Bull. Korean Math. Soc. 54 (2017), No. 5, pp. 1471-1483

https://doi.org/10.4134/BKMS.b160676 pISSN: 1015-8634 / eISSN: 2234-3016

ON THREE-DIMENSIONAL SEMI-TERMINAL SINGULARITIES

Kento Fujita

Abstract. We classify three-dimensional non-normal semi-terminal singularities.

1. Introduction

The notion of terminal singularities is very important in the minimal model program. For the two-dimensional case, the notion of terminal singularities is equivalent to the notion of smoothness. Three-dimensional terminal singularities are understood by explicit equations and was given by [8] and the sufficiency of the conditions was checked in [6].

On the other hand, the importance of the class of certain non-normal varieties, which are called demi-normal varieties (see Definition 2.2), has been well-understood (see [4, §5]). For example, it is natural to allow semi-logcanonical singularities, that is, demi-normal with a log-canonicity condition, in order to consider families of canonically polarized varieties (see [6]). In [2], the author introduced the notion of semi-terminal singularities (see Definition 2.3) which is a natural generalization of terminal singularities. It is important to consider the notion of semi-terminal singularities since the author proved in [2] that there exists a semi-terminal modification for any demi-normal pair. However, it has not been known so much about semi-terminal singularities. In this paper, we classify all of the non-normal three-dimensional semi-terminal singularities.

Theorem 1.1. Let $0 \in X$ be a three-dimensional non-normal semi-terminal singularity. Then $0 \in X$ is analytically isomorphic to one of the following

- (1) Double normal crossing point, that is, $0 \in (x_1x_2 = 0) \subset \mathbb{A}^4$. (2) Pinch point, that is, $0 \in (x_1^2 x_2^2x_3 = 0) \subset \mathbb{A}^4$.

Received August 17, 2016; Revised December 7, 2016; Accepted December 26, 2016. 2010 Mathematics Subject Classification. Primary 14B05; Secondary 14E30.

Key words and phrases. minimal model program, demi-normal variety, terminal singularity.

(3) 2-twirl point, that is,
$$0 \in (x_1x_3 - x_2^2 = x_1x_4^2 - x_5^2 = x_2x_4^2 - x_5x_6 = x_3x_4^2 - x_6^2 = 0) \subset \mathbb{A}^6$$
.

Remark 1.2. Both double normal crossing point and pinch point are hypersurface singularities. Thus both are Gorenstein. However, as we will see in Section 6, for a 2-twirl point $0 \in X$, X is not Gorenstein but $2K_X$ is Cartier. A general element $0 \in S \in |-K_X|$ has a pinch point at $0 \in S$, the index 1 cover $\pi : \tilde{X} \to X$ of $0 \in X$ is double normal crossing, and π^*S is double normal crossing. See Example 2.7, Remark 2.9 and Section 6 in detail.

Now we organize the strategy of the proof of Theorem 1.1. The strategy is similar to the earlier works in [7-10]. For a demi-normal variety X, it is natural to consider its normalization \bar{X} , the conductor divisor $D_{\bar{X}}$ of \bar{X}/X and the involution $\iota_X : \bar{D}_{\bar{X}} \to \bar{D}_{\bar{X}}$ obtained by the natural double cover, where $\bar{D}_{\bar{X}}$ is the normalization of $D_{\bar{X}}$. In fact, the study of demi-normal varieties X can reduced to the study of such $(\bar{X}, D_{\bar{X}})$ and $\iota_X : \bar{D}_{\bar{X}} \to \bar{D}_{\bar{X}}$ by [4, §9]. From Section 3 to Section 4, we consider germs $0 \in (\bar{X}, \bar{D})$ of normal pairs in place of considering non-normal singularities. For a germ $0 \in (\bar{X}, \bar{D})$ of normal semi-terminal pair, by taking the index 1 cover, we reduce to the case that $K_{\bar{X}} + D$ is Cartier (see Theorem 4.4). Then a general hypersurface $0 \in$ $S \subset \bar{X}$ satisfies that the germ $0 \in (S, S \cap \bar{D})$ has either canonical singularities or log-elliptic singularities (see Definition 3.1). In Section 3, we analyze logelliptic singularities. In Section 4, we classify three-dimensional normal semiterminal pairs with nonzero reduced boundaries. In Section 5, we see how those pairs in Section 4 glue and we prove Theorem 1.1. In Section 6, we see ring-theoretical properties of twirl singularities, which are important examples of higher-dimensional semi-terminal singularities.

Acknowledgments. The author thanks the referee for comments and suggestions. This work was supported by JSPS KAKENHI Grant Number JP16H06885.

Throughout the paper, we work over the complex number field \mathbb{C} . In the paper, a *variety* means a reduced, separated and of finite type scheme over \mathbb{C} . For any variety X, the morphism $\nu_X \colon \bar{X} \to X$ denotes the normalization of X. For the minimal model program, we refer the readers to [4] and [5].

2. Preliminaries

We collect some basic definitions and results in this section.

Definition 2.1. (1) Let X be a variety, let $x \in X$ be a closed point, and let $\hat{\mathcal{O}}_{X,x}$ be the formal completion of the local ring $\mathcal{O}_{X,x}$. We say that $x \in X$ is a double normal crossing (dnc, for short) point if $\hat{\mathcal{O}}_{X,x} \simeq \mathbb{C}[[x_1,\ldots,x_{n+1}]]/(x_1x_2)$; a pinch point if $\hat{\mathcal{O}}_{X,x} \simeq \mathbb{C}[[x_1,\ldots,x_{n+1}]]/(x_1^2-x_2^2x_3)$, respectively.

- (2) A variety X is called a *double normal crossing* variety (dnc variety, for short) if any closed point $x \in X$ is either a smooth or a dnc point; a semi-smooth variety if any closed point $x \in X$ is one of a smooth, a dnc or a pinch point, respectively.
- **Definition 2.2** ([4, §5.1]). (1) Let X be an equi-dimensional variety. We call that X is a *demi-normal* variety if X satisfies Serre's S_2 condition and X is dnc outside codimension 2.
 - (2) Assume that an equi-dimensional variety X is dnc outside codimension 2. Then there exists a unique finite and birational morphism $d: X^d \to X$ such that X^d is a demi-normal variety and the morphism d is an isomorphism in codimension 1 over X. We call the morphism d the demi-normalization of X.
 - (3) Let X be a demi-normal variety and $\nu_X \colon \bar{X} \to X$ be the normalization of X. The conductor ideal of X is defined to be $\mathrm{cond}_X := \mathcal{H}om_{\mathcal{O}_X}((\nu_X)_*\mathcal{O}_{\bar{X}},\mathcal{O}_X) \subset \mathcal{O}_X$. This ideal can be seen as an ideal sheaf $\mathrm{cond}_{\bar{X}}$ on \bar{X} . Set
 - $D_X := \operatorname{Spec}_X(\mathcal{O}_X/\operatorname{cond}_X) \text{ and } D_{\bar{X}} := \operatorname{Spec}_{\bar{X}}(\mathcal{O}_{\bar{X}}/\operatorname{cond}_{\bar{X}}).$

We call the subscheme D_X (resp., $D_{\bar{X}}$) as the conductor divisor of X (resp., of \bar{X}/X). It has been known that both $D_{\bar{X}}$ and D_X are reduced and of pure codimension 1. Moreover, for the normalization morphism $\nu_{D_{\bar{X}}} : \bar{D}_{\bar{X}} \to D_{\bar{X}}$, we get the Galois involution $\iota_X : \bar{D}_{\bar{X}} \to \bar{D}_{\bar{X}}$ defined from ν_X unless ν_X is an isomorphism.

- **Definition 2.3.** (1) The pair (X, Δ) is called a *demi-normal pair* if X is a demi-normal variety, Δ is a formal \mathbb{Q} -linear sum $\Delta = \sum_{i=1}^k a_i \Delta_i$ of reduced and irreducible closed subvarieties Δ_i of codimension 1 with $\Delta_i \not\subset \operatorname{Supp} D_X$ and $a_i \in [0,1] \cap \mathbb{Q}$ for all $1 \leq i \leq k$. Moreover, if X is normal, then the pair (X, Δ) is called a *normal pair*.
 - (2) Let (X, Δ) be a demi-normal pair, let $\nu_X : \bar{X} \to X$ be the normalization of X, and set $\Delta_{\bar{X}} := (\nu_X)_*^{-1} \Delta$.
 - (i) [6, Definition 4.17] The pair (X, Δ) is said to be *purely semi-log-terminal* if $K_X + \Delta$ is \mathbb{Q} -Cartier and the pair $(\bar{X}, \Delta_{\bar{X}} + D_{\bar{X}})$ is purely log-terminal.
 - (ii) [6, Definition 4.17] The pair (X, Δ) is said to be *semi-canonical* if $K_X + \Delta$ is \mathbb{Q} -Cartier and the pair $(\bar{X}, \Delta_{\bar{X}} + D_{\bar{X}})$ has canonical singularities.
 - (iii) [2, Definition 2.3] The pair (X, Δ) is said to be *semi-terminal* if the pair (X, Δ) is semi-canonical and for any exceptional prime divisor E over \bar{X} we have the inequality $a(E, \bar{X}, \Delta_{\bar{X}} + D_{\bar{X}}) > 0$ unless center \bar{X} $E \subset \text{Supp}[\Delta_{\bar{X}} + D_{\bar{X}}]$ and $\text{codim}_{\bar{X}}(\text{center}_{\bar{X}} E) = 2$.

A demi-normal variety X is said to be semi-log-terminal (resp., semi-canonical, semi-terminal) if the demi-normal pair (X,0) is purely semi-log-terminal (resp., semi-canonical, semi-terminal).

Remark 2.4 ([2, Remark 2.4]). Let us consider a normal pair $(Y, \Delta + S)$ such that S = |S|.

- (1) If $(Y, \Delta + S)$ has canonical singularities, then $\mathrm{Diff}_S \Delta = 0$ and the variety S with the reduced structure has canonical singularities. In particular, S is a normal variety.
- (2) If $(Y, \Delta + S)$ is semi-terminal, then the variety S with the reduced structure has terminal singularities.

In particular, for any demi-normal pair (X, Δ) , the following holds. (1) If (X, Δ) is semi-canonical, then $\operatorname{Supp}[\Delta_{\bar{X}} + D_{\bar{X}}]$ with the reduced structure has canonical singularities. (2) If (X, Δ) is semi-terminal, then $\operatorname{Supp}[\Delta_{\bar{X}} + D_{\bar{X}}]$ with the reduced structure has terminal singularities.

- **Example 2.5.** (1) [5, Corollary 2.31] Assume that (X, Δ) is a normal pair such that X is a smooth variety and $\operatorname{Supp} \Delta \subset X$ is a (possibly nonconnected) smooth divisor. Then (X, Δ) is semi-terminal.
 - (2) If X is a semi-smooth variety, then the variety X is semi-terminal by (1).
 - (3) [5, Theorem 4.5] Let (S, C) be a two-dimensional normal pair with C reduced and $0 \in C$ be a point. Then (S, C) has canonical singularities around 0 if and only if both S and C are smooth at 0.
 - (4) [6, Proposition 4.12] Let X be a demi-normal surface and $0 \in X$ be a closed point. The variety X is semi-canonical around $0 \in X$ if and only if $0 \in X$ is one of a smooth, a du Val, a dnc or a pinch point. Thus, X is semi-terminal around 0 if and only if X is semi-smooth around $0 \in X$.

Lemma 2.6. Let X, X' be semi-log-terminal varieties.

- (1) All of the varieties X, \bar{X} and $D_{\bar{X}}$ are Cohen-Macaulay. The variety $D_{\bar{X}}$ is normal.
- (2) The variety D_X is equal to the quotient $D_{\bar{X}}/\iota_X$ (thus D_X is normal) and the variety X is obtained by the universal push-out (see [4, Theorem 9.30]) of the following diagram:

(3) For two singularities $p \in X$ and $p' \in X'$ are analytically isomorphic to each other if and only if there exist analytical neighborhoods of \bar{X} and $\bar{X'}$ around $\nu_X^{-1}(p)$ and $\nu_{X'}^{-1}(p')$ such that the triplets $(\bar{X}, D_{\bar{X}}, \iota_X)$ and $(\bar{X'}, D_{\bar{X'}}, \iota_{X'})$ are analytically isomorphic around those neighborhoods.

Proof. (1) Both the varieties $D_{\bar{X}}$ and \bar{X} are normal and Cohen-Macaulay by [5, Corollary 5.25 and Proposition 5.51]. We show that X is Cohen-Macaulay.

By taking the index 1 cover (see [4, Definition 2.49]), we can assume that X is semi-canonical and K_X is Cartier by [5, Proposition 5.7]. Take a semi-resolution $f\colon Y\to X$ of X in the sense of [4, Theorem 10.54]. Since X is semi-canonical and K_X is Cartier, there exists an effective f-exceptional Cartier divisor B on Y such that $\omega_Y(-B)=f^*\omega_X$ holds. By [1, Theorem 1.10], $R^if_*\mathcal{O}_Y(B)=0$ and $R^if_*\omega_Y=0$ for all i>0. The composition of the following natural morphisms

$$f_*\mathcal{O}_Y \to \mathbb{R} f_*\mathcal{O}_Y \to \mathbb{R} f_*\mathcal{O}_Y(B) \simeq_{qis} f_*\mathcal{O}_Y(B) = f_*\mathcal{O}_Y$$

in the derived category of coherent sheaves on Y is a quasi-isomorphism. By [4, Corollary 2.75], the variety X is Cohen-Macaulay.

(2) We know that the set of log-canonical centers of the pair $(X, D_{\bar{X}})$ is equal to the set of connected components of the variety $D_{\bar{X}}$. Thus (2) is a very special case of [4, §9.1].

We see important examples of semi-terminal singularities.

Example 2.7. Fix $m \in \mathbb{Z}_{>0}$. Set $\bar{X}_m := \mathbb{A}^{m+1}_{x_1,\dots,x_{m+1}}$ and $\bar{D}_m := (x_{m+1} = 0) \subset \bar{X}_m$. We set the involution $\iota \colon \bar{D}_m \to \bar{D}_m$ defined by $x_i \mapsto -x_i$ for $1 \leq i \leq m$. Let X_m be the demi-normal variety obtained by the triplet $(\bar{X}_m, \bar{D}_m, \iota)$ (see [4, Corollaries 5.33, 9.31(3) and Theorem 5.38]). In fact, by a direct calculation in Lemma 2.6(2), $X_m = \operatorname{Spec} R_m$ with

$$R_m = \mathbb{C}[\{x_i x_j\}_{1 \le i \le j \le m}, x_{m+1}, \{x_i x_{m+1}\}_{1 \le i \le m}].$$

Let $\nu\colon \bar{X}_m\to X_m$ be the normalization morphism and let $0\in X_m$ be the image of $0\in \bar{X}_m$. Consider a section $\phi:=1/x_{m+1}(dx_1\wedge\cdots\wedge dx_{m+1})$ of $\omega_{\bar{X}_m}(\bar{D}_m)$. Then $\mathrm{Res}_{\bar{X}_m\to\bar{D}_m}(\phi)=(-1)^m dx_1\wedge\cdots\wedge dx_m\in\omega_{\bar{D}_m}$ is ι -anti-invariant if m is odd and ι -invariant if m is even, where $\mathrm{Res}_{\bar{X}_m\to\bar{D}_m}$ is the residue map. By [4, Proposition 5.8], $2K_{X_m}$ is Cartier. Moreover, K_{X_m} is Cartier if m is odd. In fact, X_m is Gorenstein if and only if m is odd (see Section 6). From now on, we consider the index 1 cover $\pi\colon \tilde{X}_m\to X_m$ of X_m with respects to ϕ^2 for the case m is even. By [4, Proposition 5.8], the global section $\Gamma(X_m,\omega_{X_m})$ is equal to

$$\sum_{i=1}^{m+1} R_m \cdot \frac{x_i}{x_{m+1}} dx_1 \wedge \dots \wedge dx_{m+1}.$$

Thus $\tilde{X}_m = \operatorname{Spec} \tilde{R}_m$ with

$$\tilde{R}_m = R_m[\{y_i\}_{1 \le i \le m+1}]/(\{y_i y_j - x_i x_j\}_{1 \le i \le j \le m+1})$$

$$\simeq \mathbb{C}[x_{m+1}, y_1, \dots, y_{m+1}]/(y_{m+1}^2 - x_{m+1}^2).$$

Hence \tilde{X}_m is a dnc variety.

Definition 2.8. An *n*-dimensional demi-normal singularity $0 \in X$ is called an *m*-twirl point if $0 \in X$ is analytically isomorphic to the singularity $0 \in X_m \times \mathbb{A}^{n-m-1}$, where $0 \in X_m$ is the singularity defined in Example 2.7.

- Remark 2.9. (1) The notion of 1-twirl points is equal to the notion of pinch points since there exists a natural isomorphism $\mathbb{C}[x_1^2, x_2, x_1x_2] \simeq \mathbb{C}[y_1, y_2, y_3]/(y_2^2 y_3^2y_1)$.
 - (2) We consider a three-dimensional 2-twirl point $0 \in X_2$. Let $\pi \colon \tilde{X}_2 \to X_2$ be the index 1 cover as in Example 2.7. Take a general element $0 \in S \in |-K_{X_2}|$ and set $\tilde{S} := \pi^*S \subset \tilde{X}_2$. By a suitable coordinate change, we may assume that the embedding $S \subset X_2$ corresponds to the following surjection

$$\mathbb{C}[x_1^2, x_1x_2, x_2^2, x_3, x_1x_3, x_2x_3] \rightarrow \mathbb{C}[x_2^2, x_3, x_2x_3]$$

such that x_1^2 , x_1x_2 and x_1x_3 map to zero. Thus the double cover $(0 \in \tilde{S}) \to (0 \in S)$ is from a double normal crossing point to a pinch point.

3. Log-elliptic singularities

We consider log-elliptic singularities. The concept of log-elliptic singularities is a logarithmic analogue of the concept of elliptic singularities. In this section, many arguments are similar to the arguments in [5, §4.4] based on the works [7] and [9].

Definition 3.1. A germ $0 \in (S, C)$ of a two-dimensional normal pair is called a log-elliptic singularity if C is nonzero, $0 \in C$, $K_S + C$ is Cartier and for any projective birational morphism $f \colon T \to S$ such that T is smooth and $C_T := f_*^{-1}C$ is smooth, $f_*\omega_T(C_T) = \mathfrak{m}_{0,S} \cdot \omega_S(C)$ holds, where $\mathfrak{m}_{0,S}$ is the maximal ideal sheaf corresponds to $0 \in S$.

Remark 3.2. For a two-dimensional normal pair (S,C) with C reduced and $K_S + C$ Cartier and for a projective birational morphism $f: T \to S$ such that T is smooth and $C_T := f_*^{-1}C$ is smooth, $f_*\omega_T(C_T) = \omega_S(C)$ holds if and only if the pair (S,C) has canonical singularities. The proof is essentially same as the proof of [4, Claim 2.3.1]. Thus in Definition 3.1, it is enough to check the condition $f_*\omega_T(C_T) = \mathfrak{m}_{0,S} \cdot \omega_S(C)$ for only one birational morphism f.

For the reason to consider log-elliptic singularities, see Lemma 4.1.

Notation 3.3. Let $0 \in (S,C)$ be a germ of a two-dimensional normal pair such that K_S+C is Cartier and (S,C) has not canonical singularities. Let $g\colon S'\to S$ be the canonical modification (see [2, Definition 2.6]) of the normal pair (S,C), $h\colon T\to S'$ be the minimal resolution, $f\colon T\to S$ be the composition and C_T be the strict transform of C on T. We note that $f\colon T\to S$ is a semi-terminal modification (see [2, Definition 2.6]) of the normal pair (S,C). By [4, Claim 2.26.4], there exists a unique f-exceptional effective Cartier divisor Z on T such that $K_T+C_T+Z\sim 0$ and the support of Z is equal to the exceptional locus of the morphism f.

The following two propositions are essentially same as [5, Propositions 4.45 and 4.47].

Proposition 3.4. Fix Notation 3.3. Let L be an f-nef line bundle on T. Then the following hold:

- (1) The homomorphism $H^0(T,L) \to H^0(Z,L|_Z)$ is surjective.
- (2) The homomorphism $H^1(T,L) \to H^1(Z,L|_Z)$ is an isomorphism.
- (3) $L \simeq \mathcal{O}_T$ if and only if $L \equiv_f 0$ and $L|_Z \simeq \mathcal{O}_Z$.
- (4) $f_*\omega_T(C_T+Z) = \omega_S(C)$ holds.
- (5) $\omega_S(C)/f_*\omega_T(C_T) \simeq H^0(Z, \omega_Z(C_T|_Z))$ holds.
- (6) $\omega_S(C)/f_*\omega_T(C_T)$ and $H^1(Z, \mathcal{O}_Z(-C_T|_Z))$ are dual to each other.

Proposition 3.5. Under Notation 3.3, for any nonzero effective divisor $Z' \subseteq Z$, we have $h^1(Z', \mathcal{O}_{Z'}(-C_T|_{Z'})) < h^1(Z, \mathcal{O}_Z(-C_T|_Z))$.

Lemma 3.6 (cf. [5, Proposition 4.51]). Fix Notation 3.3. Assume that $0 \in (S, C)$ is a log-elliptic singularity. Then $h^1(Z, \mathcal{O}_Z) = 0$ holds. Moreover, for any reduced and irreducible component $E \leq Z$, E is isomorphic to \mathbb{P}^1 and $((C_T + Z - E).E) = 2$ holds.

Proof. From the exact sequence

$$0 \to \mathcal{O}_{Z'}(-C_T|_{Z'}) \to \mathcal{O}_{Z'} \to \mathcal{O}_{Z' \cap C_T} \to 0,$$

we have $h^1(Z', \mathcal{O}_{Z'}(-C_T|_{Z'})) \geq h^1(Z', \mathcal{O}_{Z'})$ for any nonzero effective divisor $Z' \leq Z$. By Proposition 3.4(6), $h^1(Z, \mathcal{O}_Z(-C_T|_Z)) = 1$ holds. Thus $h^1(Z, \mathcal{O}_Z) = 0$ or 1. Assume that $h^1(Z, \mathcal{O}_Z) = 1$. Then $h^0(Z, \omega_Z) = 1$. Thus $(\omega_Z, Z) \geq 0$. Moreover, since the support of Z is equal to the exceptional locus of f, $(C_T, Z) > 0$ holds. However, since $K_T + C_T + Z \sim 0$, we have $0 = (\omega_Z, Z) + (C_T, Z)$. This leads to a contradiction. Thus $h^1(Z, \mathcal{O}_Z) = 0$. By Proposition 3.5, we have $h^1(E, \mathcal{O}_E) = 0$ for any reduced and irreducible component $E \leq Z$. Moreover, we have $0 = ((K_T + C_T + Z) \cdot E) = -2 + ((C_T + Z - E) \cdot E)$.

Proposition 3.7 (cf. [5, Lemma 4.53]). Fix Notation 3.3. Assume that $0 \in (S,C)$ is a log-elliptic singularity. Let L be a nef line bundle on Z. Then $H^1(Z,L)=0$ and there exists a section $s \in H^0(Z,L)$ such that the associated subscheme $V:=(s=0) \subset Z$ does not intersect C_T and the singular locus of $\operatorname{red}(Z)$, and $s|_{\operatorname{red}(Z)}$ is smooth. Moreover, for such s and s, if we set s is s then the natural homomorphism s is s to s the surjective.

Proof. By Lemma 3.6, we have $h^1(Z, \mathcal{O}_Z) = 0$. Thus the assertion follows from [5, Lemma 4.50].

Proposition 3.8 (cf. [5, Proposition 4.54]). Under the notation in Proposition 3.7, assume that the integer k := (L.Z) satisfies that $k \in \mathbb{Z}_{>0}$. Then there exists an isomorphism

$$\bigoplus_{n>0} H^0(Z, L^{\otimes n}) \simeq \mathbb{C}[s, t, x_1, \dots, x_{k-1}] / (\{x_i x_j + q_{ij}(s, t)\}_{1 \le i \le j \le k-1})$$

of graded \mathbb{C} -algebras, where $s, t, x_1, \ldots, x_{k-1}$ are of degree one and $q_{ij}(s,t) \in \mathbb{C}[s,t]$ are homogeneous polynomials of degree two.

Proof. We set

$$\begin{split} R_Z(n) &:= H^0(Z, L^{\otimes n}), & R_Z &:= \bigoplus_{n \geq 0} R_Z(n), \\ R_V(n) &:= H^0(V, L|_V^{\otimes n}), \text{ and } & R_V &:= \bigoplus_{n \geq 0} R_V(n). \end{split}$$

For any $n \geq 0$, there exists a natural exact sequence

$$0 \to R_Z(n) \xrightarrow{\cdot s} R_Z(n+1) \to R_V(n+1) \to 0.$$

Since $\dim_{\mathbb{C}} R_Z(0) = 1$, we have $\dim_{\mathbb{C}} R_Z(n) = kn + 1$ for any $n \geq 0$. Let $T \in R_V(1) = A \otimes L$ be an element generating $A \otimes L$ and $t \in R_Z(1)$ be an extension of T. Since $R_V(n) = A \cdot T^n$ for any $n \geq 0$, we have

$$(R_Z/sR_Z)(n) = \begin{cases} \mathbb{C} & (n=0), \\ A \cdot T^n & (n \ge 1). \end{cases}$$

Thus there exists elements $x_1, \ldots, x_{k-1} \in R_Z(1)$ such that

$$R_Z/(s,t)R_Z = \mathbb{C}[\bar{x}_1,\ldots,\bar{x}_{k-1}]/(\{\bar{x}_i\bar{x}_j\}_{1\leq i\leq j\leq k-1}),$$

where $\bar{x}_i \in (R_Z/(s,t)R_Z)(1)$ is the image of x_i . Therefore the assertion follows from [5, Lemma 4.55].

Theorem 3.9 (cf. [5, Theorem 4.57]). Fix Notation 3.3. Assume that $0 \in (S,C)$ is a log-elliptic singularity. Let $g\colon S'\to S$ be the blowing up along the maximal ideal sheaf $\mathfrak{m}_{0,S}$ corresponds to $0\in S$, that is, $S'=\operatorname{Proj}_S\bigoplus_{n\geq 0}\mathfrak{m}_{0,S}^n$. Let $\mathcal{O}_{S'}(1)$ be the g-ample line bundle on S' corresponds to the projectivization. Then the morphism is equal to the canonical modification of the normal pair (S,C). Thus there exists a morphism $h\colon T\to S'$ such that $g\circ h=f$ holds. Moreover, $K_{S'}+C_{S'}\sim \mathcal{O}_{S'}(1)\sim -h_*Z$ holds, where $C_{S'}\subset S'$ be the strict transform of C.

Proof. Set $L := \mathcal{O}_T(-Z) \simeq \omega_T(C_T)$. Then $L|_Z$ is nef and $(L.Z) \in \mathbb{Z}_{>0}$. Since f^* gives a natural isomorphism $H^0(S, \mathcal{O}_S) \simeq H^0(T, \mathcal{O}_T)$, we get an ideal $I_n \subset H^0(S, \mathcal{O}_S)$ defined by

$$H^0(T, L^{\otimes n}) = H^0(T, \mathcal{O}_T(-nZ)) =: I_n \subset H^0(S, \mathcal{O}_S)$$

for any $n \geq 0$. Since $H^0(Z, \mathcal{O}_Z) \simeq \mathbb{C}$, we have $I_1 = \mathfrak{m}_{0,S}$. Take general global sections $s_1, s_2 \in H^0(T, L)$. Since there exists an exact sequence

$$0 \to L^{\otimes n-1} \xrightarrow{t(s_2,-s_1)} L^{\otimes n} \oplus L^{\otimes n} \xrightarrow{(s_1,s_2)} L^{\otimes n+1} \to 0$$

and $H^1(T, L^n) = 0$ for any $n \ge 0$ (see [5, Corollary 2.68]), we have $I_{n+1} = I_n \cdot I_1$ for any $n \ge 0$. Since there exists a natural exact sequence

$$0 \to H^0(T, \mathcal{O}_T(-(n+1)Z)) \to H^0(T, \mathcal{O}_T(-nZ))$$

$$\to H^0(Z, \mathcal{O}_Z(-nZ)) \to 0$$

for any $n \geq 0$, we have an isomorphism

$$\bigoplus_{n\geq 0} I_n/I_{n+1} \simeq \bigoplus_{n\geq 0} H^0(Z, L^{\otimes n}|_Z)$$

of graded \mathbb{C} -algebras. By Proposition 3.8, the algebra $\bigoplus_{n\geq 0} I_n/I_{n+1}$ is generated by I_1/I_2 . Hence $I_n=I_{n+1}+I_1^n=I_n\cdot I_1+I_1^n$ holds for any $n\geq 0$. By Nakayama's lemma, $I_1^n=I_n$ for any $n\geq 0$. Hence $I_n=\mathfrak{m}_{0,S}^n$ for any $n\geq 0$. Thus there exists isomorphisms

$$\bigoplus_{n\geq 0} \mathfrak{m}_{0,S}^n \simeq \bigoplus_{n\geq 0} f_* \mathcal{O}_T(-nZ) \simeq \bigoplus_{n\geq 0} f_* \mathcal{O}_T(n(K_T + C_T))$$

of graded \mathcal{O}_S -algebras. Thus $S' \simeq \operatorname{Proj}_S \bigoplus_{n \geq 0} f_* \mathcal{O}_T(n(K_T + C_T))$ is the canonical modification of (S,C) by [2, Proposition 3.2]. Since $\mathcal{O}_T(-nZ)$ is generated by global sections for any $n \gg 0$, the induced morphism $h \colon T \to S'$ satisfies that $h^* \mathcal{O}_{S'}(1) \sim \mathcal{O}_T(-Z)$. Thus we have $\mathcal{O}_{S'}(1) \sim -h_* Z \sim K_{S'} + C_{S'}$ since $K_T + C_T + Z \sim 0$.

4. Normal semi-terminal pairs

For a semi-terminal variety X, the pair $(\bar{X}, D_{\bar{X}})$ is a normal semi-terminal pair. In this section, we consider three-dimensional such objects with nonzero $D_{\bar{X}}$.

Lemma 4.1 (cf. [5, Lemma 5.30]). Let $0 \in (X, D)$ be a germ of a threedimensional canonical singularity with $0 \in D \neq 0$ and $K_X + D$ Cartier. Let $0 \in S \subset X$ be a general hypersurface passing through $0 \in X$ and let $C := D \cap S$. Then the two-dimensional singularity $0 \in (S, C)$ is either a canonical singularity or a log-elliptic singularity.

Proof. Let $f\colon Y\to X$ be a log resolution of the normal pair (X,D) which dominates the blowing up of X along the maximal ideal sheaf $\mathfrak{m}_{0,X}$ corresponds to $0\in X$. Then there exists an f-exceptional effective divisor E on Y such that $f^*\mathfrak{m}_{0,X}=\mathcal{O}_Y(-E)$ holds. Moreover, since $0\in S\subset X$ is general, we have $f^*S=S'+E$, S' is smooth and $C':=D'\cap S'\subset S'$ is equal to $(f|_{S'})^{-1}C$, where $S':=f_*^{-1}S$ and $D':=f_*^{-1}D$. Since X and D are Cohen-Macaulay, S is normal, C is reduced and $K_S+C=(K_X+D+S)|_S$ is Cartier. There exists an f-exceptional effective divisor F on Y such that $\omega_Y(D')=f^*\omega_X(D)(F)$ holds since (X,D) has canonical singularities. Since

$$\omega_{S'}(C') = \omega_Y(D' + S')|_{S'}$$

= $f^*(\omega_X(D+S))(F-E)|_{S'} = (f|_{S'})^*(\omega_S(C))(F-E|_{S'}),$

we have

$$(f|_{S'})_*\omega_{S'}(C') = \omega_S(C) \otimes (f|_{S'})_*\mathcal{O}_{S'}(F - E|_{S'})$$

$$\supset \omega_S(C) \otimes (f|_{S'})_*\mathcal{O}_{S'}(-E|_{S'}) = \mathfrak{m}_{0,S} \cdot \omega_S(C),$$

where $\mathfrak{m}_{0,S}$ is the maximal ideal sheaf of \mathcal{O}_S corresponds to $0 \in S$. Thus the assertion follows.

Theorem 4.2 (cf. [5, Theorems 5.34 and 5.35]). Let $0 \in (X, D)$ be a germ of a three-dimensional normal semi-terminal singularity with $0 \in D \neq 0$ and $K_X + D$ Cartier. Let $0 \in S \subset X$ be a general hypersurface passing through $0 \in X$ and let $C := D \cap S$. Then the two-dimensional singularity $0 \in (S, C)$ has a canonical singularity.

Proof. Assume not. Then the singularity $0 \in (S,C)$ is a log-elliptic singularity by Lemma 4.1. Let $f\colon Y\to X$ be the blowing up along the maximal ideal sheaf $\mathfrak{m}_{0,X}$ corresponding to $0\in X$ and let $\bar f\colon \bar Y\to X$ be the composition $f\circ \nu_Y$. Let $E\subset Y$ be the f-exceptional Cartier divisor on Y defined by $f^*\mathfrak{m}_{0,X}=\mathcal{O}_Y(-E)$ and let $S'\subset Y$ be the strict transform of S. By Theorem 3.9, the morphism $f|_{S'}\colon S'\to S$ is the canonical modification of the normal pair (S,C). In particular, S' is normal. Since $f^*S=S'+E$ and ν_Y is an isomorphism around $S',\,\nu_Y^*S'(\simeq S')$ is $\bar f$ -ample and ν_Y^*S' intersects any component of $\bar f$ -exceptional divisors. Since (X,D) has canonical singularities, there exists an $\bar f$ -exceptional effective Cartier divisor F on $\bar Y$ such that $K_{\bar Y}+D_{\bar Y}=\bar f^*(K_X+D)+F$ holds, where $D_{\bar Y}:=\bar f_*^{-1}D$. Since $0\in S\subset X$ is general, $D_{\bar Y}|_{\nu_Y^*S'}=C_{S'}$ holds, where $C_{S'}\subset \nu_Y^*S'$ is the strict transform of $C\subset S$. By Theorem 3.9, we have

$$\begin{split} -\nu_Y^* E|_{\nu_Y^* S'} &\equiv K_{\nu_Y^* S'} + C_{S'} = K_{\bar{Y}} + D_{\bar{Y}} + \nu_Y^* S'|_{\nu_Y^* S'} \\ &= (\bar{f}^* (K_X + D + S) + F - \nu_Y^* E)|_{\nu_Y^* S'} \equiv (F - \nu_Y^* E)|_{\nu_Y^* S'}. \end{split}$$

Hence $F|_{\nu_Y^*S'}\equiv 0$. Any component of F maps onto $0\in X$. Thus $F|_{\nu_Y^*S'}\subset \nu_Y^*S'$ is exceptional with respects to the morphism $\nu_Y^*S'\to S$. By the negativity lemma [5, Lemma 3.39], $F|_{\nu_Y^*S'}=0$. Since any component of F intersects ν_Y^*S' , we have F=0. Therefore, there exists an exceptional prime divisor G over X such that center $G=\{0\}$ and $G=\{0\}$

By Example 2.5(3) and Theorem 4.2, we have the following:

Corollary 4.3. Let $0 \in (X, D)$ be a germ of a three-dimensional normal semi-terminal singularity with $D \neq 0$, $0 \in D$ and $K_X + D$ Cartier. Then both X and D are smooth at 0.

The following theorem is proven similar to [10, Theorem (3.1)].

Theorem 4.4. Let $0 \in (X, D)$ be a germ of a three-dimensional normal semiterminal singularity such that $0 \in \text{Supp } D$ and D is a nonzero reduced divisor. Then both X and D are smooth at 0.

Proof. We set

$$r := \min\{r \in \mathbb{Z}_{>0} \mid r(K_X + D) \text{ is Cartier}\}.$$

Take the index 1 cover $\pi\colon 0\in (\tilde{X},\tilde{D})\to 0\in (X,D)$ of $0\in (X,D)$ (see [4, Proposition 2.50(2)]). Then we have $K_{\tilde{X}}+\tilde{D}=\pi^*(K_X+D),\,\pi^{-1}(0)=\{0\},\,K_{\tilde{X}}+\tilde{D}$ is Cartier, the normal pair (\tilde{X},\tilde{D}) is semi-terminal, the group μ_r of r-th roots of unity acts on (\tilde{X},\tilde{D}) and the normal pair (X,D) is the quotient of the group action. We note that the group action is free outside $0\in \tilde{X}$ by Example 2.5(3). By Corollary 4.3, both \tilde{X} and \tilde{D} are smooth at 0. Therefore the assertion follows if r=1. Assume that r>1. By taking an analytical neighborhood of $0\in \tilde{X}$, we can assume that $0\in (\tilde{X},\tilde{D})$ is equal to $0\in (\mathbb{A}^3_{x_1,x_2,x_3},\mathbb{A}^2_{x_1,x_2})=(x_3=0)$) and the action $\mu_r \curvearrowright (\mathbb{A}^3_{x_1,x_2,x_3},\mathbb{A}^2_{x_1,x_2})$ is given by $x_i\mapsto \varepsilon^{a_1}x$ for some $0\le a_i\le r-1$ $(1\le i\le 3)$, where $\varepsilon\in \mu_r$ is a generator. Since the group action is free outside $0\in \tilde{X}$, all of a_1,a_2 and a_3 are nonzero. By replacing a generator $\varepsilon\in \mu_r$ if necessary, we can assume that $\gcd(a_1,a_2,a_3)=1$ and $a_1+a_2\le r$.

Let $f: Y \to \mathbb{A}^3_{x_1, x_2, x_3}$ be the weighted blowup with weights (a_1, a_2, a_3) . By [4, Theorem 3.21], a local chart is

$$f: \mathbb{A}^3_{y_1, y_2, y_3} / \frac{1}{a_1} (1, -a_2, -a_3) \to \mathbb{A}^3_{x_1, x_2, x_3}$$

with $f^*x_1 = y_1^{a_1}$, $f^*x_2 = y_1^{a_2}y_2$ and $f^*x_3 = y_1^{a_3}y_3$. Set $F := (y_1 = 0)$. Since $f^*(x_3^{-1}dx_1 \wedge dx_2 \wedge dx_3) = a_1y_3^{-1}y_1^{a_1+a_2-1}dy_1 \wedge dy_2 \wedge dy_3$,

we have $a(F, \tilde{X}, \tilde{D}) = a_1 + a_2 - 1$. Let E be the exceptional prime divisor over X which is dominated by F. We note that $\operatorname{center}_X E = \{0\}$. By [4, Theorem 3.21], we have $a(E, X, D) = (a_1 + a_2)/r - 1 \leq 0$. Since (X, D) is semi-terminal, this leads to a contradiction. Thus r must be equal to one.

5. Proof of Theorem 1.1

As a corollary of Theorem 4.4, we can prove Theorem 1.1. Let $0 \in X$ be a germ of a three-dimensional non-normal semi-terminal singularity. By Theorem 4.4, both \bar{X} and \bar{D} are smooth.

We consider the case that the inverse image $\nu_X^{-1}(0)$ does not consist of only one point. By Lemma 2.6(2), $\nu_X^{-1}(0) = \{q_1, q_2\}$. By taking analytical neighborhoods of $q_1, q_2 \in \tilde{X}$, we can assume that $q_1, q_2 \in (\tilde{X}, D_{\tilde{X}})$ is equal to the disjoint union of

$$(q_1 =) 0 \in (\mathbb{A}^3_{x_1, x_2, x_3}, \mathbb{A}^2_{x_1, x_2} = (x_3 = 0)),$$

$$(q_2 =) 0 \in (\mathbb{A}^3_{y_1, y_2, y_3}, \mathbb{A}^2_{y_1, y_2} = (y_3 = 0)),$$

and the involution $\iota_X \colon D_{\tilde{X}} \to D_{\tilde{X}}$ is given by $x_i \mapsto y_i$ and $y_i \mapsto x_i$ for $1 \le i \le 2$. Then the coordinate ring \mathcal{O}_X is equal to

$$\{(f,g) \in \mathbb{C}[x_1,x_2,x_3] \times \mathbb{C}[y_1,y_2,y_3] | f(x_1,x_2,0) = g(x_1,x_2,0) \}.$$

Consider the ring surjection $\mathbb{C}[x_1, x_2, x_3, y_3] \to \mathcal{O}_X$ defined by $x_1 \mapsto (x_1, y_1)$, $x_2 \mapsto (x_2, y_2)$, $x_3 \mapsto (x_3, 0)$ and $y_3 \mapsto (0, y_3)$. The kernel of the surjection is generated by x_3y_3 . Thus X is a dnc variety.

We consider the case that the inverse image $\nu_X^{-1}(0)$ consists of only one point, say $0 \in \bar{X}$. Then $0 \in D_{\bar{X}}$ is a fixed point of the involution $\iota_X : D_{\bar{X}} \to D_{\bar{X}}$. By taking an analytical neighborhood of $0 \in \tilde{X}$, we can assume either

$$0 \in \bar{X} = \mathbb{A}^3_{x_1, x_2, x_3}, D_{\tilde{X}} = \mathbb{A}^2_{x_1, x_2} = (x_3 = 0), \iota_X : \begin{cases} x_1 \mapsto x_1, \\ x_2 \mapsto -x_2, \end{cases}$$

or

$$0 \in \bar{X} = \mathbb{A}^3_{x_1, x_2, x_3}, D_{\bar{X}} = \mathbb{A}^2_{x_1, x_2} = (x_3 = 0), \iota_X \colon \begin{cases} x_1 \mapsto -x_1, \\ x_2 \mapsto -x_2. \end{cases}$$

As we have seen in Example 2.7, $0 \in X$ is a 1-twirl point (that is, a pinch point) for the former case; a 2-twirl point for the latter case.

As a consequence, we have completed the proof of Theorem 1.1.

6. Appendix: ring-theoretical properties of twirl singularities

In this section, we determine whether a given m-twirl point is Gorenstein or not by using [3, Theorem (2)]. Fix a positive integer m and a lattice $N := \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_{m+1}$. Set $H \subset N$ such that

$$H := \sum_{1 \le i \le j \le m} \mathbb{Z}_{\ge 0}(e_i + e_j) + \mathbb{Z}_{\ge 0}e_{m+1} + \sum_{1 \le i \le m} \mathbb{Z}_{\ge 0}(e_i + e_{m+1}).$$

Then $H \subset N$ is a finitely generated additive semigroup with identity. Moreover, the semigroup ring $\mathbb{C}[H]$ is equal to R_m in Example 2.7. We set $f_i := 2e_i$ $(1 \leq i \leq m)$ and $f_{m+1} := e_{m+1}$. Then f_1, \ldots, f_{m+1} satisfies the conditions (1) and (2) in [3, p. 1]. Set

$$F_i := H \cap \sum_{1 \le p \le m+1, p \ne i} \mathbb{Q}_{\ge 0} f_p$$

for $1 \le i \le m+1$, that is,

$$\begin{cases} F_p = \sum_{1 \le i \le j \le m, i \ne p, j \ne p} \mathbb{Z}_{\ge 0}(e_i + e_j) + \mathbb{Z}_{\ge 0}e_{m+1} \\ + \sum_{1 \le i \le m, i \ne p} \mathbb{Z}_{\ge 0}(e_i + e_{m+1}) & (p \ne m+1), \\ F_{m+1} = \sum_{1 \le i \le j \le m} \mathbb{Z}_{\ge 0}(e_i + e_j). \end{cases}$$

Set

 $H_i := \{ w \in N \mid \text{there exists } g \in F_i \text{ such that } w + g \in H \}$

for $1 \le i \le m+1$, that is,

$$\begin{cases} H_p = \sum_{1 \le i \le j \le m, i \ne p, j \ne p} \mathbb{Z}(e_i + e_j) + \mathbb{Z}e_{m+1} \\ + \sum_{1 \le i \le m, i \ne p} \mathbb{Z}(e_i + e_{m+1}) + \sum_{1 \le i \le m} \mathbb{Z}_{\ge 0}(e_i + e_p) \\ + \mathbb{Z}_{\ge 0}(e_p + e_{m+1}) \quad (p \ne m+1), \\ H_{m+1} = \sum_{1 \le i \le j \le m} \mathbb{Z}(e_i + e_j) + \mathbb{Z}_{\ge 0}e_{m+1} + \sum_{1 \le i \le m} \mathbb{Z}_{\ge 0}(e_i + e_{m+1}). \end{cases}$$

Hence the set $N \setminus \bigcup_{1 \leq i \leq m+1} H_i$ is equal to

$$\left\{ \sum_{1 \le i \le m} a_i e_i \middle| a_i \in \mathbb{Z}_{<0}, \sum_{1 \le i \le m} a_i \text{ is odd} \right\} \cup \sum_{1 \le i \le m+1} \mathbb{Z}_{<0} e_i.$$

By [3, Theorem (2)], $\mathbb{C}[H]$ is Gorenstein if and only if there exists $c \in N$ such that $c - H = N \setminus \bigcup_{1 \leq i \leq m+1} H_i$. Thus $\mathbb{C}[H]$ is Gorenstein if and only if m is odd. Therefore we have the following:

Proposition 6.1. m-twirl point is Gorenstein if and only if m is odd.

References

- O. Fujino, Fundamental theorems for semi log canonical pairs, Algebr. Geom. 1 (2014), no. 2, 194–228.
- [2] K. Fujita, Semi-terminal modifications of demi-normal pairs, Int. Math. Res. Not. IMRN 2015 (2015), no. 24, 13653-13668.
- [3] S. Goto, N. Suzuki, and K.-I. Watanabe, On affine semigroup rings, Japan J. Math. (N.S.) 2 (1976), no. 1, 1–12.
- [4] J. Kollár, Singularities of the Minimal Model Program, With the collaboration of S. Kovács. Cambridge Tracts in Math., 200, Cambridge University Press, Cambridge, 2013
- [5] J. Kollár and S. Mori, Birational geometry of algebraic varieties, With the collaboration of C. H. Clemens and A. Corti. Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998.
- [6] J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338.
- [7] H. B. Laufer, On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 1257–1295.
- [8] S. Mori, On 3-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43-66.
- [9] M. Reid, Elliptic Gorenstein singularities of surfaces, preprint, 1978.
- [10] ______, Canonical 3-folds, Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 273–310, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980.

Kento Fujita

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

KYOTO UNIVERSITY

Куото 606-8502, Japan

E-mail address: fujita@kurims.kyoto-u.ac.jp