References
- Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009;35:803-814. https://doi.org/10.1016/j.envint.2008.10.008
- Diaz-Cruz MS, Barcelo D. Trace organic chemicals contamination in ground water recharge. Chemosphere 2008;72: 333-342. https://doi.org/10.1016/j.chemosphere.2008.02.031
- Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States - I) Groundwater. Sci. Total Environ. 2008;402:192-200. https://doi.org/10.1016/j.scitotenv.2008.04.028
- Focazio MJ, Kolpin DW, Barnes KK, et al. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States - II) Untreated drinking water sources. Sci. Total Environ. 2008;402:201-216. https://doi.org/10.1016/j.scitotenv.2008.02.021
- Schaider LA, Rudel RA, Ackerman JM, Dunagan SC, Brody JG. Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 2014;468:384-393.
- Padhye LP, Yao H, Kung'u FT, Huang CH. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res. 2014;51:266-276. https://doi.org/10.1016/j.watres.2013.10.070
- Kolpin DW, Furlong ET, Meyer MT, et al. Pharmecueticals, hormons, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002;36:1202-1211. https://doi.org/10.1021/es011055j
- Clara M, Kreuzinger N, Strenn B, Gans O, Kroiss H. The solids retention time - A suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res. 2005;39:97-106. https://doi.org/10.1016/j.watres.2004.08.036
- Guardabassi L, Petersen A, Olsen JE, Dalsgaard A. Antibiotic resistance in Acinetobacter spp. isolated from sewers receiving waste effluent from a hospital and a pharmaceutical plant. Appl. Environ. Microbiol. 1998;64:3499-3502.
- Guardabassi L, Wong DMLF, Dalsgaard A. The effects of tertiary wastewater treatment on the prevalence of antimicrobial resistant bacteria. Water Res. 2002;36:1955-1964. https://doi.org/10.1016/S0043-1354(01)00429-8
- Crane M, Watts C, Boucard T. Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci. Total Environ. 2006;367:23-41. https://doi.org/10.1016/j.scitotenv.2006.04.010
- Shirley J, Mandale S, Kochkodan V. Influence of solute concentration and dipole moment on the retention of uncharged molecules with nanofiltration. Desalination 2014;344:116-122. https://doi.org/10.1016/j.desal.2014.03.024
- Weng XD, Ji YL, Ma R, Zhao FY, An QF, Gao CJ. Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation. J. Membrane Sci. 2016;510:122-130. https://doi.org/10.1016/j.memsci.2016.02.070
- Bengani P, Kou Y, Asatekin A. Zwitterionic copolymer self-assembly for fouling resistant, high flux membranes with size-based small molecule selectivity. J. Membrane Sci. 2015;493:755-765. https://doi.org/10.1016/j.memsci.2015.07.025
- Shahmansouri A, Bellona C. Nanofiltration technology in water treatment and reuse: Applications and costs. Water Sci. Technol. 2015;71:309-319. https://doi.org/10.2166/wst.2015.015
- Moulik S, Vadthya P, Kalipatnapu YR, Chenna S, Sundergopal S. Production of fructose sugar from aqueous solutions: Nanofiltration performance and hydrodynamic analysis. J. Clean. Prod. 2015;92:44-53. https://doi.org/10.1016/j.jclepro.2014.12.092
- Elazhar F, Touir J, Elazhar M, et al. Techno-economic comparison of reverse osmosis and nanofiltration in desalination of a Moroccan brackish groundwater. Desalin. Water Treat. 2015;55:2471-2477. https://doi.org/10.1080/19443994.2014.959739
- Ravikumar YVL, Kalyani S, Satyanarayana SV, Sridhar S. Processing of pharmaceutical effluent condensate by nanofiltration and reverse osmosis membrane techniques. J. Taiwan Inst. Chem. Eng. 2014;45:50-56. https://doi.org/10.1016/j.jtice.2013.09.021
- Song J, Zhang M, Figoli A, et al. Arsenic removal using a sulfonated poly (ether ether ketone) coated hollow fiber nanofiltration membrane. Environ. Sci. Water Res. Technol. 2015;1:839-845. https://doi.org/10.1039/C5EW00109A
- Yang H, Wang X. Mechanism of removal of pharmaceuticals and personal care products by nanofiltration membranes. Desalin. Water Treat. 2015;53:2816-2824. https://doi.org/10.1080/19443994.2014.942559
- Teh CY, Budiman PM, Shak KPY, Wu TY. Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016;55:4363-4389. https://doi.org/10.1021/acs.iecr.5b04703
- Suriyanon N, Permrungruang J, Kaosaiphun J, Wongrueng A, Ngamcharussrivichai C, Punyapalakul P. Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute. Chemosphere 2015;136:222-231. https://doi.org/10.1016/j.chemosphere.2015.05.005
- Lin YL, Lee CH. Elucidating the rejection mechanisms of PPCPs by nanofiltration and reverse osmosis membranes. Ind. Eng. Chem. Res. 2014;53:6798-6806. https://doi.org/10.1021/ie500114r
- Wu F, Feng L, Zhang L. Rejection prediction of isopropylantipyrine and antipyrine by nanofiltration membranes based on the Spiegler-Kedem-Katchalsky model. Desalination 2015;362:11-17. https://doi.org/10.1016/j.desal.2015.01.046
- Feng G, Chu H, Dong B. Fouling effects of algogenic organic matters during nanofiltration of naproxen. Desalination 2014;350:69-78. https://doi.org/10.1016/j.desal.2014.07.009
- Yangali-Quintanilla V, Sadmani A, McConville M, Kennedy M, Amy G. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes. Water Res. 2009;43:2349-2362. https://doi.org/10.1016/j.watres.2009.02.027
- Nordvang RT, Luo J, Zeuner B, et al. Separation of 3′-sialyllactose and lactose by nanofiltration: A trade-off between charge repulsion and pore swelling induced by high pH. Sep. Purif. Technol. 2014;138:77-83. https://doi.org/10.1016/j.seppur.2014.10.012
- Acero JL, Javier Benítez F, Real FJ, Rodriguez E. Influence of membrane, pH and water matrix properties on the retention of emerging contaminants by ultrafiltration and nanofiltration. Desalin. Water Treat. 2016;57:11685-11698. https://doi.org/10.1080/19443994.2015.1044919
- Nghiem LD, Schafer AI, Elimelech M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005;39:7698-7705. https://doi.org/10.1021/es0507665
- Ang WL, Nordin D, Mohammad AW, Benamor A, Hilal N. Effect of membrane performance including fouling on cost optimization in brackish water desalination process. Chem. Eng. Res. Des. 2017;117:401-413. https://doi.org/10.1016/j.cherd.2016.10.041
- Suarez A, Fernandez P, Iglesias JR, Iglesias E, Riera FA. Cost assessment of membrane processes: A practical example in the dairy wastewater reclamation by reverse osmosis. J. Membrane Sci. 2015;493:389-402. https://doi.org/10.1016/j.memsci.2015.04.065
- Sethi S, Wiesner MR. Cost modeling and estimation of crossflow membrane filtration processes. Environ. Eng. Sci. 2000;17: 61-79. https://doi.org/10.1089/ees.2000.17.61
- Xu L, Shahid S, Shen J, Emanuelsson E, Patterson DA. A wide range and high resolution one-filtration molecular weight cut-off method for aqueous based nanofiltration and ultrafiltration membranes. J. Membrane Sci. 2017;525:304-311. https://doi.org/10.1016/j.memsci.2016.12.004
-
Mahlangu TO, Schoutteten KVKM, D'Haese A, et al. Role of permeate flux and specific membrane-foulant-solute affinity interactions (
${\Delta}$ Gslm) in transport of trace organic solutes through fouled nanofiltration (NF) membranes. J. Membrane Sci. 2016;518:203-215. https://doi.org/10.1016/j.memsci.2016.06.013
Cited by
- Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater vol.655, pp.None, 2017, https://doi.org/10.1016/j.scitotenv.2018.11.265
- 110th Anniversary: Polyamide/Metal-Organic Framework Bilayered Thin Film Composite Membranes for the Removal of Pharmaceutical Compounds from Water vol.58, pp.10, 2017, https://doi.org/10.1021/acs.iecr.8b06017
- Assessment of Structural and Separation Properties of a PVDF/PD Composite Membrane Incorporated with TiO2 Nanotubes and SiO2 Particles vol.60, pp.1, 2017, https://doi.org/10.1021/acs.iecr.0c06045
- Removal of emerging micropollutants from wastewater by nanofiltration and biofilm reactor (MicroStop) vol.40, pp.3, 2021, https://doi.org/10.1002/ep.13587
- Lab experiments on hybridization of managed aquifer recharge with river water via sand column, pre-oxidation, and nanofiltration vol.287, pp.p3, 2017, https://doi.org/10.1016/j.chemosphere.2021.132350