Acknowledgement
Supported by : National Research Foundation of Korea
References
- La Vecchia C, Malvezzi M, Bosetti C, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer 2015;136:2187-2195. https://doi.org/10.1002/ijc.29251
- Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 2008;21 Suppl 2:S37-S43. https://doi.org/10.1038/modpathol.2008.10
- Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
- Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012;12:685-698. https://doi.org/10.1038/nrc3365
- Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013;20:31-42. https://doi.org/10.1038/cdd.2012.81
- Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006;441:1157-1161. https://doi.org/10.1038/nature04788
- Fusco A, Viglietto G, Santoro M. A new mechanism of BRAF activation in human thyroid papillary carcinomas. J Clin Invest 2005;115:20-23. https://doi.org/10.1172/JCI200523987
- Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol 2006;155:645-653. https://doi.org/10.1530/eje.1.02289
- Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003;63:1454-1457.
- Liu D, Liu Z, Condouris S, Xing M. BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab 2007;92:2264-2271. https://doi.org/10.1210/jc.2006-1613
- Lee SJ, Lee MH, Kim DW, et al. Cross-regulation between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid carcinoma. PLoS One 2011;6:e16180. https://doi.org/10.1371/journal.pone.0016180
- Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005;12:245-262. https://doi.org/10.1677/erc.1.0978
- Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013;309:1493-1501. https://doi.org/10.1001/jama.2013.3190
- Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28:742-762. https://doi.org/10.1210/er.2007-0007
- Liu Z, Hou P, Ji M, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab 2008;93:3106-3116. https://doi.org/10.1210/jc.2008-0273
- Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 2003;88:2745-2752. https://doi.org/10.1210/jc.2002-021186
- Gire V, Wynford-Thomas D. RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene 2000;19:737-744. https://doi.org/10.1038/sj.onc.1203399
- Kim DW, Hwang JH, Suh JM, et al. RET/PTC (rearranged in transformation/papillary thyroid carcinomas) tyrosine kinase phosphorylates and activates phosphoinositide- dependent kinase 1 (PDK1): an alternative phosphatidylinositol 3-kinase-independent pathway to activate PDK1. Mol Endocrinol 2003;17:1382-1394. https://doi.org/10.1210/me.2002-0402
- Jung HS, Kim DW, Jo YS, et al. Regulation of protein kinase B tyrosine phosphorylation by thyroid-specific oncogenic RET/PTC kinases. Mol Endocrinol 2005;19:2748-2759. https://doi.org/10.1210/me.2005-0122
- Hwang JH, Kim DW, Suh JM, et al. Activation of signal transducer and activator of transcription 3 by oncogenic RET/PTC (rearranged in transformation/papillary thyroid carcinoma) tyrosine kinase: roles in specific gene regulation and cellular transformation. Mol Endocrinol 2003;17:1155-1166. https://doi.org/10.1210/me.2002-0401
- Kim DW, Chung HK, Park KC, et al. Tumor suppressor LKB1 inhibits activation of signal transducer and activator of transcription 3 (STAT3) by thyroid oncogenic tyrosine kinase rearranged in transformation (RET)/papillary thyroid carcinoma (PTC). Mol Endocrinol 2007;21:3039-3049. https://doi.org/10.1210/me.2007-0269
- Kim YR, Byun HS, Won M, et al. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC. BMC Cancer 2008;8:144. https://doi.org/10.1186/1471-2407-8-144
- Kim H, Suh JM, Hwang ES, et al. Thyrotropin-mediated repression of class II trans-activator expression in thyroid cells: involvement of STAT3 and suppressor of cytokine signaling. J Immunol 2003;171:616-627. https://doi.org/10.4049/jimmunol.171.2.616
- Suh JM, Song JH, Kim DW, et al. Regulation of the phosphatidylinositol 3-kinase, Akt/protein kinase B, FRAP/ mammalian target of rapamycin, and ribosomal S6 kinase 1 signaling pathways by thyroid-stimulating hormone (TSH) and stimulating type TSH receptor antibodies in the thyroid gland. J Biol Chem 2003;278:21960-21971. https://doi.org/10.1074/jbc.M300805200
- Kim DW, Jo YS, Jung HS, et al. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J Clin Endocrinol Metab 2006;91:4070-4076. https://doi.org/10.1210/jc.2005-2845
- Hwang ES, Kim DW, Hwang JH, et al. Regulation of signal transducer and activator of transcription 1 (STAT1) and STAT1-dependent genes by RET/PTC (rearranged in transformation/papillary thyroid carcinoma) oncogenic tyrosine kinases. Mol Endocrinol 2004;18:2672-2684. https://doi.org/10.1210/me.2004-0168
- Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993;91:179-184. https://doi.org/10.1172/JCI116168
- Garcia-Rostan G, Tallini G, Herrero A, D'Aquila TG, Carcangiu ML, Rimm DL. Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res 1999;59:1811-1815.
- Gustafson S, Zbuk KM, Scacheri C, Eng C. Cowden syndrome. Semin Oncol 2007;34:428-434. https://doi.org/10.1053/j.seminoncol.2007.07.009
- Hemerly JP, Bastos AU, Cerutti JM. Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur J Endocrinol 2010;163:747-755. https://doi.org/10.1530/EJE-10-0473
- Murugan AK, Dong J, Xie J, Xing M. Uncommon GNAQ, MMP8, AKT3, EGFR, and PIK3R1 mutations in thyroid cancers. Endocr Pathol 2011;22:97-102. https://doi.org/10.1007/s12022-011-9155-x
- Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 2011;71:4403-4411. https://doi.org/10.1158/0008-5472.CAN-10-4041
- Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol 2010;321:50-56. https://doi.org/10.1016/j.mce.2009.10.013
- Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 2005;115:94-101. https://doi.org/10.1172/JCI23237
- Jo YS, Lee JC, Li S, et al. Significance of the expression of major histocompatibility complex class II antigen, HLADR and -DQ, with recurrence of papillary thyroid cancer. Int J Cancer 2008;122:785-790. https://doi.org/10.1002/ijc.23167
- Chung HK, Yi YW, Jung NC, et al. Gadd45gamma expression is reduced in anaplastic thyroid cancer and its reexpression results in apoptosis. J Clin Endocrinol Metab 2003;88:3913-3920. https://doi.org/10.1210/jc.2002-022031
- Hwang JH, Hwang JH, Chung HK, et al. CXC chemokine receptor 4 expression and function in human anaplastic thyroid cancer cells. J Clin Endocrinol Metab 2003;88:408-416. https://doi.org/10.1210/jc.2002-021381
- Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012;21:297-308. https://doi.org/10.1016/j.ccr.2012.02.014
- Kim SJ, Kwon MC, Ryu MJ, et al. CRIF1 is essential for the synthesis and insertion of oxidative phosphorylation polypeptides in the mammalian mitochondrial membrane. Cell Metab 2012;16:274-283. https://doi.org/10.1016/j.cmet.2012.06.012
- Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004;287:C817-C833. https://doi.org/10.1152/ajpcell.00139.2004
- Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009;458:719-724. https://doi.org/10.1038/nature07943
- Bartoletti-Stella A, Salfi NC, Ceccarelli C, Attimonelli M, Romeo G, Gasparre G. Mitochondrial DNA mutations in oncocytic adnexal lacrimal glands of the conjunctiva. Arch Ophthalmol 2011;129:664-666.
- Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene 2006;25:4647-4662. https://doi.org/10.1038/sj.onc.1209607
- Chinnery PF, Samuels DC, Elson J, Turnbull DM. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 2002;360:1323-1325. https://doi.org/10.1016/S0140-6736(02)11310-9
- Copeland WC, Wachsman JT, Johnson FM, Penta JS. Mitochondrial DNA alterations in cancer. Cancer Invest 2002;20:557-569. https://doi.org/10.1081/CNV-120002155
- Gasparre G, Hervouet E, de Laplanche E, et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 2008;17:986-995. https://doi.org/10.1093/hmg/ddm371
- Pereira L, Soares P, Maximo V, Samuels DC. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 2012;12:53. https://doi.org/10.1186/1471-2407-12-53
- Yeh JJ, Lunetta KL, van Orsouw NJ, et al. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 2000;19:2060-2066. https://doi.org/10.1038/sj.onc.1203537
- Gasparre G, Porcelli AM, Bonora E, et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A 2007;104:9001-9006. https://doi.org/10.1073/pnas.0703056104
- Bonora E, Porcelli AM, Gasparre G, et al. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 2006;66:6087-6096. https://doi.org/10.1158/0008-5472.CAN-06-0171
- Maximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simoes M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am J Pathol 2002;160:1857-1865. https://doi.org/10.1016/S0002-9440(10)61132-7
- Rogounovitch TI, Saenko VA, Shimizu-Yoshida Y, et al. Large deletions in mitochondrial DNA in radiation-associated human thyroid tumors. Cancer Res 2002;62:7031-7041.
- Berho M, Suster S. The oncocytic variant of papillary carcinoma of the thyroid: a clinicopathologic study of 15 cases. Hum Pathol 1997;28:47-53. https://doi.org/10.1016/S0046-8177(97)90278-1
- Hong JH, Yi HS, Yi S, Kim HW, Lee J, Kim KS. Implications of oncocytic change in papillary thyroid cancer. Clin Endocrinol (Oxf ) 2016;85:797-804. https://doi.org/10.1111/cen.13115
- Lee MH, Lee JU, Joung KH, et al. Thyroid dysfunction associated with follicular cell steatosis in obese male mice and humans. Endocrinology 2015;156:1181-1193. https://doi.org/10.1210/en.2014-1670
- Le Pennec S, Mirebeau-Prunier D, Boutet-Bouzamondo N, et al. Nitric oxide and calcium participate in the fine regulation of mitochondrial biogenesis in follicular thyroid carcinoma cells. J Biol Chem 2011;286:18229-18239. https://doi.org/10.1074/jbc.M110.217521
- Raharijaona M, Le Pennec S, Poirier J, et al. PGC-1-related coactivator modulates mitochondrial-nuclear crosstalk through endogenous nitric oxide in a cellular model of oncocytic thyroid tumours. PLoS One 2009;4:e7964. https://doi.org/10.1371/journal.pone.0007964
- Ferreira-da-Silva A, Valacca C, Rios E, et al. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS One 2015;10:e0122308. https://doi.org/10.1371/journal.pone.0122308
- Chiappetta G, Toti P, Cetta F, et al. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab 2002;87:364-369. https://doi.org/10.1210/jcem.87.1.8180
- Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell 1999;98:295-303. https://doi.org/10.1016/S0092-8674(00)81959-5
- Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 2009;324:1713-1716. https://doi.org/10.1126/science.1171721
- de la Iglesia N, Konopka G, Puram SV, et al. Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev 2008;22:449-462. https://doi.org/10.1101/gad.1606508
- Musteanu M, Blaas L, Mair M, et al. Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology 2010;138:1003-1011. https://doi.org/10.1053/j.gastro.2009.11.049
- Schneller D, Machat G, Sousek A, et al. p19(ARF)/p14(ARF) controls oncogenic functions of signal transducer and activator of transcription 3 in hepatocellular carcinoma. Hepatology 2011;54:164-172.
- Couto JP, Daly L, Almeida A, et al. STAT3 negatively regulates thyroid tumorigenesis. Proc Natl Acad Sci U S A 2012;109:E2361-E2370. https://doi.org/10.1073/pnas.1201232109
- Lee MH, Lee SE, Kim DW, et al. Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E. J Clin Endocrinol Metab 2011;96:E19-E30. https://doi.org/10.1210/jcem.96.12.zega19
- Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. Oncologist 2013;18:926-932. https://doi.org/10.1634/theoncologist.2013-0072
- Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993;268:14553-14556.
- Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 2010;20:697-706. https://doi.org/10.1089/thy.2010.1646
- Abubaker J, Jehan Z, Bavi P, et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab 2008;93:611-618. https://doi.org/10.1210/jc.2007-1717
- Hou P, Ji M, Xing M. Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer 2008;113:2440-2447. https://doi.org/10.1002/cncr.23869
- Chiaradonna F, Gaglio D, Vanoni M, Alberghina L. Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochim Biophys Acta 2006;1757:1338-1356. https://doi.org/10.1016/j.bbabio.2006.08.001
- Weinberg F, Hamanaka R, Wheaton WW, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 2010;107:8788-8793. https://doi.org/10.1073/pnas.1003428107
- Hu Y, Lu W, Chen G, et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 2012;22:399-412. https://doi.org/10.1038/cr.2011.145
- Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria: a potential role in apoptotic signaling. J Biol Chem 2000;275:16202-16212. https://doi.org/10.1074/jbc.275.21.16202
- Compton S, Kim C, Griner NB, et al. Mitochondrial dysfunction impairs tumor suppressor p53 expression/function. J Biol Chem 2011;286:20297-20312. https://doi.org/10.1074/jbc.M110.163063
- Ni Y, He X, Chen J, et al. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowdenlike syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet 2012;21:300-310. https://doi.org/10.1093/hmg/ddr459
- Lee J, Ham S, Lee MH, et al. Dysregulation of Parkin-mediated mitophagy in thyroid Hurthle cell tumors. Carcinogenesis 2015;36:1407-1418. https://doi.org/10.1093/carcin/bgv122
Cited by
- P53, GHRH, inflammation and cancer vol.37, pp.None, 2017, https://doi.org/10.1016/j.ebiom.2018.10.034
- Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer vol.11, pp.8, 2017, https://doi.org/10.3390/cancers11081154
- Cost-Effectiveness Analysis of Active Surveillance Compared to Early Surgery in Small Papillary Thyroid Cancer: A Systemic Review vol.13, pp.None, 2017, https://doi.org/10.2147/cmar.s317627