ∆.
(i) [6, Definition 4.17] The pair (X,∆) is said to be purely semi-log-

terminal if KX + ∆ is Q-Cartier and the pair (X̄,∆X̄ + DX̄) is
purely log-terminal.

(ii) [6, Definition 4.17] The pair (X,∆) is said to be semi-canonical if
KX + ∆ is Q-Cartier and the pair (X̄,∆X̄ + DX̄) has canonical
singularities.

(iii) [2, Definition 2.3] The pair (X,∆) is said to be semi-terminal if
the pair (X,∆) is semi-canonical and for any exceptional prime
divisor E over X̄ we have the inequality a(E, X̄,∆X̄ + DX̄) > 0
unless centerX̄ E ⊂ Suppb∆X̄+DX̄c and codimX̄(centerX̄ E) = 2.

A demi-normal variety X is said to be semi-log-terminal (resp., semi-
canonical, semi-terminal) if the demi-normal pair (X, 0) is purely semi-
log-terminal (resp., semi-canonical, semi-terminal).
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Remark 2.4 ([2, Remark 2.4]). Let us consider a normal pair (Y,∆ + S) such
that S = bSc.

(1) If (Y,∆ + S) has canonical singularities, then DiffS ∆ = 0 and the
variety S with the reduced structure has canonical singularities. In
particular, S is a normal variety.

(2) If (Y,∆ + S) is semi-terminal, then the variety S with the reduced
structure has terminal singularities.

In particular, for any demi-normal pair (X,∆), the following holds. (1) If
(X,∆) is semi-canonical, then Suppb∆X̄ +DX̄c with the reduced structure has
canonical singularities. (2) If (X,∆) is semi-terminal, then Suppb∆X̄ + DX̄c
with the reduced structure has terminal singularities.

Example 2.5. (1) [5, Corollary 2.31] Assume that (X,∆) is a normal pair
such that X is a smooth variety and Supp ∆ ⊂ X is a (possibly non-
connected) smooth divisor. Then (X,∆) is semi-terminal.

(2) If X is a semi-smooth variety, then the variety X is semi-terminal by
(1).

(3) [5, Theorem 4.5] Let (S,C) be a two-dimensional normal pair with C
reduced and 0 ∈ C be a point. Then (S,C) has canonical singularities
around 0 if and only if both S and C are smooth at 0.

(4) [6, Proposition 4.12] Let X be a demi-normal surface and 0 ∈ X be a
closed point. The variety X is semi-canonical around 0 ∈ X if and only
if 0 ∈ X is one of a smooth, a du Val, a dnc or a pinch point. Thus,
X is semi-terminal around 0 if and only if X is semi-smooth around
0 ∈ X.

Lemma 2.6. Let X, X ′ be semi-log-terminal varieties.

(1) All of the varieties X, X̄ and DX̄ are Cohen-Macaulay. The variety
DX̄ is normal.

(2) The variety DX is equal to the quotient DX̄/ιX (thus DX is normal)
and the variety X is obtained by the universal push-out (see [4, Theorem
9.30]) of the following diagram:

DX̄
� � //

��

X̄

DX̄/ιX

(3) For two singularities p ∈ X and p′ ∈ X ′ are analytically isomorphic to
each other if and only if there exist analytical neighborhoods of X̄ and
X̄ ′ around ν−1

X (p) and ν−1
X′ (p

′) such that the triplets (X̄,DX̄ , ιX) and
(X̄ ′, DX̄′ , ιX′) are analytically isomorphic around those neighborhoods.

Proof. (1) Both the varieties DX̄ and X̄ are normal and Cohen-Macaulay by
[5, Corollary 5.25 and Proposition 5.51]. We show that X is Cohen-Macaulay.
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By taking the index 1 cover (see [4, Definition 2.49]), we can assume that X is
semi-canonical andKX is Cartier by [5, Proposition 5.7]. Take a semi-resolution
f : Y → X of X in the sense of [4, Theorem 10.54]. Since X is semi-canonical
and KX is Cartier, there exists an effective f -exceptional Cartier divisor B on Y
such that ωY (−B) = f∗ωX holds. By [1, Theorem 1.10], Rif∗OY (B) = 0 and
Rif∗ωY = 0 for all i > 0. The composition of the following natural morphisms

f∗OY → Rf∗OY → Rf∗OY (B) 'qis f∗OY (B) = f∗OY
in the derived category of coherent sheaves on Y is a quasi-isomorphism. By
[4, Corollary 2.75], the variety X is Cohen-Macaulay.

(2) We know that the set of log-canonical centers of the pair (X̄,DX̄) is
equal to the set of connected components of the variety DX̄ . Thus (2) is a very
special case of [4, §9.1].

(3) Follows from (2) immediately. �

We see important examples of semi-terminal singularities.

Example 2.7. Fix m ∈ Z>0. Set X̄m := Am+1
x1,...,xm+1

and D̄m := (xm+1 = 0) ⊂
X̄m. We set the involution ι : D̄m → D̄m defined by xi 7→ −xi for 1 ≤ i ≤ m.
Let Xm be the demi-normal variety obtained by the triplet (X̄m, D̄m, ι) (see
[4, Corollaries 5.33, 9.31(3) and Theorem 5.38]). In fact, by a direct calculation
in Lemma 2.6(2), Xm = SpecRm with

Rm = C[{xixj}1≤i≤j≤m, xm+1, {xixm+1}1≤i≤m].

Let ν : X̄m → Xm be the normalization morphism and let 0 ∈ Xm be the image
of 0 ∈ X̄m. Consider a section φ := 1/xm+1(dx1 ∧ · · · ∧ dxm+1) of ωX̄m

(D̄m).
Then ResX̄m→D̄m

(φ) = (−1)mdx1 ∧ · · · ∧ dxm ∈ ωD̄m
is ι-anti-invariant if m

is odd and ι-invariant if m is even, where ResX̄m→D̄m
is the residue map. By

[4, Proposition 5.8], 2KXm
is Cartier. Moreover, KXm

is Cartier if m is odd.
In fact, Xm is Gorenstein if and only if m is odd (see Section 6). From now

on, we consider the index 1 cover π : X̃m → Xm of Xm with respects to φ2 for
the case m is even. By [4, Proposition 5.8], the global section Γ(Xm, ωXm

) is
equal to

m+1∑
i=1

Rm ·
xi

xm+1
dx1 ∧ · · · ∧ dxm+1.

Thus X̃m = Spec R̃m with

R̃m = Rm[{yi}1≤i≤m+1]/({yiyj − xixj}1≤i≤j≤m+1)

' C[xm+1, y1, . . . , ym+1]/(y2
m+1 − x2

m+1).

Hence X̃m is a dnc variety.

Definition 2.8. An n-dimensional demi-normal singularity 0 ∈ X is called
an m-twirl point if 0 ∈ X is analytically isomorphic to the singularity 0 ∈
Xm × An−m−1, where 0 ∈ Xm is the singularity defined in Example 2.7.
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Remark 2.9. (1) The notion of 1-twirl points is equal to the notion of
pinch points since there exists a natural isomorphism C[x2

1, x2, x1x2] '
C[y1, y2, y3]/(y2

2 − y2
3y1).

(2) We consider a three-dimensional 2-twirl point 0 ∈ X2. Let π : X̃2 →
X2 be the index 1 cover as in Example 2.7. Take a general element
0 ∈ S ∈ | − KX2

| and set S̃ := π∗S ⊂ X̃2. By a suitable coordinate
change, we may assume that the embedding S ⊂ X2 corresponds to
the following surjection

C[x2
1, x1x2, x

2
2, x3, x1x3, x2x3] � C[x2

2, x3, x2x3]

such that x2
1, x1x2 and x1x3 map to zero. Thus the double cover

(0 ∈ S̃) → (0 ∈ S) is from a double normal crossing point to a pinch
point.

3. Log-elliptic singularities

We consider log-elliptic singularities. The concept of log-elliptic singularities
is a logarithmic analogue of the concept of elliptic singularities. In this section,
many arguments are similar to the arguments in [5, §4.4] based on the works
[7] and [9].

Definition 3.1. A germ 0 ∈ (S,C) of a two-dimensional normal pair is called
a log-elliptic singularity if C is nonzero, 0 ∈ C, KS + C is Cartier and for
any projective birational morphism f : T → S such that T is smooth and
CT := f−1

∗ C is smooth, f∗ωT (CT ) = m0,S · ωS(C) holds, where m0,S is the
maximal ideal sheaf corresponds to 0 ∈ S.

Remark 3.2. For a two-dimensional normal pair (S,C) with C reduced and
KS + C Cartier and for a projective birational morphism f : T → S such that
T is smooth and CT := f−1

∗ C is smooth, f∗ωT (CT ) = ωS(C) holds if and only
if the pair (S,C) has canonical singularities. The proof is essentially same as
the proof of [4, Claim 2.3.1]. Thus in Definition 3.1, it is enough to check the
condition f∗ωT (CT ) = m0,S · ωS(C) for only one birational morphism f .

For the reason to consider log-elliptic singularities, see Lemma 4.1.

Notation 3.3. Let 0 ∈ (S,C) be a germ of a two-dimensional normal pair such
that KS+C is Cartier and (S,C) has not canonical singularities. Let g : S′ → S
be the canonical modification (see [2, Definition 2.6]) of the normal pair (S,C),
h : T → S′ be the minimal resolution, f : T → S be the composition and CT
be the strict transform of C on T . We note that f : T → S is a semi-terminal
modification (see [2, Definition 2.6]) of the normal pair (S,C). By [4, Claim
2.26.4], there exists a unique f -exceptional effective Cartier divisor Z on T such
that KT + CT + Z ∼ 0 and the support of Z is equal to the exceptional locus
of the morphism f .

The following two propositions are essentially same as [5, Propositions 4.45
and 4.47].
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Proposition 3.4. Fix Notation 3.3. Let L be an f -nef line bundle on T . Then
the following hold:

(1) The homomorphism H0(T, L)→ H0(Z,L|Z) is surjective.
(2) The homomorphism H1(T, L)→ H1(Z,L|Z) is an isomorphism.
(3) L ' OT if and only if L ≡f 0 and L|Z ' OZ .
(4) f∗ωT (CT + Z) = ωS(C) holds.
(5) ωS(C)/f∗ωT (CT ) ' H0(Z, ωZ(CT |Z)) holds.
(6) ωS(C)/f∗ωT (CT ) and H1(Z,OZ(−CT |Z)) are dual to each other.

Proposition 3.5. Under Notation 3.3, for any nonzero effective divisor Z ′ �
Z, we have h1(Z ′,OZ′(−CT |Z′)) < h1(Z,OZ(−CT |Z)).

Lemma 3.6 (cf. [5, Proposition 4.51]). Fix Notation 3.3. Assume that 0 ∈
(S,C) is a log-elliptic singularity. Then h1(Z,OZ) = 0 holds. Moreover, for
any reduced and irreducible component E ≤ Z, E is isomorphic to P1 and
((CT + Z − E).E) = 2 holds.

Proof. From the exact sequence

0→ OZ′(−CT |Z′)→ OZ′ → OZ′∩CT
→ 0,

we have h1(Z ′,OZ′(−CT |Z′)) ≥ h1(Z ′,OZ′) for any nonzero effective divi-
sor Z ′ ≤ Z. By Proposition 3.4(6), h1(Z,OZ(−CT |Z)) = 1 holds. Thus
h1(Z,OZ) = 0 or 1. Assume that h1(Z,OZ) = 1. Then h0(Z, ωZ) = 1. Thus
(ωZ .Z) ≥ 0. Moreover, since the support of Z is equal to the exceptional locus
of f , (CT .Z) > 0 holds. However, since KT +CT +Z ∼ 0, we have 0 = (ωZ .Z)+
(CT .Z). This leads to a contradiction. Thus h1(Z,OZ) = 0. By Proposition
3.5, we have h1(E,OE) = 0 for any reduced and irreducible component E ≤ Z.
Moreover, we have 0 = ((KT + CT + Z).E) = −2 + ((CT + Z − E).E). �

Proposition 3.7 (cf. [5, Lemma 4.53]). Fix Notation 3.3. Assume that 0 ∈
(S,C) is a log-elliptic singularity. Let L be a nef line bundle on Z. Then
H1(Z,L) = 0 and there exists a section s ∈ H0(Z,L) such that the associated
subscheme V := (s = 0) ⊂ Z does not intersect CT and the singular locus of
red(Z), and s|red(Z) is smooth. Moreover, for such s and V , if we set A := OV ,

then the natural homomorphism H0(Z,L)→ A⊗ L is surjective.

Proof. By Lemma 3.6, we have h1(Z,OZ) = 0. Thus the assertion follows from
[5, Lemma 4.50]. �

Proposition 3.8 (cf. [5, Proposition 4.54]). Under the notation in Proposition
3.7, assume that the integer k := (L.Z) satisfies that k ∈ Z>0. Then there exists
an isomorphism⊕

n≥0

H0(Z,L⊗n) ' C[s, t, x1, . . . , xk−1]/({xixj + qij(s, t)}1≤i≤j≤k−1)

of graded C-algebras, where s, t, x1, . . . , xk−1 are of degree one and qij(s, t) ∈
C[s, t] are homogeneous polynomials of degree two.
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Proof. We set

RZ(n) := H0(Z,L⊗n), RZ :=
⊕
n≥0

RZ(n),

RV (n) := H0(V,L|⊗nV ), and RV :=
⊕
n≥0

RV (n).

For any n ≥ 0, there exists a natural exact sequence

0→ RZ(n)
·s−→ RZ(n+ 1)→ RV (n+ 1)→ 0.

Since dimCRZ(0) = 1, we have dimCRZ(n) = kn + 1 for any n ≥ 0. Let
T ∈ RV (1) = A ⊗ L be an element generating A ⊗ L and t ∈ RZ(1) be an
extension of T . Since RV (n) = A · Tn for any n ≥ 0, we have

(RZ/sRZ)(n) =

{
C (n = 0),

A · Tn (n ≥ 1).

Thus there exists elements x1, . . . , xk−1 ∈ RZ(1) such that

RZ/(s, t)RZ = C[x̄1, . . . , x̄k−1]/({x̄ix̄j}1≤i≤j≤k−1),

where x̄i ∈ (RZ/(s, t)RZ)(1) is the image of xi. Therefore the assertion follows
from [5, Lemma 4.55]. �

Theorem 3.9 (cf. [5, Theorem 4.57]). Fix Notation 3.3. Assume that 0 ∈
(S,C) is a log-elliptic singularity. Let g : S′ → S be the blowing up along the
maximal ideal sheaf m0,S corresponds to 0 ∈ S, that is, S′ = ProjS

⊕
n≥0 m

n
0,S.

Let OS′(1) be the g-ample line bundle on S′ corresponds to the projectivization.
Then the morphism is equal to the canonical modification of the normal pair
(S,C). Thus there exists a morphism h : T → S′ such that g ◦ h = f holds.
Moreover, KS′ + CS′ ∼ OS′(1) ∼ −h∗Z holds, where CS′ ⊂ S′ be the strict
transform of C.

Proof. Set L := OT (−Z) ' ωT (CT ). Then L|Z is nef and (L.Z) ∈ Z>0.
Since f∗ gives a natural isomorphism H0(S,OS) ' H0(T,OT ), we get an ideal
In ⊂ H0(S,OS) defined by

H0(T, L⊗n) = H0(T,OT (−nZ)) =: In ⊂ H0(S,OS)

for any n ≥ 0. Since H0(Z,OZ) ' C, we have I1 = m0,S . Take general global
sections s1, s2 ∈ H0(T, L). Since there exists an exact sequence

0→ L⊗n−1
t(s2,−s1)−−−−−−→ L⊗n ⊕ L⊗n (s1,s2)−−−−→ L⊗n+1 → 0

and H1(T, Ln) = 0 for any n ≥ 0 (see [5, Corollary 2.68]), we have In+1 = In ·I1
for any n ≥ 0. Since there exists a natural exact sequence

0→ H0(T,OT (−(n+ 1)Z)) → H0(T,OT (−nZ))

→ H0(Z,OZ(−nZ))→ 0
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for any n ≥ 0, we have an isomorphism⊕
n≥0

In/In+1 '
⊕
n≥0

H0(Z,L⊗n|Z)

of graded C-algebras. By Proposition 3.8, the algebra
⊕

n≥0 In/In+1 is gener-

ated by I1/I2. Hence In = In+1 + In1 = In · I1 + In1 holds for any n ≥ 0. By
Nakayama’s lemma, In1 = In for any n ≥ 0. Hence In = mn0,S for any n ≥ 0.
Thus there exists isomorphisms⊕

n≥0

mn0,S '
⊕
n≥0

f∗OT (−nZ) '
⊕
n≥0

f∗OT (n(KT + CT ))

of graded OS-algebras. Thus S′ ' ProjS
⊕

n≥0 f∗OT (n(KT + CT )) is the

canonical modification of (S,C) by [2, Proposition 3.2]. Since OT (−nZ) is
generated by global sections for any n� 0, the induced morphism h : T → S′

satisfies that h∗OS′(1) ∼ OT (−Z). Thus we have OS′(1) ∼ −h∗Z ∼ KS′ +CS′

since KT + CT + Z ∼ 0. �

4. Normal semi-terminal pairs

For a semi-terminal variety X, the pair (X̄,DX̄) is a normal semi-terminal
pair. In this section, we consider three-dimensional such objects with nonzero
DX̄ .

Lemma 4.1 (cf. [5, Lemma 5.30]). Let 0 ∈ (X,D) be a germ of a three-
dimensional canonical singularity with 0 ∈ D 6= 0 and KX + D Cartier. Let
0 ∈ S ⊂ X be a general hypersurface passing through 0 ∈ X and let C :=
D ∩ S. Then the two-dimensional singularity 0 ∈ (S,C) is either a canonical
singularity or a log-elliptic singularity.

Proof. Let f : Y → X be a log resolution of the normal pair (X,D) which
dominates the blowing up of X along the maximal ideal sheaf m0,X corresponds
to 0 ∈ X. Then there exists an f -exceptional effective divisor E on Y such
that f∗m0,X = OY (−E) holds. Moreover, since 0 ∈ S ⊂ X is general, we have
f∗S = S′ + E, S′ is smooth and C ′ := D′ ∩ S′ ⊂ S′ is equal to (f |S′)−1

∗ C,
where S′ := f−1

∗ S and D′ := f−1
∗ D. Since X and D are Cohen-Macaulay, S is

normal, C is reduced and KS+C = (KX +D+S)|S is Cartier. There exists an
f -exceptional effective divisor F on Y such that ωY (D′) = f∗ωX(D)(F ) holds
since (X,D) has canonical singularities. Since

ωS′(C
′) = ωY (D′ + S′)|S′

= f∗(ωX(D + S))(F − E)|S′ = (f |S′)∗(ωS(C))(F − E|S′),

we have

(f |S′)∗ωS′(C ′) = ωS(C)⊗ (f |S′)∗OS′(F − E|S′)
⊃ ωS(C)⊗ (f |S′)∗OS′(−E|S′) = m0,S · ωS(C),
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where m0,S is the maximal ideal sheaf of OS corresponds to 0 ∈ S. Thus the
assertion follows. �

Theorem 4.2 (cf. [5, Theorems 5.34 and 5.35]). Let 0 ∈ (X,D) be a germ
of a three-dimensional normal semi-terminal singularity with 0 ∈ D 6= 0 and
KX + D Cartier. Let 0 ∈ S ⊂ X be a general hypersurface passing through
0 ∈ X and let C := D ∩ S. Then the two-dimensional singularity 0 ∈ (S,C)
has a canonical singularity.

Proof. Assume not. Then the singularity 0 ∈ (S,C) is a log-elliptic singularity
by Lemma 4.1. Let f : Y → X be the blowing up along the maximal ideal sheaf
m0,X corresponding to 0 ∈ X and let f̄ : Ȳ → X be the composition f ◦ νY .
Let E ⊂ Y be the f -exceptional Cartier divisor on Y defined by f∗m0,X =
OY (−E) and let S′ ⊂ Y be the strict transform of S. By Theorem 3.9, the
morphism f |S′ : S′ → S is the canonical modification of the normal pair (S,C).
In particular, S′ is normal. Since f∗S = S′ + E and νY is an isomorphism
around S′, ν∗Y S

′(' S′) is f̄ -ample and ν∗Y S
′ intersects any component of f̄ -

exceptional divisors. Since (X,D) has canonical singularities, there exists an
f̄ -exceptional effective Cartier divisor F on Ȳ such that KȲ +DȲ = f̄∗(KX +
D)+F holds, where DȲ := f̄−1

∗ D. Since 0 ∈ S ⊂ X is general, DȲ |ν∗Y S′ = CS′

holds, where CS′ ⊂ ν∗Y S
′ is the strict transform of C ⊂ S. By Theorem 3.9,

we have

−ν∗Y E|ν∗Y S′ ≡ Kν∗Y S
′ + CS′ = KȲ +DȲ + ν∗Y S

′|ν∗Y S′
= (f̄∗(KX +D + S) + F − ν∗Y E)|ν∗Y S′ ≡ (F − ν∗Y E)|ν∗Y S′ .

Hence F |ν∗Y S′ ≡ 0. Any component of F maps onto 0 ∈ X. Thus F |ν∗Y S′ ⊂ ν
∗
Y S
′

is exceptional with respects to the morphism ν∗Y S
′ → S. By the negativity

lemma [5, Lemma 3.39], F |ν∗Y S′ = 0. Since any component of F intersects
ν∗Y S

′, we have F = 0. Therefore, there exists an exceptional prime divisor
G over X such that centerX G = {0} and a(G,X,D) = 0. This leads to a
contradiction since (X,D) is semi-terminal. Thus the assertion follows. �

By Example 2.5(3) and Theorem 4.2, we have the following:

Corollary 4.3. Let 0 ∈ (X,D) be a germ of a three-dimensional normal semi-
terminal singularity with D 6= 0, 0 ∈ D and KX + D Cartier. Then both X
and D are smooth at 0.

The following theorem is proven similar to [10, Theorem (3.1)].

Theorem 4.4. Let 0 ∈ (X,D) be a germ of a three-dimensional normal semi-
terminal singularity such that 0 ∈ SuppD and D is a nonzero reduced divisor.
Then both X and D are smooth at 0.

Proof. We set

r := min{r ∈ Z>0 | r(KX +D) is Cartier}.
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Take the index 1 cover π : 0 ∈ (X̃, D̃) → 0 ∈ (X,D) of 0 ∈ (X,D) (see

[4, Proposition 2.50(2)]). Then we have KX̃ + D̃ = π∗(KX + D), π−1(0) =

{0}, KX̃ + D̃ is Cartier, the normal pair (X̃, D̃) is semi-terminal, the group

µr of r-th roots of unity acts on (X̃, D̃) and the normal pair (X,D) is the
quotient of the group action. We note that the group action is free outside
0 ∈ X̃ by Example 2.5(3). By Corollary 4.3, both X̃ and D̃ are smooth at 0.
Therefore the assertion follows if r = 1. Assume that r > 1. By taking an
analytical neighborhood of 0 ∈ X̃, we can assume that 0 ∈ (X̃, D̃) is equal to
0 ∈ (A3

x1,x2,x3
,A2

x1,x2
= (x3 = 0)) and the action µr y (A3

x1,x2,x3
,A2

x1,x2
) is

given by xi 7→ εa1x for some 0 ≤ ai ≤ r − 1 (1 ≤ i ≤ 3), where ε ∈ µr is a

generator. Since the group action is free outside 0 ∈ X̃, all of a1, a2 and a3

are nonzero. By replacing a generator ε ∈ µr if necessary, we can assume that
gcd(a1, a2, a3) = 1 and a1 + a2 ≤ r.

Let f : Y → A3
x1,x2,x3

be the weighted blowup with weights (a1, a2, a3). By
[4, Theorem 3.21], a local chart is

f : A3
y1,y2,y3

/
1

a1
(1,−a2,−a3)→ A3

x1,x2,x3

with f∗x1 = ya1
1 , f∗x2 = ya2

1 y2 and f∗x3 = ya3
1 y3. Set F := (y1 = 0). Since

f∗(x−1
3 dx1 ∧ dx2 ∧ dx3) = a1y

−1
3 ya1+a2−1

1 dy1 ∧ dy2 ∧ dy3,

we have a(F, X̃, D̃) = a1 + a2− 1. Let E be the exceptional prime divisor over
X which is dominated by F . We note that centerX E = {0}. By [4, Theorem
3.21], we have a(E,X,D) = (a1 +a2)/r−1 ≤ 0. Since (X,D) is semi-terminal,
this leads to a contradiction. Thus r must be equal to one. �

5. Proof of Theorem 1.1

As a corollary of Theorem 4.4, we can prove Theorem 1.1. Let 0 ∈ X be a
germ of a three-dimensional non-normal semi-terminal singularity. By Theorem
4.4, both X̄ and D̄ are smooth.

We consider the case that the inverse image ν−1
X (0) does not consist of only

one point. By Lemma 2.6(2), ν−1
X (0) = {q1, q2}. By taking analytical neigh-

borhoods of q1, q2 ∈ X̃, we can assume that q1, q2 ∈ (X̃,DX̃) is equal to the
disjoint union of

(q1 =)0 ∈ (A3
x1,x2,x3

,A2
x1,x2

= (x3 = 0)),

(q2 =)0 ∈ (A3
y1,y2,y3

,A2
y1,y2

= (y3 = 0)),

and the involution ιX : DX̃ → DX̃ is given by xi 7→ yi and yi 7→ xi for 1 ≤ i ≤ 2.
Then the coordinate ring OX is equal to

{(f, g) ∈ C[x1, x2, x3]× C[y1, y2, y3]|f(x1, x2, 0) = g(x1, x2, 0)}.
Consider the ring surjection C[x1, x2, x3, y3] → OX defined by x1 7→ (x1, y1),
x2 7→ (x2, y2), x3 7→ (x3, 0) and y3 7→ (0, y3). The kernel of the surjection is
generated by x3y3. Thus X is a dnc variety.
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We consider the case that the inverse image ν−1
X (0) consists of only one point,

say 0 ∈ X̄. Then 0 ∈ DX̃ is a fixed point of the involution ιX : DX̃ → DX̃ . By

taking an analytical neighborhood of 0 ∈ X̃, we can assume either

0 ∈ X̄ = A3
x1,x2,x3

, DX̃ = A2
x1,x2

= (x3 = 0), ιX :

{
x1 7→ x1,

x2 7→ −x2,

or

0 ∈ X̄ = A3
x1,x2,x3

, DX̃ = A2
x1,x2

= (x3 = 0), ιX :

{
x1 7→ −x1,

x2 7→ −x2.

As we have seen in Example 2.7, 0 ∈ X is a 1-twirl point (that is, a pinch
point) for the former case; a 2-twirl point for the latter case.

As a consequence, we have completed the proof of Theorem 1.1.

6. Appendix: ring-theoretical properties of twirl singularities

In this section, we determine whether a given m-twirl point is Gorenstein
or not by using [3, Theorem (2)]. Fix a positive integer m and a lattice N :=
Ze1 ⊕ · · · ⊕ Zem+1. Set H ⊂ N such that

H :=
∑

1≤i≤j≤m

Z≥0(ei + ej) + Z≥0em+1 +
∑

1≤i≤m

Z≥0(ei + em+1).

ThenH ⊂ N is a finitely generated additive semigroup with identity. Moreover,
the semigroup ring C[H] is equal to Rm in Example 2.7. We set fi := 2ei
(1 ≤ i ≤ m) and fm+1 := em+1. Then f1, . . . , fm+1 satisfies the conditions (1)
and (2) in [3, p. 1]. Set

Fi := H ∩
∑

1≤p≤m+1,p6=i

Q≥0fp

for 1 ≤ i ≤ m+ 1, that is,

Fp =
∑

1≤i≤j≤m,i 6=p,j 6=p

Z≥0(ei + ej) + Z≥0em+1

+
∑

1≤i≤m,i 6=p

Z≥0(ei + em+1) (p 6= m+ 1),

Fm+1 =
∑

1≤i≤j≤m

Z≥0(ei + ej).

Set

Hi := {w ∈ N | there exists g ∈ Fi such that w + g ∈ H}
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for 1 ≤ i ≤ m+ 1, that is,

Hp =
∑

1≤i≤j≤m,i6=p,j 6=p

Z(ei + ej) + Zem+1

+
∑

1≤i≤m,i 6=p

Z(ei + em+1) +
∑

1≤i≤m

Z≥0(ei + ep)

+ Z≥0(ep + em+1) (p 6= m+ 1),

Hm+1 =
∑

1≤i≤j≤m

Z(ei + ej) + Z≥0em+1 +
∑

1≤i≤m

Z≥0(ei + em+1).

Hence the set N \
⋃

1≤i≤m+1Hi is equal to{ ∑
1≤i≤m

aiei

∣∣∣ai ∈ Z<0,
∑

1≤i≤m

ai is odd
}
∪

∑
1≤i≤m+1

Z<0ei.

By [3, Theorem (2)], C[H] is Gorenstein if and only if there exists c ∈ N such
that c −H = N \

⋃
1≤i≤m+1Hi. Thus C[H] is Gorenstein if and only if m is

odd. Therefore we have the following:

Proposition 6.1. m-twirl point is Gorenstein if and only if m is odd.
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