Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Foster JG, Wong SC, Sharp TV. The hypoxic tumor microenvironment: driving the tumorigenesis of non-smallcell lung cancer. Future Oncol 2014;10:2659-2674. https://doi.org/10.2217/fon.14.201
- Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266-276. https://doi.org/10.1093/jnci/93.4.266
- Gao T, Li JZ, Lu Y, et al. The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed Pharmacother 2016;80:393-405. https://doi.org/10.1016/j.biopha.2016.02.044
-
Li M, Wang YX, Luo Y, et al. Hypoxia inducible factor-
$1{\alpha}$ -dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells. Oncol Rep 2016;36:521-527. https://doi.org/10.3892/or.2016.4766 - Ye LY, Chen W, Bai XL, et al. Hypoxia-induced epithelialto-mesenchymal transition in hepatocellular carcinoma induces an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res 2016;76:818-830. https://doi.org/10.1158/0008-5472.CAN-15-0977
- Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell 2009;139:871-890. https://doi.org/10.1016/j.cell.2009.11.007
- Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther 2015;150:33-46. https://doi.org/10.1016/j.pharmthera.2015.01.004
- Garg M. Targeting microRNAs in epithelial-to-mesenchymal transition-induced cancer stem cells: therapeutic approaches in cancer. Expert Opin Ther Targets 2015;19:285-297. https://doi.org/10.1517/14728222.2014.975794
- Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-111. https://doi.org/10.1038/35102167
- Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol 2013;15:338-344. https://doi.org/10.1038/ncb2717
- Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 2013;17:30-54. https://doi.org/10.1111/jcmm.12004
- Shukla S, Meeran SM. Epigenetics of cancer stem cells: pathways and therapeutics. Biochim Biophys Acta 2014;1840:3494-3502. https://doi.org/10.1016/j.bbagen.2014.09.017
- Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13:484-492. https://doi.org/10.1038/nrg3230
- Vaupel P, Hockel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 2007;9:1221-1235. https://doi.org/10.1089/ars.2007.1628
- Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer 2008;8:967-975. https://doi.org/10.1038/nrc2540
- Myszczyszyn A, Czarnecka AM, Matak D, et al. The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev 2015;11:919-943. https://doi.org/10.1007/s12015-015-9611-y
- Yeh KA, Biade S, Lanciano RM, et al. Polarographic needle electrode measurements of oxygen in rat prostate carcinomas: accuracy and reproducibility. Int J Radiat Oncol Biol Phys 1995;33:111-118. https://doi.org/10.1016/0360-3016(95)00036-X
- Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 2007;26:225-239. https://doi.org/10.1007/s10555-007-9055-1
- Koch CJ, Evans SM. Optimizing hypoxia detection and treatment strategies. Semin Nucl Med 2015;45:163-176. https://doi.org/10.1053/j.semnuclmed.2014.10.004
- Shimoda LA, Semenza GL. HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease. Am J Respir Crit Care Med 2011;183:152-156. https://doi.org/10.1164/rccm.201009-1393PP
- Sharp FR, Bernaudin M. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 2004;5:437-448. https://doi.org/10.1038/nrn1408
- Harris AL. Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38-47. https://doi.org/10.1038/nrc704
- Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 2007;17:71-77. https://doi.org/10.1016/j.gde.2006.12.006
- Zhao J, Du F, Luo Y, Shen G, Zheng F, Xu B. The emerging role of hypoxia-inducible factor-2 involved in chemo/radioresistance in solid tumors. Cancer Treat Rev 2015;41:623-633. https://doi.org/10.1016/j.ctrv.2015.05.004
- Zhang J, Tian XJ, Xing J. Signal transduction pathways of EMT induced by TGF-beta, SHH, and WNT and their crosstalks. J Clin Med 2016;5:41. https://doi.org/10.3390/jcm5040041.
- Jiang J, Tang YL, Liang XH. EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther 2011;11:714-723. https://doi.org/10.4161/cbt.11.8.15274
- Imai T, Horiuchi A, Wang C, et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 2003;163:1437-1447. https://doi.org/10.1016/S0002-9440(10)63501-8
- Hung JJ, Yang MH, Hsu HS, Hsu WH, Liu JS, Wu KJ. Prognostic significance of hypoxia-inducible factor-1alpha, TWIST1 and Snail expression in resectable nonsmall cell lung cancer. Thorax 2009;64:1082-1089. https://doi.org/10.1136/thx.2009.115691
- Nishi H, Nakada T, Hokamura M, et al. Hypoxia-inducible factor-1 transactivates transforming growth factorbeta3 in trophoblast. Endocrinology 2004;145:4113-4118. https://doi.org/10.1210/en.2003-1639
- Diecke S, Jung SM, Lee J, Ju JH. Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med 2014;29:547-557. https://doi.org/10.3904/kjim.2014.29.5.547
- Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J Intern Med 2013;28:387-402. https://doi.org/10.3904/kjim.2013.28.4.387
- Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells: perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006;66:9339-9344. https://doi.org/10.1158/0008-5472.CAN-06-3126
- Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977;197:461-463. https://doi.org/10.1126/science.560061
- Sourisseau T, Hassan KA, Wistuba I, et al. Lung cancer stem cell: fancy conceptual model of tumor biology or cornerstone of a forthcoming therapeutic breakthrough? J Thorac Oncol 2014;9:7-17. https://doi.org/10.1097/JTO.0000000000000028
- Giangreco A, Arwert EN, Rosewell IR, Snyder J, Watt FM, Stripp BR. Stem cells are dispensable for lung homeostasis but restore airways after injury. Proc Natl Acad Sci U S A 2009;106:9286-9291. https://doi.org/10.1073/pnas.0900668106
- Akunuru S, James Zhai Q, Zheng Y. Non-small cell lung cancer stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and exhibit plasticity. Cell Death Dis 2012;3:e352. https://doi.org/10.1038/cddis.2012.93
- Yang CH, Wang HL, Lin YS, et al. Identification of CD24 as a cancer stem cell marker in human nasopharyngeal carcinoma. PLoS One 2014;9:e99412. https://doi.org/10.1371/journal.pone.0099412
- Li Z, Bao S, Wu Q, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009;15:501-513. https://doi.org/10.1016/j.ccr.2009.03.018
- McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 2009;7:489-497. https://doi.org/10.1158/1541-7786.MCR-08-0360
-
Koukourakis MI, Kakouratos C, Kalamida D, et al. Hypoxia-inducible proteins
$HIF1{\alpha}$ and lactate dehydrogenase LDH5, key markers of anaerobic metabolism, relate with stem cell markers and poor post-radiotherapy outcome in bladder cancer. Int J Radiat Biol 2016;92:353-363. https://doi.org/10.3109/09553002.2016.1162921 - Seidel S, Garvalov BK, Wirta V, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 2010;133:983-995. https://doi.org/10.1093/brain/awq042
- Wang Z, Sun J, Feng Y, Tian X, Wang B, Zhou Y. Oncogenic roles and drug target of CXCR4/CXCL12 axis in lung cancer and cancer stem cell. Tumour Biol 2016;37:8515-8528. https://doi.org/10.1007/s13277-016-5016-z
- Cho BS, Kim HJ, Konopleva M. Targeting the CXCL12/CXCR4 axis in acute myeloid leukemia: from bench to bedside. Korean J Intern Med 2017;32:248-257. https://doi.org/10.3904/kjim.2016.244
- Nian WQ, Chen FL, Ao XJ, Chen ZT. CXCR4 positive cells from Lewis lung carcinoma cell line have cancer metastatic stem cell characteristics. Mol Cell Biochem 2011;355:241-248. https://doi.org/10.1007/s11010-011-0860-z
- Romain B, Hachet-Haas M, Rohr S, et al. Hypoxia differentially regulated CXCR4 and CXCR7 signaling in colon cancer. Mol Cancer 2014;13:58. https://doi.org/10.1186/1476-4598-13-58
- Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun 2007;359:716-722. https://doi.org/10.1016/j.bbrc.2007.05.182
- Fabregat I, Malfettone A, Soukupova J. New insights into the crossroads between EMT and stemness in the context of cancer. J Clin Med 2016;5:37. https://doi.org/10.3390/jcm5030037.
- Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008;133:704-715. https://doi.org/10.1016/j.cell.2008.03.027
- Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One 2008;3:e2888. https://doi.org/10.1371/journal.pone.0002888
- Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012;148:349-361. https://doi.org/10.1016/j.cell.2011.11.025
- Kurrey NK, Jalgaonkar SP, Joglekar AV, et al. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 2009;27:2059-2068. https://doi.org/10.1002/stem.154
- Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemnessinhibiting microRNAs. Nat Cell Biol 2009;11:1487-1495. https://doi.org/10.1038/ncb1998
- Mima K, Okabe H, Ishimoto T, et al. CD44s regulates the TGF-beta-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res 2012;72:3414-3423. https://doi.org/10.1158/0008-5472.CAN-12-0299
- Nomura A, Banerjee S, Chugh R, et al. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget 2015;6:8313-8322.
- Huangyang P, Shang Y. Epigenetic regulation of epithelial to mesenchymal transition. Curr Cancer Drug Targets 2013;13:973-985. https://doi.org/10.2174/15680096113136660103
- Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 2009;69:4116-4124.
- Chen Y, Wang K, Qian CN, Leach R. DNA methylation is associated with transcription of snail and slug genes. Biochem Biophys Res Commun 2013;430:1083-1090. https://doi.org/10.1016/j.bbrc.2012.12.034
- Deneberg S, Guardiola P, Lennartsson A, et al. Prognostic DNA methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell chromatin marks. Blood 2011;118:5573-5582. https://doi.org/10.1182/blood-2011-01-332353
- Chang CJ, Chao CH, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011;13:317-323. https://doi.org/10.1038/ncb2173
- Taube JH, Malouf GG, Lu E, et al. Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Sci Rep 2013;3:2687. https://doi.org/10.1038/srep02687
- Simonsson S, Gurdon J. DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat Cell Biol 2004;6:984-990. https://doi.org/10.1038/ncb1176
- El Helou R, Wicinski J, Guille A, et al. Brief reports: a distinct DNA methylation signature defines breast cancer stem cells and predicts cancer outcome. Stem Cells 2014;32:3031-3036. https://doi.org/10.1002/stem.1792
- Yamazaki Y, Fujita TC, Low EW, Alarcon VB, Yanagimachi R, Marikawa Y. Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos. Mol Reprod Dev 2006;73:180-188. https://doi.org/10.1002/mrd.20411
- Liu CC, Lin JH, Hsu TW, et al. IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer 2015;136:547-559.
- Suzuki M, Mohamed S, Nakajima T, et al. Aberrant methylation of CXCL12 in non-small cell lung cancer is associated with an unfavorable prognosis. Int J Oncol 2008;33:113-119.
- Zhi Y, Chen J, Zhang S, Chang X, Ma J, Dai D. Down-regulation of CXCL12 by DNA hypermethylation and its involvement in gastric cancer metastatic progression. Dig Dis Sci 2012;57:650-659. https://doi.org/10.1007/s10620-011-1922-5
- Fridrichova I, Smolkova B, Kajabova V, et al. CXCL12 and ADAM23 hypermethylation are associated with advanced breast cancers. Transl Res 2015;165:717-730. https://doi.org/10.1016/j.trsl.2014.12.006
- Kubarek L, Jagodzinski PP. Epigenetic up-regulation of CXCR4 and CXCL12 expression by 17 beta-estradiol and tamoxifen is associated with formation of DNA methyltransferase 3B4 splice variant in Ishikawa endometrial adenocarcinoma cells. FEBS Lett 2007;581:1441-1448. https://doi.org/10.1016/j.febslet.2007.02.070
- Przybylski M, Kozlowska A, Pietkiewicz PP, Lutkowska A, Lianeri M, Jagodzinski PP. Increased CXCR4 expression in AsPC1 pancreatic carcinoma cells with RNA interference-mediated knockdown of DNMT1 and DNMT3B. Biomed Pharmacother 2010;64:254-258. https://doi.org/10.1016/j.biopha.2009.06.008
- Koga C, Kobayashi S, Nagano H, et al. Reprogramming using microRNA-302 improves drug sensitivity in hepatocellular carcinoma cells. Ann Surg Oncol 2014;21 Suppl 4:S591-S600. https://doi.org/10.1245/s10434-014-3705-7
- Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011;17:211-215. https://doi.org/10.1038/nm.2284
- Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009;138:592-603. https://doi.org/10.1016/j.cell.2009.07.011
- Gwak JM, Kim HJ, Kim EJ, et al. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat 2014;147:39-49. https://doi.org/10.1007/s10549-014-3069-5
- Yu T, Liu K, Wu Y, et al. MicroRNA-9 inhibits the proliferation of oral squamous cell carcinoma cells by suppressing expression of CXCR4 via the Wnt/beta-catenin signaling pathway. Oncogene 2014;33:5017-5027. https://doi.org/10.1038/onc.2013.448
- Yin P, Peng R, Peng H, et al. MiR-451 suppresses cell proliferation and metastasis in A549 lung cancer cells. Mol Biotechnol 2015;57:1-11. https://doi.org/10.1007/s12033-014-9796-3
- Sarvi S, Mackinnon AC, Avlonitis N, et al. CD133+ cancer stem-like cells in small cell lung cancer are highly tumorigenic and chemoresistant but sensitive to a novel neuropeptide antagonist. Cancer Res 2014;74:1554-1565. https://doi.org/10.1158/0008-5472.CAN-13-1541
- Chen Q, Lipkina G, Song Q, Kramer RH. Promoter methylation regulates cadherin switching in squamous cell carcinoma. Biochem Biophys Res Commun 2004;315:850-856. https://doi.org/10.1016/j.bbrc.2004.01.143
- Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 2009;8:843-852. https://doi.org/10.4161/cc.8.6.7907
- Chen Y, Ramjiawan RR, Reiberger T, et al. CXCR4 inhibition in tumor microenvironment facilitates anti- programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015;61:1591-1602. https://doi.org/10.1002/hep.27665
Cited by
- Cancer stem cells (CSCs): metabolic strategies for their identification and eradication vol.475, pp.9, 2018, https://doi.org/10.1042/bcj20170164
- Chemoresistance and the Self-Maintaining Tumor Microenvironment vol.10, pp.12, 2017, https://doi.org/10.3390/cancers10120471
- Hypoxia Can Induce Migration of Glioblastoma Cells Through a Methylation-Dependent Control of ODZ1 Gene Expression vol.9, pp.None, 2017, https://doi.org/10.3389/fonc.2019.01036
- Poor outcome in hypoxic endometrial carcinoma is related to vascular density vol.120, pp.11, 2017, https://doi.org/10.1038/s41416-019-0461-2
- Low Numbers of Vascular Vessels Correlate to Progression in Hormone-Naïve Prostate Carcinomas Undergoing Radical Prostatectomy vol.11, pp.9, 2017, https://doi.org/10.3390/cancers11091356
- Red Blood Cell-Membrane-Coated Poly(Lactic-co-glycolic Acid) Nanoparticles for Enhanced Chemo- and Hypoxia-Activated Therapy vol.2, pp.9, 2017, https://doi.org/10.1021/acsabm.9b00584
- ERO1α promotes hypoxic tumor progression and is associated with poor prognosis in pancreatic cancer vol.10, pp.57, 2017, https://doi.org/10.18632/oncotarget.27235
- Hypoxia-induced cancer stemness acquisition is associated with CXCR4 activation by its aberrant promoter demethylation vol.19, pp.None, 2019, https://doi.org/10.1186/s12885-019-5360-7
- Circular RNA circNRIP1 Sponges microRNA-138-5p to Maintain Hypoxia-Induced Resistance to 5-Fluorouracil Through HIF-1α-Dependent Glucose Metabolism in Gastric Carcinoma vol.12, pp.None, 2017, https://doi.org/10.2147/cmar.s246272
- Novel Therapeutic Strategies for Ovarian Cancer Stem Cells vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00319
- Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00486
- Colorectal Cancer Stem Cells in the Progression to Liver Metastasis vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.01511
- Genome-wide analysis of the hypoxia-related DNA methylation-driven genes in lung adenocarcinoma progression vol.40, pp.2, 2017, https://doi.org/10.1042/bsr20194200
- Hypoxia modulates stem cell properties and induces EMT through N‐glycosylation of EpCAM in breast cancer cells vol.235, pp.4, 2017, https://doi.org/10.1002/jcp.29252
- The Redox Theory of Development vol.32, pp.10, 2020, https://doi.org/10.1089/ars.2019.7976
- The Role of Epithelial-to-Mesenchymal Transition in Cutaneous Squamous Cell Carcinoma : Epithelial-to-Mesenchymal Transition in Cutaneous SCC vol.21, pp.6, 2017, https://doi.org/10.1007/s11864-020-00735-x
- Defining lung cancer stem cells exosomal payload of miRNAs in clinical perspective vol.12, pp.6, 2017, https://doi.org/10.4252/wjsc.v12.i6.406
- Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment vol.12, pp.9, 2017, https://doi.org/10.3390/cancers12092652
- TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-67325-7
- Hypoxia-Mediated Decrease of Ovarian Cancer Cells Reaction to Treatment: Significance for Chemo- and Immunotherapies vol.21, pp.24, 2020, https://doi.org/10.3390/ijms21249492
- MODERN CONCEPTS ON THE ROLE OF HYPOXIA IN THE DEVELOPMENT OF TUMOR RADIORESISTANCE vol.19, pp.6, 2017, https://doi.org/10.21294/1814-4861-2020-19-6-141-147
- Cisplatin prevents breast cancer metastasis through blocking early EMT and retards cancer growth together with paclitaxel vol.11, pp.5, 2017, https://doi.org/10.7150/thno.46460
- The CXCL12 Crossroads in Cancer Stem Cells and Their Niche vol.13, pp.3, 2017, https://doi.org/10.3390/cancers13030469
- HIF-Prolyl Hydroxylase Domain Proteins (PHDs) in Cancer-Potential Targets for Anti-Tumor Therapy? vol.13, pp.5, 2017, https://doi.org/10.3390/cancers13050988
- Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing vol.13, pp.5, 2017, https://doi.org/10.3390/cancers13051102
- hCINAP is potentially a direct target gene of HIF-1 and is required for hypoxia-induced EMT and apoptosis in cervical cancer cells vol.99, pp.2, 2017, https://doi.org/10.1139/bcb-2020-0090
- The Cancer Stem Cell Niche in Ovarian Cancer and Its Impact on Immune Surveillance vol.22, pp.8, 2021, https://doi.org/10.3390/ijms22084091
- Cancer stem cell characteristics and their potential as therapeutic targets vol.38, pp.7, 2017, https://doi.org/10.1007/s12032-021-01524-8
- Hypoxia in Lung Cancer Management: A Translational Approach vol.13, pp.14, 2017, https://doi.org/10.3390/cancers13143421
- The epithelial-mesenchymal transition regulators Twist, Slug, and Snail are associated with aggressive tumour features and poor outcome in prostate cancer patients vol.7, pp.3, 2017, https://doi.org/10.1002/cjp2.202
- Pluripotency inducing Yamanaka factors: role in stemness and chemoresistance of liver cancer vol.21, pp.8, 2021, https://doi.org/10.1080/14737140.2021.1915137
- Prolonged hypoxia switched on cancer stem cell-like plasticity in HepG2 tumourspheres cultured in serum-free media vol.57, pp.9, 2021, https://doi.org/10.1007/s11626-021-00625-y
- Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis vol.13, pp.19, 2017, https://doi.org/10.3390/cancers13194985