Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Park CW. Diabetic kidney disease: from epidemiology to clinical perspectives. Diabetes Metab J 2014;38:252-260. https://doi.org/10.4093/dmj.2014.38.4.252
- Ahn JH, Yu JH, Ko SH, et al. Prevalence and determinants of diabetic nephropathy in Korea: Korea National Health and Nutrition Examination Survey. Diabetes Metab J 2014;38:109-119. https://doi.org/10.4093/dmj.2014.38.2.109
- Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med 2014;370:1514-1523. https://doi.org/10.1056/NEJMoa1310799
- Rhee EJ. Diabetes in Asians. Endocrinol Metab (Seoul) 2015;30:263-269. https://doi.org/10.3803/EnM.2015.30.3.263
- Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG; DEMAND investigators. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int 2006;69:2057-2063. https://doi.org/10.1038/sj.ki.5000377
- Macisaac RJ, Ekinci EI, Jerums G. Markers of and risk factors for the development and progression of diabetic kidney disease. Am J Kidney Dis 2014;63(2 Suppl 2):S39-S62. https://doi.org/10.1053/j.ajkd.2013.10.048
- Kim Y, Park CW. New therapeutic agents in diabetic nephropathy. Korean J Intern Med 2017;32:11-25. https://doi.org/10.3904/kjim.2016.174
- Muskiet MH, Smits MM, Morsink LM, Diamant M. The gut-renal axis: do incretin-based agents confer renoprotection in diabetes? Nat Rev Nephrol 2014;10:88-103. https://doi.org/10.1038/nrneph.2013.272
- Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977-986. https://doi.org/10.1056/NEJM199309303291401
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-853. https://doi.org/10.1016/S0140-6736(98)07019-6
- ADVANCE Collaborative Group, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560-2572. https://doi.org/10.1056/NEJMoa0802987
- Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405-412. https://doi.org/10.1136/bmj.321.7258.405
- Zoungas S, Chalmers J, Ninomiya T, et al. Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds. Diabetologia 2012;55:636-643. https://doi.org/10.1007/s00125-011-2404-1
- Korean Diabetes Association. Treatment guideline for diabetes: 2015 [Internet]. Seoul: Korean Diabetes Association, c2011 [cited 2017 Jun 14]. Available from: http://www.diabetes.or.kr/pro/publish/guide.php?code=guide&-mode=view&number=625.
- American Diabetes Association. 5: Glycemic targets. Diabetes Care 2016;39 Suppl 1:S39-S46. https://doi.org/10.2337/dc16-S008
- National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis 2012;60:850-886. https://doi.org/10.1053/j.ajkd.2012.07.005
- Penno G, Garofolo M, Del Prato S. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutr Metab Cardiovasc Dis 2016;26:361-373. https://doi.org/10.1016/j.numecd.2016.01.001
- Panchapakesan U, Pollock C. The role of dipeptidyl peptidase: 4 inhibitors in diabetic kidney disease. Front Immunol 2015;6:443.
- Solini A. Role of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus. Acta Diabetol 2016;53:863-870. https://doi.org/10.1007/s00592-016-0856-y
- Gilbert RE. Sodium-glucose linked transporter-2 inhibitors: potential for renoprotection beyond blood glucose lowering? Kidney Int 2014;86:693-700. https://doi.org/10.1038/ki.2013.451
- Zhong J, Rao X, Rajagopalan S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 2013;226:305-314. https://doi.org/10.1016/j.atherosclerosis.2012.09.012
- Tiruppathi C, Miyamoto Y, Ganapathy V, Roesel RA, Whitford GM, Leibach FH. Hydrolysis and transport of proline-containing peptides in renal brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl peptidase IV-negative rat strains. J Biol Chem 1990;265:1476-1483.
- Mentlein R. Dipeptidyl-peptidase IV (CD26): role in the inactivation of regulatory peptides. Regul Pept 1999;85:9-24. https://doi.org/10.1016/S0167-0115(99)00089-0
- Sharkovska Y, Reichetzeder C, Alter M, et al. Blood pressure and glucose independent renoprotective effects of dipeptidyl peptidase-4 inhibition in a mouse model of type-2 diabetic nephropathy. J Hypertens 2014;32:2211-2223. https://doi.org/10.1097/HJH.0000000000000328
- Yang J, Campitelli J, Hu G, Lin Y, Luo J, Xue C. Increase in DPP-IV in the intestine, liver and kidney of the rat treated with high fat diet and streptozotocin. Life Sci 2007;81:272-279. https://doi.org/10.1016/j.lfs.2007.04.040
- Pala L, Mannucci E, Pezzatini A, et al. Dipeptidyl peptidase-IV expression and activity in human glomerular endothelial cells. Biochem Biophys Res Commun 2003;310:28-31. https://doi.org/10.1016/j.bbrc.2003.08.111
- Mega C, de Lemos ET, Vala H, et al. Diabetic nephropathy amelioration by a low-dose sitagliptin in an animal model of type 2 diabetes (Zucker diabetic fatty rat). Exp Diabetes Res 2011;2011:162092.
- Marques C, Mega C, Goncalves A, et al. Sitagliptin prevents inflammation and apoptotic cell death in the kidney of type 2 diabetic animals. Mediators Inflamm 2014;2014:538737.
- Liu WJ, Xie SH, Liu YN, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther 2012;340:248-255. https://doi.org/10.1124/jpet.111.186866
- Jung GS, Jeon JH, Choe MS, et al. Renoprotective effect of gemigliptin, a dipeptidyl peptidase-4 inhibitor, in streptozotocin-induced type 1 diabetic mice. Diabetes Metab J 2016;40:211-221. https://doi.org/10.4093/dmj.2016.40.3.211
- Kodera R, Shikata K, Takatsuka T, et al. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochem Biophys Res Commun 2014;443:828-833. https://doi.org/10.1016/j.bbrc.2013.12.049
- Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial- to-mesenchymal transition in a therapeutic regimen. Diabetes 2014;63:2120-2131. https://doi.org/10.2337/db13-1029
- Gangadharan Komala M, Gross S, Zaky A, Pollock C, Panchapakesan U. Saxagliptin reduces renal tubulointerstitial inflammation, hypertrophy and fibrosis in diabetes. Nephrology (Carlton) 2016;21:423-431. https://doi.org/10.1111/nep.12618
- Hattori S. Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr J 2011;58:69-73. https://doi.org/10.1507/endocrj.K10E-382
- Fujita H, Taniai H, Murayama H, et al. DPP-4 inhibition with alogliptin on top of angiotensin II type 1 receptor blockade ameliorates albuminuria via up-regulation of SDF-1alpha in type 2 diabetic patients with incipient nephropathy. Endocr J 2014;61:159-166. https://doi.org/10.1507/endocrj.EJ13-0305
- White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013;369:1327-1335. https://doi.org/10.1056/NEJMoa1305889
- Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013;369:1317-1326. https://doi.org/10.1056/NEJMoa1307684
- Groop PH, Cooper ME, Perkovic V, Emser A, Woerle HJ, von Eynatten M. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care 2013;36:3460-3468. https://doi.org/10.2337/dc13-0323
- Katz PM, Leiter LA. The role of the kidney and SGLT2 inhibitors in type 2 diabetes. Can J Diabetes 2015;39 Suppl 5:S167-S175. https://doi.org/10.1016/j.jcjd.2015.09.001
- Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:323-334. https://doi.org/10.1056/NEJMoa1515920
- Vallon V, Gerasimova M, Rose MA, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 2014;306:F194-F204. https://doi.org/10.1152/ajprenal.00520.2013
- De Nicola L, Gabbai FB, Liberti ME, Sagliocca A, Conte G, Minutolo R. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes. Am J Kidney Dis 2014;64:16-24. https://doi.org/10.1053/j.ajkd.2014.02.010
- Chilton R, Tikkanen I, Cannon CP, et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab 2015;17:1180-1193. https://doi.org/10.1111/dom.12572
- Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 2000;321:412-419. https://doi.org/10.1136/bmj.321.7258.412
- Patel A; ADVANCE Collaborative Group, MacMahon S, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 2007;370:829-840. https://doi.org/10.1016/S0140-6736(07)61303-8
- American Diabetes Association. 9: Microvascular complications and foot care. Diabetes Care 2016;39 Suppl 1:S72-S80. https://doi.org/10.2337/dc16-S012
- Taler SJ, Agarwal R, Bakris GL, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis 2013;62:201-213. https://doi.org/10.1053/j.ajkd.2013.03.018
- Kitada M, Kanasaki K, Koya D. Clinical therapeutic strategies for early stage of diabetic kidney disease. World J Diabetes 2014;5:342-356. https://doi.org/10.4239/wjd.v5.i3.342
- Mann JF, Schmieder RE, McQueen M, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 2008;372:547-553. https://doi.org/10.1016/S0140-6736(08)61236-2
- Brem AS, Morris DJ, Gong R. Aldosterone-induced fibrosis in the kidney: questions and controversies. Am J Kidney Dis 2011;58:471-479. https://doi.org/10.1053/j.ajkd.2011.03.029
- Hou J, Xiong W, Cao L, Wen X, Li A. Spironolactone addon for preventing or slowing the progression of diabetic nephropathy: a meta-analysis. Clin Ther 2015;37:2086-2103.e10. https://doi.org/10.1016/j.clinthera.2015.05.508
- Pitt B, Kober L, Ponikowski P, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J 2013;34:2453-2463. https://doi.org/10.1093/eurheartj/eht187
- Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA 2015;314:884-894. https://doi.org/10.1001/jama.2015.10081
- Gagliardini E, Zoja C, Benigni A. Et and diabetic nephropathy: preclinical and clinical studies. Semin Nephrol 2015;35:188-196. https://doi.org/10.1016/j.semnephrol.2015.03.003
- Mann JF, Green D, Jamerson K, et al. Avosentan for overt diabetic nephropathy. J Am Soc Nephrol 2010;21:527-535. https://doi.org/10.1681/ASN.2009060593
- Perez-Gomez MV, Sanchez-Nino MD, Sanz AB, et al. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade. J Clin Med 2015;4:1325-1347. https://doi.org/10.3390/jcm4061325
- Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science 2004;306:990-995. https://doi.org/10.1126/science.1099993
- White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012;12:401-410. https://doi.org/10.1038/nrc3262
- Masini M, Bugliani M, Lupi R, et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009;52:1083-1086. https://doi.org/10.1007/s00125-009-1347-2
- Kume S, Koya D. Autophagy: a novel therapeutic target for diabetic nephropathy. Diabetes Metab J 2015;39:451-460. https://doi.org/10.4093/dmj.2015.39.6.451
-
Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME. Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-
${\beta}1$ . J Biol Chem 2012;287:11677-11688. https://doi.org/10.1074/jbc.M111.308460 - Yamahara K, Kume S, Koya D, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol 2013;24:1769-1781. https://doi.org/10.1681/ASN.2012111080
- Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004;15:1101-1111. https://doi.org/10.1091/mbc.e03-09-0704
- Bromann PA, Korkaya H, Courtneidge SA. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 2004;23:7957-7968. https://doi.org/10.1038/sj.onc.1208079
- Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997;13:513-609. https://doi.org/10.1146/annurev.cellbio.13.1.513
- Kopetz S, Shah AN, Gallick GE. Src continues aging: current and future clinical directions. Clin Cancer Res 2007;13:7232-7236. https://doi.org/10.1158/1078-0432.CCR-07-1902
- Mima A, Matsubara T, Arai H, et al. Angiotensin II-dependent Src and Smad1 signaling pathway is crucial for the development of diabetic nephropathy. Lab Invest 2006;86:927-939. https://doi.org/10.1038/labinvest.3700445
- Taniguchi K, Xia L, Goldberg HJ, et al. Inhibition of Src kinase blocks high glucose-induced EGFR transactivation and collagen synthesis in mesangial cells and prevents diabetic nephropathy in mice. Diabetes 2013;62:3874-3886. https://doi.org/10.2337/db12-1010
- Yan Y, Ma L, Zhou X, et al. Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis. Kidney Int 2016;89:68-81. https://doi.org/10.1038/ki.2015.293
- Zhou D, Liu Y. Therapy for kidney fibrosis: is the Src kinase a potential target? Kidney Int 2016;89:12-14. https://doi.org/10.1016/j.kint.2015.10.007
- Seo HY, Jeon JH, Jung YA, et al. Fyn deficiency attenuates renal fibrosis by inhibition of phospho-STAT3. Kidney Int 2016;90:1285-1297. https://doi.org/10.1016/j.kint.2016.06.038
Cited by
- Changes in co-morbidity pattern in patients starting renal replacement therapy in Europe-data from the ERA-EDTA Registry vol.33, pp.10, 2018, https://doi.org/10.1093/ndt/gfx355
- Triptolide Attenuates Renal Tubular Epithelial-mesenchymal Transition Via the MiR-188-5p-mediated PI3K/AKT Pathway in Diabetic Kidney Disease vol.14, pp.11, 2017, https://doi.org/10.7150/ijbs.24032
- Adiponectin for the treatment of diabetic nephropathy vol.34, pp.3, 2019, https://doi.org/10.3904/kjim.2019.109
- Comparing the Effect of Dipeptidyl-Peptidase 4 Inhibitors and Sulfonylureas on Albuminuria in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Prospective Open-Label Study vol.8, pp.10, 2019, https://doi.org/10.3390/jcm8101715
- Lipid mediators of insulin signaling in diabetic kidney disease vol.317, pp.5, 2019, https://doi.org/10.1152/ajprenal.00379.2019
- DACH1, a novel target of miR-218, participates in the regulation of cell viability, apoptosis, inflammatory response, and epithelial-mesenchymal transition process in renal tubule cells treated by hig vol.42, pp.1, 2020, https://doi.org/10.1080/0886022x.2020.1762647
- A Novel Indoline Derivative Ameliorates Diabesity-Induced Chronic Kidney Disease by Reducing Metabolic Abnormalities vol.11, pp.None, 2017, https://doi.org/10.3389/fendo.2020.00091
- Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications vol.36, pp.8, 2017, https://doi.org/10.1002/dmrr.3336
- RIPK3 blockade attenuates tubulointerstitial fibrosis in a mouse model of diabetic nephropathy vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-67054-x
- Jowiseungki decoction affects diabetic nephropathy in mice through renal injury inhibition as evidenced by network pharmacology and gut microbiota analyses vol.15, pp.None, 2017, https://doi.org/10.1186/s13020-020-00306-0
- Changing the Concept: From the Traditional Glucose-centric to the New Cardiorenal-metabolic Approach for the Treatment of Type 2 Diabetes vol.17, pp.2, 2017, https://doi.org/10.17925/ee.2021.17.2.92
- Is there a relationship between the prevalence of autoimmune thyroid disease and diabetic kidney disease? vol.16, pp.1, 2017, https://doi.org/10.1515/biol-2021-0064
- Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/1497449
- The effect of isosorbide-mononitrate on proteinuria in patients with diabetic nephropathy vol.5, pp.6, 2017, https://doi.org/10.28982/josam.807627
- Severe hypoglycemia and the risk of end stage renal disease in type 2 diabetes vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-82838-5