DOI QR코드

DOI QR Code

Oncogenes, mitochondrial metabolism, and quality control in differentiated thyroid cancer

  • Yi, Hyon-Seung (Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine) ;
  • Chang, Joon Young (Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine) ;
  • Kim, Koon Soon (Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine) ;
  • Shong, Minho (Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine)
  • Received : 2016.12.14
  • Accepted : 2017.03.07
  • Published : 2017.09.01

Abstract

Thyroid cancer is one of the most common malignancies of endocrine organs, and its incidence rate has increased steadily over the past several decades. Most differentiated thyroid tumors derived from thyroid epithelial cells exhibit slow-growing cancers, and patients with these tumors can achieve a good prognosis with surgical removal and radioiodine treatment. However, a small proportion of patients present with advanced thyroid cancer and are unusually resistant to current drug treatment modalities. Thyroid tumorigenesis is a complex process that is regulated by the activation of oncogenes, inactivation of tumor suppressors, and alterations in programmed cell death. Mitochondria play an essential role during tumor formation, progression, and metastasis of thyroid cancer. Recent studies have successfully observed the mitochondrial etiology of thyroid carcinogenesis. This review focuses on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. La Vecchia C, Malvezzi M, Bosetti C, et al. Thyroid cancer mortality and incidence: a global overview. Int J Cancer 2015;136:2187-2195. https://doi.org/10.1002/ijc.29251
  2. Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 2008;21 Suppl 2:S37-S43. https://doi.org/10.1038/modpathol.2008.10
  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  4. Wallace DC. Mitochondria and cancer. Nat Rev Cancer 2012;12:685-698. https://doi.org/10.1038/nrc3365
  5. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 2013;20:31-42. https://doi.org/10.1038/cdd.2012.81
  6. Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006;441:1157-1161. https://doi.org/10.1038/nature04788
  7. Fusco A, Viglietto G, Santoro M. A new mechanism of BRAF activation in human thyroid papillary carcinomas. J Clin Invest 2005;115:20-23. https://doi.org/10.1172/JCI200523987
  8. Santoro M, Melillo RM, Fusco A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol 2006;155:645-653. https://doi.org/10.1530/eje.1.02289
  9. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003;63:1454-1457.
  10. Liu D, Liu Z, Condouris S, Xing M. BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab 2007;92:2264-2271. https://doi.org/10.1210/jc.2006-1613
  11. Lee SJ, Lee MH, Kim DW, et al. Cross-regulation between oncogenic BRAF(V600E) kinase and the MST1 pathway in papillary thyroid carcinoma. PLoS One 2011;6:e16180. https://doi.org/10.1371/journal.pone.0016180
  12. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005;12:245-262. https://doi.org/10.1677/erc.1.0978
  13. Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 2013;309:1493-1501. https://doi.org/10.1001/jama.2013.3190
  14. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 2007;28:742-762. https://doi.org/10.1210/er.2007-0007
  15. Liu Z, Hou P, Ji M, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab 2008;93:3106-3116. https://doi.org/10.1210/jc.2008-0273
  16. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 2003;88:2745-2752. https://doi.org/10.1210/jc.2002-021186
  17. Gire V, Wynford-Thomas D. RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene 2000;19:737-744. https://doi.org/10.1038/sj.onc.1203399
  18. Kim DW, Hwang JH, Suh JM, et al. RET/PTC (rearranged in transformation/papillary thyroid carcinomas) tyrosine kinase phosphorylates and activates phosphoinositide- dependent kinase 1 (PDK1): an alternative phosphatidylinositol 3-kinase-independent pathway to activate PDK1. Mol Endocrinol 2003;17:1382-1394. https://doi.org/10.1210/me.2002-0402
  19. Jung HS, Kim DW, Jo YS, et al. Regulation of protein kinase B tyrosine phosphorylation by thyroid-specific oncogenic RET/PTC kinases. Mol Endocrinol 2005;19:2748-2759. https://doi.org/10.1210/me.2005-0122
  20. Hwang JH, Kim DW, Suh JM, et al. Activation of signal transducer and activator of transcription 3 by oncogenic RET/PTC (rearranged in transformation/papillary thyroid carcinoma) tyrosine kinase: roles in specific gene regulation and cellular transformation. Mol Endocrinol 2003;17:1155-1166. https://doi.org/10.1210/me.2002-0401
  21. Kim DW, Chung HK, Park KC, et al. Tumor suppressor LKB1 inhibits activation of signal transducer and activator of transcription 3 (STAT3) by thyroid oncogenic tyrosine kinase rearranged in transformation (RET)/papillary thyroid carcinoma (PTC). Mol Endocrinol 2007;21:3039-3049. https://doi.org/10.1210/me.2007-0269
  22. Kim YR, Byun HS, Won M, et al. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC. BMC Cancer 2008;8:144. https://doi.org/10.1186/1471-2407-8-144
  23. Kim H, Suh JM, Hwang ES, et al. Thyrotropin-mediated repression of class II trans-activator expression in thyroid cells: involvement of STAT3 and suppressor of cytokine signaling. J Immunol 2003;171:616-627. https://doi.org/10.4049/jimmunol.171.2.616
  24. Suh JM, Song JH, Kim DW, et al. Regulation of the phosphatidylinositol 3-kinase, Akt/protein kinase B, FRAP/ mammalian target of rapamycin, and ribosomal S6 kinase 1 signaling pathways by thyroid-stimulating hormone (TSH) and stimulating type TSH receptor antibodies in the thyroid gland. J Biol Chem 2003;278:21960-21971. https://doi.org/10.1074/jbc.M300805200
  25. Kim DW, Jo YS, Jung HS, et al. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J Clin Endocrinol Metab 2006;91:4070-4076. https://doi.org/10.1210/jc.2005-2845
  26. Hwang ES, Kim DW, Hwang JH, et al. Regulation of signal transducer and activator of transcription 1 (STAT1) and STAT1-dependent genes by RET/PTC (rearranged in transformation/papillary thyroid carcinoma) oncogenic tyrosine kinases. Mol Endocrinol 2004;18:2672-2684. https://doi.org/10.1210/me.2004-0168
  27. Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 1993;91:179-184. https://doi.org/10.1172/JCI116168
  28. Garcia-Rostan G, Tallini G, Herrero A, D'Aquila TG, Carcangiu ML, Rimm DL. Frequent mutation and nuclear localization of beta-catenin in anaplastic thyroid carcinoma. Cancer Res 1999;59:1811-1815.
  29. Gustafson S, Zbuk KM, Scacheri C, Eng C. Cowden syndrome. Semin Oncol 2007;34:428-434. https://doi.org/10.1053/j.seminoncol.2007.07.009
  30. Hemerly JP, Bastos AU, Cerutti JM. Identification of several novel non-p.R132 IDH1 variants in thyroid carcinomas. Eur J Endocrinol 2010;163:747-755. https://doi.org/10.1530/EJE-10-0473
  31. Murugan AK, Dong J, Xie J, Xing M. Uncommon GNAQ, MMP8, AKT3, EGFR, and PIK3R1 mutations in thyroid cancers. Endocr Pathol 2011;22:97-102. https://doi.org/10.1007/s12022-011-9155-x
  32. Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res 2011;71:4403-4411. https://doi.org/10.1158/0008-5472.CAN-10-4041
  33. Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol 2010;321:50-56. https://doi.org/10.1016/j.mce.2009.10.013
  34. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 2005;115:94-101. https://doi.org/10.1172/JCI23237
  35. Jo YS, Lee JC, Li S, et al. Significance of the expression of major histocompatibility complex class II antigen, HLADR and -DQ, with recurrence of papillary thyroid cancer. Int J Cancer 2008;122:785-790. https://doi.org/10.1002/ijc.23167
  36. Chung HK, Yi YW, Jung NC, et al. Gadd45gamma expression is reduced in anaplastic thyroid cancer and its reexpression results in apoptosis. J Clin Endocrinol Metab 2003;88:3913-3920. https://doi.org/10.1210/jc.2002-022031
  37. Hwang JH, Hwang JH, Chung HK, et al. CXC chemokine receptor 4 expression and function in human anaplastic thyroid cancer cells. J Clin Endocrinol Metab 2003;88:408-416. https://doi.org/10.1210/jc.2002-021381
  38. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012;21:297-308. https://doi.org/10.1016/j.ccr.2012.02.014
  39. Kim SJ, Kwon MC, Ryu MJ, et al. CRIF1 is essential for the synthesis and insertion of oxidative phosphorylation polypeptides in the mammalian mitochondrial membrane. Cell Metab 2012;16:274-283. https://doi.org/10.1016/j.cmet.2012.06.012
  40. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004;287:C817-C833. https://doi.org/10.1152/ajpcell.00139.2004
  41. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009;458:719-724. https://doi.org/10.1038/nature07943
  42. Bartoletti-Stella A, Salfi NC, Ceccarelli C, Attimonelli M, Romeo G, Gasparre G. Mitochondrial DNA mutations in oncocytic adnexal lacrimal glands of the conjunctiva. Arch Ophthalmol 2011;129:664-666.
  43. Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene 2006;25:4647-4662. https://doi.org/10.1038/sj.onc.1209607
  44. Chinnery PF, Samuels DC, Elson J, Turnbull DM. Accumulation of mitochondrial DNA mutations in ageing, cancer, and mitochondrial disease: is there a common mechanism? Lancet 2002;360:1323-1325. https://doi.org/10.1016/S0140-6736(02)11310-9
  45. Copeland WC, Wachsman JT, Johnson FM, Penta JS. Mitochondrial DNA alterations in cancer. Cancer Invest 2002;20:557-569. https://doi.org/10.1081/CNV-120002155
  46. Gasparre G, Hervouet E, de Laplanche E, et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 2008;17:986-995. https://doi.org/10.1093/hmg/ddm371
  47. Pereira L, Soares P, Maximo V, Samuels DC. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors. BMC Cancer 2012;12:53. https://doi.org/10.1186/1471-2407-12-53
  48. Yeh JJ, Lunetta KL, van Orsouw NJ, et al. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 2000;19:2060-2066. https://doi.org/10.1038/sj.onc.1203537
  49. Gasparre G, Porcelli AM, Bonora E, et al. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A 2007;104:9001-9006. https://doi.org/10.1073/pnas.0703056104
  50. Bonora E, Porcelli AM, Gasparre G, et al. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 2006;66:6087-6096. https://doi.org/10.1158/0008-5472.CAN-06-0171
  51. Maximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simoes M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am J Pathol 2002;160:1857-1865. https://doi.org/10.1016/S0002-9440(10)61132-7
  52. Rogounovitch TI, Saenko VA, Shimizu-Yoshida Y, et al. Large deletions in mitochondrial DNA in radiation-associated human thyroid tumors. Cancer Res 2002;62:7031-7041.
  53. Berho M, Suster S. The oncocytic variant of papillary carcinoma of the thyroid: a clinicopathologic study of 15 cases. Hum Pathol 1997;28:47-53. https://doi.org/10.1016/S0046-8177(97)90278-1
  54. Hong JH, Yi HS, Yi S, Kim HW, Lee J, Kim KS. Implications of oncocytic change in papillary thyroid cancer. Clin Endocrinol (Oxf ) 2016;85:797-804. https://doi.org/10.1111/cen.13115
  55. Lee MH, Lee JU, Joung KH, et al. Thyroid dysfunction associated with follicular cell steatosis in obese male mice and humans. Endocrinology 2015;156:1181-1193. https://doi.org/10.1210/en.2014-1670
  56. Le Pennec S, Mirebeau-Prunier D, Boutet-Bouzamondo N, et al. Nitric oxide and calcium participate in the fine regulation of mitochondrial biogenesis in follicular thyroid carcinoma cells. J Biol Chem 2011;286:18229-18239. https://doi.org/10.1074/jbc.M110.217521
  57. Raharijaona M, Le Pennec S, Poirier J, et al. PGC-1-related coactivator modulates mitochondrial-nuclear crosstalk through endogenous nitric oxide in a cellular model of oncocytic thyroid tumours. PLoS One 2009;4:e7964. https://doi.org/10.1371/journal.pone.0007964
  58. Ferreira-da-Silva A, Valacca C, Rios E, et al. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration. PLoS One 2015;10:e0122308. https://doi.org/10.1371/journal.pone.0122308
  59. Chiappetta G, Toti P, Cetta F, et al. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab 2002;87:364-369. https://doi.org/10.1210/jcem.87.1.8180
  60. Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell 1999;98:295-303. https://doi.org/10.1016/S0092-8674(00)81959-5
  61. Gough DJ, Corlett A, Schlessinger K, Wegrzyn J, Larner AC, Levy DE. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 2009;324:1713-1716. https://doi.org/10.1126/science.1171721
  62. de la Iglesia N, Konopka G, Puram SV, et al. Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev 2008;22:449-462. https://doi.org/10.1101/gad.1606508
  63. Musteanu M, Blaas L, Mair M, et al. Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology 2010;138:1003-1011. https://doi.org/10.1053/j.gastro.2009.11.049
  64. Schneller D, Machat G, Sousek A, et al. p19(ARF)/p14(ARF) controls oncogenic functions of signal transducer and activator of transcription 3 in hepatocellular carcinoma. Hepatology 2011;54:164-172.
  65. Couto JP, Daly L, Almeida A, et al. STAT3 negatively regulates thyroid tumorigenesis. Proc Natl Acad Sci U S A 2012;109:E2361-E2370. https://doi.org/10.1073/pnas.1201232109
  66. Lee MH, Lee SE, Kim DW, et al. Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E. J Clin Endocrinol Metab 2011;96:E19-E30. https://doi.org/10.1210/jcem.96.12.zega19
  67. Howell GM, Hodak SP, Yip L. RAS mutations in thyroid cancer. Oncologist 2013;18:926-932. https://doi.org/10.1634/theoncologist.2013-0072
  68. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993;268:14553-14556.
  69. Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 2010;20:697-706. https://doi.org/10.1089/thy.2010.1646
  70. Abubaker J, Jehan Z, Bavi P, et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab 2008;93:611-618. https://doi.org/10.1210/jc.2007-1717
  71. Hou P, Ji M, Xing M. Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer 2008;113:2440-2447. https://doi.org/10.1002/cncr.23869
  72. Chiaradonna F, Gaglio D, Vanoni M, Alberghina L. Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochim Biophys Acta 2006;1757:1338-1356. https://doi.org/10.1016/j.bbabio.2006.08.001
  73. Weinberg F, Hamanaka R, Wheaton WW, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 2010;107:8788-8793. https://doi.org/10.1073/pnas.1003428107
  74. Hu Y, Lu W, Chen G, et al. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 2012;22:399-412. https://doi.org/10.1038/cr.2011.145
  75. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria: a potential role in apoptotic signaling. J Biol Chem 2000;275:16202-16212. https://doi.org/10.1074/jbc.275.21.16202
  76. Compton S, Kim C, Griner NB, et al. Mitochondrial dysfunction impairs tumor suppressor p53 expression/function. J Biol Chem 2011;286:20297-20312. https://doi.org/10.1074/jbc.M110.163063
  77. Ni Y, He X, Chen J, et al. Germline SDHx variants modify breast and thyroid cancer risks in Cowden and Cowdenlike syndrome via FAD/NAD-dependant destabilization of p53. Hum Mol Genet 2012;21:300-310. https://doi.org/10.1093/hmg/ddr459
  78. Lee J, Ham S, Lee MH, et al. Dysregulation of Parkin-mediated mitophagy in thyroid Hurthle cell tumors. Carcinogenesis 2015;36:1407-1418. https://doi.org/10.1093/carcin/bgv122

Cited by

  1. P53, GHRH, inflammation and cancer vol.37, pp.None, 2017, https://doi.org/10.1016/j.ebiom.2018.10.034
  2. Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer vol.11, pp.8, 2017, https://doi.org/10.3390/cancers11081154
  3. Cost-Effectiveness Analysis of Active Surveillance Compared to Early Surgery in Small Papillary Thyroid Cancer: A Systemic Review vol.13, pp.None, 2017, https://doi.org/10.2147/cmar.s317627