DOI QR코드

DOI QR Code

Risk factors and molecular epidemiology of community-onset, multidrug resistance extended-spectrum β-lactamase-producing Escherichia coli infections

  • Park, So Yeon (Division of Infectious Diseases, Hallym University Kangdong Sacred Heart Hospital) ;
  • Kang, Cheol-In (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Wi, Yu Mi (Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Chung, Doo Ryeon (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Peck, Kyong Ran (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Nam-Yong (Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Song, Jae-Hoon (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2015.04.27
  • Accepted : 2016.01.22
  • Published : 2017.01.01

Abstract

Background/Aims: Although multidrug resistance (MDR) among extended-spectrum ${\beta}$-lactamase-producing Escherichia coli (ESBL-EC) poses significant therapeutic challenges, little is known regarding the risk factors and epidemiology of community-onset MDR-ESBL-EC infections. We performed this study to investigate risk factors and the molecular epidemiology of community-onset MDR-ESBL-EC infections. Methods: We conducted a case-control-control study of community-onset infections. MDR-ESBL-EC was defined as ESBL-EC that demonstrated in vitro resistance to trimethoprim-sulfamethoxazole, fluoroquinolones (FQs), and gentamicin. Patients with MDR-ESBL-EC infections were designated as case patients. A control group I (CG I) patient was defined as a person whose clinical sample yielded ESBL-EC that did not meet the criteria for MDR. A control group II (CG II) patient was defined as a patient with a non-ESBL-EC infection. Results: Of 108 patients with ESBL-EC infections, 30 cases (27.8%) were due to MDR-ESBL-EC. Compared with CG I, prior use of FQs (odds ratio [OR], 3.16; 95% confidence interval [CI], 1.11 to 8.98) and immunosuppressant use (OR, 10.47; 95% CI, 1.07 to 102.57) were significantly associated with MDR-ESBL-EC. Compared with CG II, prior use of FQs (OR, 15.53; 95% CI, 2.86 to 84.27) and healthcare-associated infection (OR, 5.98; 95% CI, 2.26 to 15.86) were significantly associated with MDR-ESBL-EC. CTX-M-15 was the most common in MDR-ESBL-EC infections (59.1% [13/22]), while CTX-M-14 was the most common in non-MDR-ESBL-EC infections (41.6% [32/77]). CTX-M-15 was significantly associated with MDR-ESBL-EC (59.1% vs. 32.5%, p = 0.028). Pulsed-field gel electrophoresis showed clonal diversity of MDR-ESBL-EC isolates. Conclusions: The emergence of strains of MDR-ESBL-EC in the community poses an important new public health threat. More information on the emergence and transmission of these strains will be necessary in order to prevent their spread.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Jeong HS, Bae IK, Shin JH, et al. Prevalence of plasmidmediated quinolone resistance and its association with extended-spectrum beta-lactamase and AmpC betalactamase in Enterobacteriaceae. Korean J Lab Med 2011;31:257-264. https://doi.org/10.3343/kjlm.2011.31.4.257
  2. Paterson DL, Ko WC, Von Gottberg A, et al. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med 2004;140:26-32. https://doi.org/10.7326/0003-4819-140-1-200401060-00008
  3. Pitout JD, Laupland KB. Extended-spectrum betalactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 2008;8:159-166. https://doi.org/10.1016/S1473-3099(08)70041-0
  4. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005
  5. Rodriguez-Bano J, Picon E, Gijon P, et al. Community-onset bacteremia due to extended-spectrum beta-lactamaseproducing Escherichia coli: risk factors and prognosis. Clin Infect Dis 2010;50:40-48. https://doi.org/10.1086/649537
  6. Gupta K, Hooton TM, Naber KG, et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 2011;52:e103-e120. https://doi.org/10.1093/cid/ciq257
  7. Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Clin Infect Dis 2010;50:133-164. https://doi.org/10.1086/649554
  8. The Korean Society of Infectious Diseases Korean Society for Chemotherapy and The Korean Society of Clinical Microbiology. Clinical guideline for the diagnosis and treatment of gastrointestinal infections. Infect Chemother 2010;42:323-361. https://doi.org/10.3947/ic.2010.42.6.323
  9. Kang CI, Song JH, Chung DR, et al. Risk factors and treatment outcomes of community-onset bacteraemia caused by extended-spectrum beta-lactamase-producing Escherichia coli. Int J Antimicrob Agents 2010;36:284-287. https://doi.org/10.1016/j.ijantimicag.2010.05.009
  10. Hyle EP, Lipworth AD, Zaoutis TE, et al. Risk factors for increasing multidrug resistance among extendedspectrum beta-lactamase-producing Escherichia coli and Klebsiella species. Clin Infect Dis 2005;40:1317-1324. https://doi.org/10.1086/429239
  11. Kritsotakis EI, Tsioutis C, Roumbelaki M, Christidou A, Gikas A. Antibiotic use and the risk of carbapenemresistant extended-spectrum-{beta}-lactamase-producing Klebsiella pneumoniae infection in hospitalized patients: results of a double case-control study. J Antimicrob Chemother 2011;66:1383-1391. https://doi.org/10.1093/jac/dkr116
  12. Park SY, Kang CI, Joo EJ, et al. Risk factors for multidrug resistance in nosocomial bacteremia caused by extended- spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Microb Drug Resist 2012;18:518-524. https://doi.org/10.1089/mdr.2012.0067
  13. Serefhanoglu K, Turan H, Timurkaynak FE, Arslan H. Bloodstream infections caused by ESBL-producing E. coli and K. pneumoniae: risk factors for multidrug-resistance. Braz J Infect Dis 2009;13:403-407. https://doi.org/10.1590/S1413-86702009000600003
  14. Rafailidis PI, Bliziotis IA, Falagas ME. Case-control studies reporting on risk factors for emergence of antimicrobial resistance: bias associated with the selection of the control group. Microb Drug Resist 2010;16:303-308. https://doi.org/10.1089/mdr.2009.0134
  15. Kang CI, Wi YM, Lee MY, et al. Epidemiology and risk factors of community onset infections caused by extended- spectrum beta-lactamase-producing Escherichia coli strains. J Clin Microbiol 2012;50:312-317. https://doi.org/10.1128/JCM.06002-11
  16. Perl TM, Dvorak L, Hwang T, Wenzel RP. Long-term survival and function after suspected gram-negative sepsis. JAMA 1995;274:338-345. https://doi.org/10.1001/jama.1995.03530040066043
  17. Friedman ND, Kaye KS, Stout JE, et al. Health care: associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 2002;137:791-797. https://doi.org/10.7326/0003-4819-137-10-200211190-00007
  18. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988;16:128-140. https://doi.org/10.1016/0196-6553(88)90053-3
  19. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992;101:1644-1655. https://doi.org/10.1378/chest.101.6.1644
  20. Kim J, Lim YM, Jeong YS, Seol SY. Occurrence of CTXM-3, CTX-M-15, CTX-M-14, and CTX-M-9 extendedspectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother 2005;49:1572-1575. https://doi.org/10.1128/AAC.49.4.1572-1575.2005
  21. Kim J, Lim YM, Rheem I, et al. CTX-M and SHV-12 betalactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pneumoniae collected from 3 university hospitals within Korea. FEMS Microbiol Lett 2005;245:93-98. https://doi.org/10.1016/j.femsle.2005.02.029
  22. Chung DR, Lee HR, Lee SS, et al. Evidence for clonal dissemination of the serotype K1 Klebsiella pneumoniae strain causing invasive liver abscesses in Korea. J Clin Microbiol 2008;46:4061-4063. https://doi.org/10.1128/JCM.01577-08
  23. Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:2233-2239.
  24. Apisarnthanarak A, Kiratisin P, Saifon P, Kitphati R, Dejsirilert S, Mundy LM. Clinical and molecular epidemiology of community-onset, extended-spectrum beta-lactamase-producing Escherichia coli infections in Thailand: a case-case-control study. Am J Infect Control 2007;35:606-612. https://doi.org/10.1016/j.ajic.2007.05.008
  25. Hsieh CJ, Shen YH, Hwang KP. Clinical implications, risk factors and mortality following community-onset bacteremia caused by extended-spectrum $\beta$-lactamase (ESBL) and non-ESBL producing Escherichia coli. J Microbiol Immunol Infect 2010;43:240-248. https://doi.org/10.1016/S1684-1182(10)60038-2
  26. Lopez-Dupla M, Martinez JA, Vidal F, et al. Previous ciprofloxacin exposure is associated with resistance to betalactam antibiotics in subsequent Pseudomonas aeruginosa bacteremic isolates. Am J Infect Control 2009;37:753-758. https://doi.org/10.1016/j.ajic.2009.02.003
  27. Villers D, Espaze E, Coste-Burel M, et al. Nosocomial Acinetobacter baumannii infections: microbiological and clinical epidemiology. Ann Intern Med 1998;129:182-189. https://doi.org/10.7326/0003-4819-129-3-199808010-00003
  28. Giufre M, Graziani C, Accogli M, et al. Escherichia coli of human and avian origin: detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy. J Antimicrob Chemother 2012;67:860-867. https://doi.org/10.1093/jac/dkr565
  29. Kopterides P, Koletsi PK, Michalopoulos A, Falagas ME. Exposure to quinolones is associated with carbapenem resistance among colistin-susceptible Acinetobacter baumannii blood isolates. Int J Antimicrob Agents 2007;30:409-414. https://doi.org/10.1016/j.ijantimicag.2007.06.026
  30. Livermore DM. Of pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother 2001;47:247-250. https://doi.org/10.1093/jac/47.3.247
  31. Pascual FE, Matthay MA, Bacchetti P, Wachter RM. Assessment of prognosis in patients with community-acquired pneumonia who require mechanical ventilation. Chest 2000;117:503-512. https://doi.org/10.1378/chest.117.2.503
  32. Cho SY, Kang CI, Cha MK, et al. Clinical features and treatment outcomes of bloodstream infections caused by extended-spectrum $\beta$-lactamase-producing Escherichia coli sequence type 131. Microb Drug Resist 2015;21:463-469. https://doi.org/10.1089/mdr.2014.0261
  33. Cha MK, Kang CI, Kim SH, et al. Comparison of the microbiological characteristics and virulence factors of ST131 and non-ST131 clones among extended-spectrum $\beta$-lactamase-producing Escherichia coli causing bacteremia. Diagn Microbiol Infect Dis 2016;84:102-104. https://doi.org/10.1016/j.diagmicrobio.2015.10.015
  34. Park SH, Choi SM, Chang YK, et al. The efficacy of non-carbapenem antibiotics for the treatment of community-onset acute pyelonephritis due to extended-spectrum beta-lactamase-producing Escherichia coli. J Antimicrob Chemother 2014;69:2848-2856. https://doi.org/10.1093/jac/dku215
  35. Rodriguez-Bano J, Navarro MD, Retamar P, Picon E, Pascual A; Extended-Spectrum Beta-Lactamases-Red Espanola de Investigacion en Patologia Infecciosa/Grupo de Estudio de Infeccion Hospitalaria Group. Beta-lactam/beta-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum beta-Lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 2012;54:167-174. https://doi.org/10.1093/cid/cir790
  36. Ben-Ami R, Schwaber MJ, Navon-Venezia S, et al. Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin Infect Dis 2006;42:925-934. https://doi.org/10.1086/500936
  37. Harris AD, Samore MH, Lipsitch M, Kaye KS, Perencevich E, Carmeli Y. Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, Enterococci, and Escherichia coli. Clin Infect Dis 2002;34:1558-1563. https://doi.org/10.1086/340533
  38. Rodriguez-Bano J, Alcala JC, Cisneros JM, et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch Intern Med 2008;168:1897-1902. https://doi.org/10.1001/archinte.168.17.1897

Cited by

  1. Trends in South Korean antimicrobial use and association with changes in Escherichia coli resistance rates: 12-year ecological study using a nationwide surveillance and antimicrobial prescription da vol.13, pp.12, 2017, https://doi.org/10.1371/journal.pone.0209580
  2. Risk factors and outcomes in non-transplant patients with extended-spectrum beta-lactamase-producing Escherichia coli bacteremia: a retrospective study from 2013 to 2016 vol.8, pp.1, 2017, https://doi.org/10.1186/s13756-019-0599-y