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ON THREE-DIMENSIONAL SEMI-TERMINAL
SINGULARITIES

KENTO FuJiTa

ABSTRACT. We classify three-dimensional non-normal semi-terminal sin-
gularities.

1. Introduction

The notion of terminal singularities is very important in the minimal model
program. For the two-dimensional case, the notion of terminal singularities
is equivalent to the notion of smoothness. Three-dimensional terminal sin-
gularities are understood by explicit equations and was given by [8] and the
sufficiency of the conditions was checked in [6].

On the other hand, the importance of the class of certain non-normal va-
rieties, which are called demi-normal varieties (see Definition 2.2), has been
well-understood (see [4, §5]). For example, it is natural to allow semi-log-
canonical singularities, that is, demi-normal with a log-canonicity condition,
in order to consider families of canonically polarized varieties (see [6]). In [2],
the author introduced the notion of semi-terminal singularities (see Definition
2.3) which is a natural generalization of terminal singularities. It is important
to consider the notion of semi-terminal singularities since the author proved
in [2] that there exists a semi-terminal modification for any demi-normal pair.
However, it has not been known so much about semi-terminal singularities. In
this paper, we classify all of the non-normal three-dimensional semi-terminal
singularities.

Theorem 1.1. Let 0 € X be a three-dimensional non-normal semi-terminal
singularity. Then 0 € X s analytically isomorphic to one of the following
singularities:

(1) Double normal crossing point, that is, 0 € (z129 = 0) C A%,

(2) Pinch point, that is, 0 € (23 — 2323 = 0) C A%,
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1472 K. FUJITA

(3) 2-twirl point, that is, 0 € (123 — 23 = z125 — 22 = 2225 — T576 =
z3x3 — 13 =0) C AS.

Remark 1.2. Both double normal crossing point and pinch point are hyper-
surface singularities. Thus both are Gorenstein. However, as we will see in
Section 6, for a 2-twirl point 0 € X, X is not Gorenstein but 2K x is Cartier.
A general element 0 € S € | — Kx| has a pinch point at 0 € S, the index 1
cover m: X — X of 0 € X is double normal crossing, and 7*S is double normal
crossing. See Example 2.7, Remark 2.9 and Section 6 in detail.

Now we organize the strategy of the proof of Theorem 1.1. The strategy
is similar to the earlier works in [7-10]. For a demi-normal variety X, it is
natural to consider its normalization X, the conductor divisor Dg of X /X
and the involution ¢x : Dy — Dy obtained by the natural double cover, where
Dy is the normalization of Dg. In fact, the study of demi-normal varieties
X can reduced to the study of such (X, Dg) and tx: Dg — Dg by [4, §9].
From Section 3 to Section 4, we consider germs 0 € (X, D) of normal pairs
in place of considering non-normal singularities. For a germ 0 € (X, D) of
normal semi-terminal pair, by taking the index 1 cover, we reduce to the case
that K + D is Cartier (see Theorem 4.4). Then a general hypersurface 0 €
S C X satisfies that the germ 0 € (S, S N D) has either canonical singularities
or log-elliptic singularities (see Definition 3.1). In Section 3, we analyze log-
elliptic singularities. In Section 4, we classify three-dimensional normal semi-
terminal pairs with nonzero reduced boundaries. In Section 5, we see how
those pairs in Section 4 glue and we prove Theorem 1.1. In Section 6, we see
ring-theoretical properties of twirl singularities, which are important examples
of higher-dimensional semi-terminal singularities.

Acknowledgments. The author thanks the referee for comments and
suggestions. This work was supported by JSPS KAKENHI Grant Number
JP16H06885.

Throughout the paper, we work over the complex number field C. In the
paper, a variety means a reduced, separated and of finite type scheme over C.
For any variety X, the morphism vx : X — X denotes the normalization of X.
For the minimal model program, we refer the readers to [4] and [5].

2. Preliminaries
We collect some basic definitions and results in this section.

Definition 2.1. (1) Let X be a variety, let € X be a closed point, and
let (’A)X@ be the formal completion of the local ring Ox ;. We say that
x € X is a double normal crossing (dnc, for short) point if (’A)X)I o~
Cllz1, . .., Tni1]l/(@122); & pinch point if Ox , =~ C[[z1, . .., Tni1]]/ (23
—x3x3), respectively.
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A variety X is called a double normal crossing variety (dnc variety, for
short) if any closed point x € X is either a smooth or a dnc point; a
semi-smooth variety if any closed point z € X is one of a smooth, a
dnc or a pinch point, respectively.

Definition 2.2 ([4, §5.1]). (1) Let X be an equi-dimensional variety. We

(2)

call that X is a demi-normal variety if X satisfies Serre’s S condition
and X is dnc outside codimension 2.

Assume that an equi-dimensional variety X is dnc outside codimension
2. Then there exists a unique finite and birational morphism d: X% —
X such that X% is a demi-normal variety and the morphism d is an
isomorphism in codimension 1 over X. We call the morphism d the
demi-normalization of X.

Let X be a demi-normal variety and vx: X — X be the normal-
ization of X. The conductor ideal of X is defined to be condx :=
Homoy ((vx)«Ox,0x) C Ox. This ideal can be seen as an ideal
sheaf cond ¢ on X. Set

Dx := Specyx(Ox/condx) and Dy := Specg(Ox/condy).
We call the subscheme Dx (resp., Dx) as the conductor divisor of X
(resp., of X/X). It has been known that both D¢ and Dy are reduced
and of pure codimension 1. Moreover, for the normalization morphism
UDy ' Dg — Dy, we get the Galois involution tx: Dg — Dy defined
from vx unless vx is an isomorphism.

Definition 2.3. (1) The pair (X, A) is called a demi-normal pair if X is

a demi-normal variety, A is a formal Q-linear sum A = Zle a;A; of

reduced and irreducible closed subvarieties A; of codimension 1 with

A; ¢ Supp Dx and a; € [0,1] N Q for all 1 < ¢ < k. Moreover, if X is

normal, then the pair (X, A) is called a normal pair.

Let (X, A) be a demi-normal pair, let vx : X — X be the normalization

of X, and set Ag = (vx); 'A.

(i) [6, Definition 4.17] The pair (X, A) is said to be purely semi-log-
terminal if Kx + A is Q-Cartier and the pair (X,Ag + Dyg) is
purely log-terminal.

(ii) [6, Definition 4.17] The pair (X, A) is said to be semi-canonical if
Kx + A is Q-Cartier and the pair (X, Ag + Dg) has canonical
singularities.

(iii) [2, Definition 2.3] The pair (X, A) is said to be semi-terminal if
the pair (X, A) is semi-canonical and for any exceptional prime
divisor E over X we have the inequality a(E,X,Ag¢ + Dg) > 0
unless center g E C Supp|A g+ Dx | and codim ¢ (center g E) = 2.

A demi-normal variety X is said to be semi-log-terminal (resp., semi-

canonical, semi-terminal) if the demi-normal pair (X, 0) is purely semi-

log-terminal (resp., semi-canonical, semi-terminal).
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Remark 2.4 ([2, Remark 2.4]). Let us consider a normal pair (Y, A 4+ S) such
that S = |S].

(1) If (Y,A 4+ S) has canonical singularities, then Diff¢ A = 0 and the
variety S with the reduced structure has canonical singularities. In
particular, S is a normal variety.

(2) If (Y,A 4+ 95) is semi-terminal, then the variety S with the reduced
structure has terminal singularities.

In particular, for any demi-normal pair (X,A), the following holds. (1) If
(X, A) is semi-canonical, then Supp|A ¢ + D5 | with the reduced structure has
canonical singularities. (2) If (X, A) is semi-terminal, then Supp|Ax + Dx]
with the reduced structure has terminal singularities.

Example 2.5. (1) [5, Corollary 2.31] Assume that (X, A) is a normal pair
such that X is a smooth variety and Supp A C X is a (possibly non-
connected) smooth divisor. Then (X, A) is semi-terminal.

(2) If X is a semi-smooth variety, then the variety X is semi-terminal by
(1).

(3) [5, Theorem 4.5] Let (S, C) be a two-dimensional normal pair with C
reduced and 0 € C be a point. Then (S, C) has canonical singularities
around 0 if and only if both S and C are smooth at 0.

(4) [6, Proposition 4.12] Let X be a demi-normal surface and 0 € X be a
closed point. The variety X is semi-canonical around 0 € X if and only
if 0 € X is one of a smooth, a du Val, a dnc or a pinch point. Thus,
X is semi-terminal around 0 if and only if X is semi-smooth around
0e X.

Lemma 2.6. Let X, X’ be semi-log-terminal varieties.

(1) All of the varieties X, X and Dy are Cohen-Macaulay. The variety
Dy is normal.

(2) The variety Dx is equal to the quotient D¢ /tx (thus Dx is normal)
and the variety X is obtained by the universal push-out (see [4, Theorem
9.30]) of the following diagram:

Di—X

|

D)g/LX

(3) For two singularities p € X and p' € X' are analytically isomorphic to
each other if and only if there exist analytical neighborhoods of X and
X' around vy'(p) and vy (p') such that the triplets (X,Dg,1x) and
(X', Dx/,ux/) are analytically isomorphic around those neighborhoods.

Proof. (1) Both the varieties Dg and X are normal and Cohen-Macaulay by
[5, Corollary 5.25 and Proposition 5.51]. We show that X is Cohen-Macaulay.
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By taking the index 1 cover (see [4, Definition 2.49]), we can assume that X is
semi-canonical and K x is Cartier by [5, Proposition 5.7]. Take a semi-resolution
f:Y = X of X in the sense of [4, Theorem 10.54]. Since X is semi-canonical
and Kx is Cartier, there exists an effective f-exceptional Cartier divisor B on Y’
such that wy (—B) = f*wx holds. By [1, Theorem 1.10], R'f,Oy (B) = 0 and
R f.wy =0 for all i > 0. The composition of the following natural morphisms

f*OY — Rf*OY — Rf*OY(B) qis f*OY(B) = f*OY

in the derived category of coherent sheaves on Y is a quasi-isomorphism. By
[4, Corollary 2.75], the variety X is Cohen-Macaulay.

(2) We know that the set of log-canonical centers of the pair (X,Dy) is
equal to the set of connected components of the variety Dg. Thus (2) is a very
special case of [4, §9.1].

(3) Follows from (2) immediately. O

We see important examples of semi-terminal singularities.

Example 2.7. Fix m € Zo. Set Xp,, := AT and Dy, = (2y1 = 0) C
X . We set the involution ¢: D,, — D,, defined by x; — —z; for 1 < i < m.
Let X,, be the demi-normal variety obtained by the triplet (X,,, D,,,t) (see
[4, Corollaries 5.33, 9.31(3) and Theorem 5.38]). In fact, by a direct calculation

in Lemma 2.6(2), X,,, = Spec R,,, with
R, = C[{xixj}lgigjgma Tm+1, {$i$m+1}1gigm]-

Let v: X,,, — X,,, be the normalization morphism and let 0 € X,,, be the image
of 0 € X,,. Consider a section ¢ := 1/ 41(dz1 A+ Admy1) of wg (D).
Then Resg, .p (¢) = (=1)™dx1 A--- Ndxy, € wp,is t-anti-invariant if m
is odd and t-invariant if m is even, where Resg, _,p ~is the residue map. By
[4, Proposition 5.8], 2K x, is Cartier. Moreover, K, is Cartier if m is odd.
In fact, X,, is Gorenstein if and only if m is odd (see Section 6). From now
on, we consider the index 1 cover 7: X, — X,m of X,,, with respects to ¢? for
the case m is even. By [4, Proposition 5.8], the global section I'(X,,,wx,, ) is
equal to

m—+1 s
ZRm ! d.’El/\"'/\dSIJm+1.
i=1 Tm+1

Thus X,,, = Spec R,, with

Ry = R [{yih1<icm+1]/ ({vivy — iz hi<i<j<m+1)
~ ClZmt1, Y1s - - Yms1)/ (Yoni1 — Tongr)-
Hence X,, is a dnc variety.

Definition 2.8. An n-dimensional demi-normal singularity 0 € X is called
an m-twirl point if 0 € X is analytically isomorphic to the singularity 0 €
X, x A"™™71 where 0 € X, is the singularity defined in Example 2.7.
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Remark 2.9. (1) The notion of 1-twirl points is equal to the notion of
pinch points since there exists a natural isomorphism C[z?, xo, 122] ~
Cly1, y2, 931/ (3 — y3w)- -
(2) We consider a three-dimensional 2-twirl point 0 € X5. Let 7: Xo —
X5 be the index 1 cover as in Example 2.7. Take a general element
0€Se|—Kx,| and set S := 7*S C X,. By a suitable coordinate
change, we may assume that the embedding S C X5 corresponds to
the following surjection

2 2 2
(C[xh T1T2,Ty, XT3, T1X3, x2x3] - (C[’I27 z3, 11721’3]

such that 2%, x1z2 and ;73 map to zero. Thus the double cover
(0 € S) — (0 €Y9) is from a double normal crossing point to a pinch
point.

3. Log-elliptic singularities

We consider log-elliptic singularities. The concept of log-elliptic singularities
is a logarithmic analogue of the concept of elliptic singularities. In this section,

many arguments are similar to the arguments in [5, §4.4] based on the works
[7] and [9].

Definition 3.1. A germ 0 € (S, C) of a two-dimensional normal pair is called
a log-elliptic singularity if C' is nonzero, 0 € C, Kg + C is Cartier and for
any projective birational morphism f: 7" — S such that T is smooth and
Cr = f71C is smooth, f.wr(Cr) = mg s - ws(C) holds, where mg g is the
maximal ideal sheaf corresponds to 0 € S.

Remark 3.2. For a two-dimensional normal pair (S,C) with C' reduced and
Kg + C Cartier and for a projective birational morphism f: T — S such that
T is smooth and Cr := f1C is smooth, f.wr(Cr) = ws(C) holds if and only
if the pair (S, C') has canonical singularities. The proof is essentially same as
the proof of [4, Claim 2.3.1]. Thus in Definition 3.1, it is enough to check the
condition f.wp(Cr) = mg g - ws(C) for only one birational morphism f.

For the reason to consider log-elliptic singularities, see Lemma 4.1.

Notation 3.3. Let 0 € (S, C) be a germ of a two-dimensional normal pair such
that Kg+C is Cartier and (S, C) has not canonical singularities. Let g: S” — S
be the canonical modification (see [2, Definition 2.6]) of the normal pair (S, C),
h: T — S’ be the minimal resolution, f: T — S be the composition and Cr
be the strict transform of C' on T. We note that f: T'— S is a semi-terminal
modification (see [2, Definition 2.6]) of the normal pair (S,C). By [4, Claim
2.26.4], there exists a unique f-exceptional effective Cartier divisor Z on T such
that K7+ Cr + Z ~ 0 and the support of Z is equal to the exceptional locus
of the morphism f.

The following two propositions are essentially same as [5, Propositions 4.45
and 4.47].
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Proposition 3.4. Fiz Notation 3.53. Let L be an f-nef line bundle onT. Then
the following hold:
(1) The homomorphism H°(T,L) — H°(Z,L|z) is surjective.
) The homomorphism H*(T,L) — HY(Z,L|z) is an isomorphism.
) L~ Or if and only if L=¢0 and L|z ~ O.
) fawr(Cr + Z) = wg(C) holds.
) wS(C')/f*wT(C'T) >~ f‘IO(Z7 wZ(C’T|Z)) holds.
(6) ws(C)/ fewr(Cr) and HY(Z,0z(—Cr|z)) are dual to each other.

Proposition 3.5. Under Notation 3.3, for any nonzero effective divisor Z' <
Z, we have h*(Z',O0z/(=C7|z/)) < h'(Z,0z(—Cr|z)).

Lemma 3.6 (cf. [5, Proposition 4.51]). Fiz Notation 3.3. Assume that 0 €
(S,C) is a log-elliptic singularity. Then h*(Z,0z) = 0 holds. Moreover, for
any reduced and irreducible component E < Z, E is isomorphic to P' and

((Cr+Z — E).E) =2 holds.
Proof. From the exact sequence
0— OZ’(_CT|Z’) — OZ/ — Oz/ch — 0,

we have h'(Z',0z/(—Cr|z)) > hY(Z',0z) for any nonzero effective divi-
sor Z' < Z. By Proposition 3.4(6), h'(Z,0z(—Cr|z)) = 1 holds. Thus
h'(Z,0z) = 0 or 1. Assume that h'(Z,0z) = 1. Then h°(Z,wz) = 1. Thus
(wz.Z) > 0. Moreover, since the support of Z is equal to the exceptional locus
of f, (Cr.Z) > 0 holds. However, since K7 +Cr+Z ~ 0, we have 0 = (wz.Z)+
(Cr.Z). This leads to a contradiction. Thus h'(Z,0z) = 0. By Proposition
3.5, we have h'(E,Og) = 0 for any reduced and irreducible component E < Z.
Moreover, we have 0 = (K7 +Cr + Z).E) = =2+ ((Cr + Z — E).E). O

Proposition 3.7 (cf. [5, Lemma 4.53]). Fiz Notation 3.3. Assume that 0 €
(S,C) is a log-elliptic singularity. Let L be a nef line bundle on Z. Then
HY(Z,L) =0 and there ezists a section s € H°(Z, L) such that the associated
subscheme V := (s = 0) C Z does not intersect Cr and the singular locus of
red(Z), and s|ieq(z) is smooth. Moreover, for such s and V., if we set A := Oy,
then the natural homomorphism H°(Z, L) — A ® L is surjective.

Proof. By Lemma 3.6, we have h'(Z,Oz) = 0. Thus the assertion follows from
[5, Lemma 4.50]. O

Proposition 3.8 (cf. [5, Proposition 4.54]). Under the notation in Proposition
3.7, assume that the integer k := (L.Z) satisfies that k € Z~q. Then there exists
an isomorphism

P H (2,157 ~Cls,t.av,... o]/ {mizs + aij (s, D h<igj<i)
n>0

of graded C-algebras, where s, t, x1,...,xx_1 are of degree one and g;;(s,t) €
Cls, t] are homogeneous polynomials of degree two.
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Proof. We set

Rz(n) := H°(Z, L®"), Rz =@ Rz(n),
n>0

Ry (n) := H(V,L|$"™), and Ry := @D Rv(n).
n>0

For any n > 0, there exists a natural exact sequence
0= Rz(n) > Rz(n+1) = Ry(n+1) = 0.

Since dim¢ Rz(0) = 1, we have dimg Rz(n) = kn + 1 for any n > 0. Let
T € Ry(1) = A® L be an element generating A ® L and t € Rz(1) be an
extension of T'. Since Ry (n) = A-T™ for any n > 0, we have

C (n=0),

(Rz/sRz)(n) = {A -T" (n>1).

Thus there exists elements x1, ..., 751 € Rz(1) such that
Rz/(s,t)Rz = C[Z1, ..., Tx—1]/({ZiT h<i<j<r-1),

where Z; € (Rz/(s,t)Rz)(1) is the image of z;. Therefore the assertion follows
from [5, Lemma 4.55]. O

Theorem 3.9 (cf. [5, Theorem 4.57]). Fiz Notation 3.3. Assume that 0 €
(S,C) is a log-elliptic singularity. Let g: 8" — S be the blowing up along the
mazximal ideal sheaf mg s corresponds to 0 € S, that is, S" = Projg @, mg .
Let Og:(1) be the g-ample line bundle on S’ corresponds to the projectivization.
Then the morphism is equal to the canonical modification of the normal pair
(S,C). Thus there exists a morphism h: T — S' such that go h = f holds.
Moreover, Kg: + Cg ~ Og/(1) ~ —h,Z holds, where Cs» C S’ be the strict
transform of C.

Proof. Set L := Or(—=Z) ~ wr(Cr). Then L|z is nef and (L.Z) € Zso.
Since f* gives a natural isomorphism H°(S, Og) ~ H(T, Or), we get an ideal
I, € H°(S, Og) defined by

HY(T,L®") = H'(T,Op(-nZ)) =: I, ¢ H°(S,O5)
for any n > 0. Since H°(Z,0z) ~ C, we have I = mg 5. Take general global
sections s, so € H(T, L). Since there exists an exact sequence

0 &1 275 pen g pen (1) penit

and H*(T, L™) = 0 for any n > 0 (see [5, Corollary 2.68]), we have I,, 11 = I,,-I1
for any n > 0. Since there exists a natural exact sequence
0— HYT,07(—(n+1)2)) — HYT,0r(-nZ))
— H°%Z,07(-nZ)) =0
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for any n > 0, we have an isomorphism

P 1/ 1ni1 ~ P H(Z, L5 2)

n>0 n>0

of graded C-algebras. By Proposition 3.8, the algebra @, - In/In+1 is gener-
ated by I, /I,. Hence I, = I,, .1 + I = I,, - I, + I} holds for any n > 0. By
Nakayama’s lemma, I{" = I, for any n > 0. Hence I,, = mg ¢ for any n > 0.
Thus there exists isomorphisms

@mg,s o EBf*OT(—nZ) ~ @ f+Or(n(Kr + Cr))

n>0 n>0 n>0
of graded Og-algebras. Thus S’ ~ Projs@D,,~o [+Or(n(Kr + Cr)) is the
canonical modification of (S,C) by [2, Proposition 3.2]. Since Or(—nZ) is
generated by global sections for any n > 0, the induced morphism h: T — S’
satisfies that h*Og/ (1) ~ Op(—Z). Thus we have Og/ (1) ~ —h,Z ~ Ko +Cg
since Kt +Cr + Z ~ 0. O

4. Normal semi-terminal pairs

For a semi-terminal variety X, the pair (X, Dg) is a normal semi-terminal
pair. In this section, we consider three-dimensional such objects with nonzero
Dy.

Lemma 4.1 (cf. [5, Lemma 5.30]). Let 0 € (X, D) be a germ of a three-
dimensional canonical singularity with 0 € D # 0 and Kx + D Cartier. Let
0 € S C X be a general hypersurface passing through 0 € X and let C :=
DnNS. Then the two-dimensional singularity 0 € (S,C) is either a canonical
singularity or a log-elliptic singularity.

Proof. Let f: Y — X be a log resolution of the normal pair (X, D) which
dominates the blowing up of X along the maximal ideal sheaf my x corresponds
to 0 € X. Then there exists an f-exceptional effective divisor £ on Y such
that f*mg x = Oy (—E) holds. Moreover, since 0 € S C X is general, we have
f*S =8+ E, S is smooth and C' := D'N S’ C S’ is equal to (f|s/);1C,
where S’ := f-1S and D’ :== f-'D. Since X and D are Cohen-Macaulay, S is
normal, C is reduced and Kg+C = (Kx +D+5)|s is Cartier. There exists an
f-exceptional effective divisor F' on Y such that wy (D’) = f*wx(D)(F) holds

since (X, D) has canonical singularities. Since
OJS/(C/) = OJy(DI + S/)|Sl
= ["(wx(D+9))(F = E)ls: = (fls)" (ws(C))(F — Elsr),
we have
(f]s)-05/(C") = ws(C) & (fs:)-Os:(F — Els1)
D ws(C) @ (fls')«Os: (=Elsr) = mo,s - ws(C),
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where mg s is the maximal ideal sheaf of Og corresponds to 0 € S. Thus the
assertion follows. O

Theorem 4.2 (cf. [5, Theorems 5.34 and 5.35]). Let 0 € (X, D) be a germ
of a three-dimensional normal semi-terminal singularity with 0 € D # 0 and
Kx + D Cartier. Let 0 € S C X be a general hypersurface passing through
0 € X and let C := DNS. Then the two-dimensional singularity 0 € (S, C)
has a canonical singularity.

Proof. Assume not. Then the singularity 0 € (S, C) is a log-elliptic singularity
by Lemma 4.1. Let f: Y — X be the blowing up along the maximal ideal sheaf
mo,x corresponding to 0 € X and let f:Y — X be the composition f o vy.
Let £ C Y be the f-exceptional Cartier divisor on Y defined by f*mgx =
Oy (—E) and let S’ C Y be the strict transform of S. By Theorem 3.9, the
morphism f|g: S” — S is the canonical modification of the normal pair (S, C).
In particular, S’ is normal. Since f*S = S’ + F and vy is an isomorphism
around S’, v§S'(~ ') is f-ample and 1% S’ intersects any component of f-
exceptional divisors. Since (X, D) has canonical singularities, there exists an
f-exceptional effective Cartier divisor F' on Y such that Ky + Dy = f*(Kx +
D)+ F holds, where Dy := f;*D. Since 0 € S C X is general, Dy |,z 5 = Csr
holds, where Css C 135" is the strict transform of C' C S. By Theorem 3.9,
we have

—V;‘/E|V‘*/S/ = Ky;«/,s/ +Cg = Ky + Dy + V;S/|V;S/

=(["(Ex+D+8)+F -y E)|yys = (F — 15 E)
Hence F|,,;S/ = 0. Any component of F maps onto0 € X. Thus F’ vy s C vy S
is exceptional with respects to the morphism v§.S" — S. By the negativity
lemma [5, Lemma 3.39], F vy = 0. Since any component of F' intersects
vy S’ we have F' = 0. Therefore, there exists an exceptional prime divisor
G over X such that centerx G = {0} and a(G,X,D) = 0. This leads to a
contradiction since (X, D) is semi-terminal. Thus the assertion follows. (]

* Qr.
vy S

By Example 2.5(3) and Theorem 4.2, we have the following;:

Corollary 4.3. Let 0 € (X, D) be a germ of a three-dimensional normal semi-
terminal singularity with D # 0, 0 € D and Kx + D Cartier. Then both X
and D are smooth at 0.

The following theorem is proven similar to [10, Theorem (3.1)].

Theorem 4.4. Let 0 € (X, D) be a germ of a three-dimensional normal semi-
terminal singularity such that 0 € Supp D and D is a nonzero reduced divisor.
Then both X and D are smooth at 0.

Proof. We set
r:=min{r € Zso |r(Kx + D) is Cartier}.
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Take the index 1 cover 7: 0 € (X,D) — 0 € (X,D) of 0 € (X,D) (see
4, Proposition 2.50(2)]). Then we have K¢ + D = 7*(Kx + D), n=1(0) =
{0}, K¢ + D is Cartier, the normal pair (X, D) is semi-terminal, the group
fi of r-th roots of unity acts on (X, D) and the normal pair (X, D) is the
quotient of the group action. We note that the group action is free outside
0 € X by Example 2.5(3). By Corollary 4.3, both X and D are smooth at 0.
Therefore the assertion follows if » = 1. Assume that » > 1. By taking an
analytical neighborhood of 0 € X, we can assume that 0 € (X , D) is equal to
0€ (A ., ..0AZ o, = (z3 = 0)) and the action p, ~ (A3 A2 )is
given by x; — e%x for some 0 < a; < r—1 (1 <i < 3), where ¢ € pu, is a
generator. Since the group action is free outside 0 € X, all of a1, as and as
are nonzero. By replacing a generator € € p, if necessary, we can assume that
ged(ag,ag,a3) =1 and a1 +as < 7.

Let f: YV — A3 be the weighted blowup with weights (a1, as,as). By

Z1,%2,T3

[4, Theorem 3.21], a local chart is

tTNY1,Y2,Y3 r1,T2,T3

1
f. AS /7(17 —az, _a3) — A3
ay
with f*z1 = yi*, ffz2 = y{?y2 and f*xs = y7°ys. Set F := (y; = 0). Since
(w3 dey Adag A des) = aryz "y T2 dyy A dys A dys,
we have a(F, X, ﬁ) =a; +az— 1. Let E be the exceptional prime divisor over
X which is dominated by F. We note that centerx E = {0}. By [4, Theorem

3.21], we have a(E, X, D) = (a1 +az)/r—1 < 0. Since (X, D) is semi-terminal,
this leads to a contradiction. Thus r» must be equal to one. O

5. Proof of Theorem 1.1

As a corollary of Theorem 4.4, we can prove Theorem 1.1. Let 0 € X be a
germ of a three-dimensional non-normal semi-terminal singularity. By Theorem
4.4, both X and D are smooth.

We consider the case that the inverse image 1/)_(1(0) does not consist of only
one point. By Lemma 2.6(2), v5'(0) = {q1,¢2}. By taking analytical neigh-
borhoods of g1, g2 € X, we can assume that qi, g» € (X,DX) is equal to the
disjoint union of

(1 =)0 € (A2 AZ .. = (z3=0)),

XT1,T2,T37 " TT1,T2
(QQ :)O € (Agl,ymys’A?}hM = (y3 = O))’
and the involution tx : D¢ — Dy is given by x; — y; and y; — x; for 1 <4 < 2.
Then the coordinate ring Ox is equal to
{(f,9) € Clz1, w2, 23] x Cly1,y2, y3]| f(21,72,0) = g(x1,22,0)}.

Consider the ring surjection C[z1, z2,x3,y3] = Ox defined by 21 — (21,y1),
o — (x2,Yy2), 3 — (23,0) and y3 — (0,y3). The kernel of the surjection is
generated by x3ys. Thus X is a dnc variety.
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We consider the case that the inverse image u;(l (0) consists of only one point,
say 0 € X. Then 0 € Dy is a fixed point of the involution tx: Dy — Dg. By
taking an analytical neighborhood of 0 € X, we can assume either

T — X1,

T _ a3 a2 _ _ )
0eX=A7 ... Dx=4A0 ., = (x3=0),tx: {302 o,

or

Y a2 _ _ . Ty — —T1,
OEX_Azl,xz,Is’DX _A:m,m - (1'3 _0)’LX. {932 = —T9.
As we have seen in Example 2.7, 0 € X is a 1-twirl point (that is, a pinch
point) for the former case; a 2-twirl point for the latter case.
As a consequence, we have completed the proof of Theorem 1.1.

6. Appendix: ring-theoretical properties of twirl singularities

In this section, we determine whether a given m-twirl point is Gorenstein
or not by using [3, Theorem (2)]. Fix a positive integer m and a lattice N :=
Zey ® -+ @ Zemy1. Set H C N such that

Hi= Y Zsolei+€) +Zs0emir+ Y, Zso(ei +emsa):

1<i<j<m 1<i<m

Then H C N is a finitely generated additive semigroup with identity. Moreover,
the semigroup ring C[H] is equal to R,, in Example 2.7. We set f; := 2¢;
(1 <i<m)and fiq1:=ems1. Then fi,..., fri1 satisfies the conditions (1)
and (2) in [3, p. 1]. Set

Fir=Hn > Qsofy

1<p<m-+1,p#i

for 1 <i<m+1, that is,

Fp = Z ZZO(ei + 6j) + ZZOeerl
1<i<i<m,i#p,j#p
+ Z Zzo(€i+em+l> (p;ém{-l),

1<i<m,i#p

Fm+1 = Z Zzo(ei +€j).

1<i<j<m

Set
H; := {w € N |there exists g € F; such that w+ g € H}
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1 <7< m+1, that is,
H, = > Z(ei + €;) + Lemya
1<i<j<myi#p,j#p

+ > Zleitemi)+ Y Zzoleitep)

1<i<m,i#p 1<i<m
+Z20(6p+em+l> (p#m—i_l)v
Hpoi= Y Z(ei+¢) + Laoemer + Y Lzolei+ ems)-
1<i<j<m 1<i<m

Hence the set N \ U;<; <, Hi is equal to

By

{ Z a;e;la; € ZLico, Z a; is odd}U Z Z<pe;.

1<i<m 1<i<m 1<i<m+1
[3, Theorem (2)], C[H] is Gorenstein if and only if there exists ¢ € N such

that ¢ — H = N \ U, <j<ynq1 Hi- Thus C[H] is Gorenstein if and only if m is
odd. Therefore we have the following:

Pr

[1]
2]
3]

[4]

[5]

[6]
[7]
(8]

[9]
(10]

oposition 6.1. m-twirl point is Gorenstein if and only if m is odd.
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