DOI QR코드

DOI QR Code

Thermoviscoelastic orthotropic solid cylinder with variable thermal conductivity subjected to temperature pulse heating

  • Abouelregal, A.E. (Department of Mathematics, Faculty of Science, Mansoura University) ;
  • Zenkour, A.M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2017.03.08
  • Accepted : 2017.09.07
  • Published : 2017.08.25

Abstract

This work aims to analyze the thermo-viscoelastic interaction in an orthotropic solid cylinder. The medium is considered to be variable thermal conductivity and subjected to temperature pulse. Analytical solution based on dual-phase-lags model with Voigt-type for behavior of viscoelastic material has been effectively proposed. All variables are deduced using method of Laplace transforms. Numerical results for different distribution fields, such as temperature, displacement and stress components are graphically presented. Results are discussed to illustrate the effect of variability thermal conductivity parameter as well as phase-lags and viscoelasticity on the field quantities. Results are obtained when the viscosity is ignored with and without considering variability of thermal conductivity. A comparison study is made and all results are investigated.

Keywords

References

  1. Abbas, I.A. and Zenkour, A.M. (2014), "Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating", J. Comput. Theor. Nanosci., 11(3), 642-645. https://doi.org/10.1166/jctn.2014.3407
  2. Abd-Alla, A.M., Abo-Dahab, S.M. and Khan, A. (2017), "Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order", Struct. Eng. Mech., 61(2), 221-230. https://doi.org/10.12989/sem.2017.61.2.221
  3. Abd-Alla, A.M., Hammad, H.A.H. and Abo-Dahab, S.M. (2004), "Magneto-thermo-viscoelastic interactions in an unbounded body with a spherical cavity subjected to a periodic loading", Appl. Math. Comp., 155(1), 235-248. https://doi.org/10.1016/S0096-3003(03)00773-2
  4. Abouelregal, A.E. and Zenkour, A.M. (2014), "Effect of phase lags on thermoelastic functionally graded microbeams subjected to ramp-type heating", IJST, Trans. Mech. Eng., 38(M2), 321-335.
  5. Baksi, A., Roy, B.K. and Bera, R.K. (2006), "Eigenvalue approach to study the effect of rotation and relaxation time in generalized magneto-thermo-viscoelastic medium in one dimension", Math. Comput. Model., 44(11), 1069-1079. https://doi.org/10.1016/j.mcm.2006.03.010
  6. Baksi, A., Roy, B.K. and Bera, R.K. (2008), "Study of two dimensional visco-elastic problems in generalized thermoelastic medium with heat source", Struct. Eng. Mech., 29(6), 673-687. https://doi.org/10.12989/sem.2008.29.6.673
  7. Drozdov, A.D. (1999), "A constitutive model in finite thermoviscoelasticity based on the concept of transient networks", Acta Mech., 133(1-4), 13-37. https://doi.org/10.1007/BF01179008
  8. Eringen, A.C. (1967), "Mechanic of continua", New York: John Wiley, Sons. Inc.
  9. Ezzat, M.A., El-Karamany, A.S. and El-Bary, A.A. (2014), "Generalized thermo-viscoelasticity with memory-dependent derivatives", Int. J. Mech. Sci., 89, 470-475. https://doi.org/10.1016/j.ijmecsci.2014.10.006
  10. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A. and Fayik, M.A. (2013), "Fractional calculus in one-dimensional isotropic thermo-viscoelasticity", Comptes Rendus Mecan., 341(7), 553-566. https://doi.org/10.1016/j.crme.2013.04.001
  11. Green, A.E. and Lindsay, K.A. (1971), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
  12. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31(3), 189-209. https://doi.org/10.1007/BF00044969
  13. Honig, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transform", J. Comput. Appl. Math., 10(1), 113-132. https://doi.org/10.1016/0377-0427(84)90075-X
  14. Kanoria, M. and Mallik, S.H. (2010), "Generalized thermoviscoelastic interaction due to periodically varying heat source with three-phase-lag effect", Eur. J. Mech. A/Solids, 29(4), 695-703. https://doi.org/10.1016/j.euromechsol.2010.02.005
  15. Kovalenko, A.D. and Karnaukhov, V.G. (1972), "A linearized theory of thermoviscoelasticity", Polymer Mech., 8(2), 194-199. https://doi.org/10.1007/BF00855966
  16. Kumar, R. and Partap, G. (2011), "Vibration analysis of wave motion in micropolar thermoviscoelastic plate", Struct. Eng. Mech., 39(6), 861-875. https://doi.org/10.12989/sem.2011.39.6.861
  17. Kundu, M.R. and Mukhopadhyay, B. (2005), "A thermoviscoelastic problem of an infinite medium with a spherical cavity using generalized theory of thermoelasticity", Math. Comput. Model., 41(1), 25-32. https://doi.org/10.1016/j.mcm.2004.07.009
  18. Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid, 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
  19. Misra, J.C., Chattopadhyay, N.C. and Samanta, S.C. (1996), "Study of the thermoelastic interactions in an elastic half space subjected to a ramp-type heating-a state-space approach", Int. J. Eng. Sci., 34(5), 579-596. https://doi.org/10.1016/0020-7225(95)00128-X
  20. Noda, N. (1986), "Thermal stresses in materials with temperature-dependent properties", Thermal Stresses I, ed., R.B. Hetnarski, North-Holland, Amsterdam.
  21. Othman, M.I.A. (2005), "Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity", Acta Mech., 174(3), 129-143. https://doi.org/10.1007/s00707-004-0190-2
  22. Sarkar, N. and Lahiri, A. (2013), "The effect of fractional parameter on a perfect conducting elastic half-space in generalized magneto-thermoelasticity", Meccanica, 48(1), 231-245. https://doi.org/10.1007/s11012-012-9597-3
  23. Tian, X. and Shen, Y. (2005), "Study on generalized magneto-thermoelastic problems by FEM in time domain", Acta Mech. Sin., 21(4), 380-387. https://doi.org/10.1007/s10409-005-0046-6
  24. Tzou, D.Y. (1995), "A unified approach for heat conduction from macro-to micro-scales", J. Heat Transfer, 117, 8-16. https://doi.org/10.1115/1.2822329
  25. Tzou, D.Y. (1996), Macro to micro-scale heat transfer: The Lagging behavior, Taylor and Francis, Washington DC.,USA.
  26. Zenkour, A.M. (2015), "Three-dimensional thermal shock plate problem within the framework of different thermoelasticity theories", Compos. Struct., 132, 1029-1042. https://doi.org/10.1016/j.compstruct.2015.07.013
  27. Zenkour, A.M. (2016), "Two-dimensional coupled solution for thermoelastic beams via generalized dual-phase-lags model", Math. Model. Anal., 21(3), 319-335. https://doi.org/10.3846/13926292.2016.1157835
  28. Zenkour A.M. and Abouelregal, A.E. (2014), "The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating", Struct. Eng. Mech., 51(2), 199-214. https://doi.org/10.12989/sem.2014.51.2.199
  29. Zenkour A.M. and Abouelregal, A.E. (2015), "Effects of phase-lags in a thermoviscoelastic orthotropic continuum with a cylindrical hole and variable thermal conductivity", Arch. Mech., 67(6), 457-475.
  30. Zenkour A.M. and Abouelregal, A.E. (2016), "Non-simple magnetothermoelastic solid cylinder with variable thermal conductivity due to harmonically varying heat", Earthq. Struct., 10(3), 681-697. https://doi.org/10.12989/eas.2016.10.3.681
  31. Zenkour, A.M., Mashat, D.S. and Abouelregal, A.E. (2013), "The effect of dual-phase-lag model on reflection of thermoelastic waves in a solid half space with variable material properties", Acta Mech. Solida Sin., 26(6), 659-670. https://doi.org/10.1016/S0894-9166(14)60009-4
  32. Zenkour, A.M., Zahrani, E.O. and Abouelregal, A.E. (2015), "Generalized magneto-thermoviscoelasticity in a perfectly conducting thermodiffusive medium with a spherical cavity", J. Earth Sys. Sci., 124(8), 1709-1719. https://doi.org/10.1007/s12040-015-0628-z