DOI QR코드

DOI QR Code

Three-dimensional echocardiography in adult congenital heart disease

  • Yang, Hyun Suk (Division of Cardiovascular Medicine, Department of Internal Medicine, Konkuk University School of Medicine)
  • Received : 2016.07.31
  • Accepted : 2017.06.16
  • Published : 2017.07.01

Abstract

Congenital heart disease (CHD) is now more common in adults than in children due to improvements in fetal echo, neonatal and pediatric care, and surgical techniques leading to dramatically increased survivability into adulthood. Adult patients with CHD, regardless of prior cardiac surgery, experience further cardiac problems or therapeutic challenges; therefore, a non-invasive, easily accessible echocardiographic examination is an essential follow-up tool. Among echocardiographic modalities, three-dimensional (3D) echocardiography provides better delineation of spatial relationships in complex cardiac geometries and more accurate volumetric information without geometric assumptions. For atrial septal defects, an en face view of the tissue defect allows better decisions on device closure. For tricuspid valve malformations, an en face view provides diagnostic information that is difficult to obtain from routine 2D tomography. In repaired tetralogy of fallot with pulmonary regurgitation, preoperative 3D echocardiography-based right ventricular volume may be used to determine the timing of a pulmonary valve replacement in conjunction with cardiovascular magnetic imaging. For optimal adult CHD care, 3D echocardiography is an important complement to routine 2D echocardiography.

Keywords

References

  1. von Ramm OT, Smith SW. Real time volumetric ultrasound imaging system. J Digit Imaging 1990;3:261-266. https://doi.org/10.1007/BF03168124
  2. Sugeng L, Weinert L, Thiele K, Lang RM. Real-time threedimensional echocardiography using a novel matrix array transducer. Echocardiography 2003;20:623-635. https://doi.org/10.1046/j.1540-8175.2003.t01-1-03031.x
  3. Yang HS, Pellikka PA, McCully RB, et al. Role of biplane and biplane echocardiographically guided 3-dimensional echocardiography during dobutamine stress echocardiography. J Am Soc Echocardiogr 2006;19:1136-1143. https://doi.org/10.1016/j.echo.2006.04.016
  4. Pothineni KR, Inamdar V, Miller AP, et al. Initial experience with live/real time three-dimensional transesophageal echocardiography. Echocardiography 2007;24:1099-1104. https://doi.org/10.1111/j.1540-8175.2007.00598.x
  5. Yang HS, Bansal RC, Mookadam F, et al. Practical guide for three-dimensional transthoracic echocardiography using a fully sampled matrix array transducer. J Am Soc Echocardiogr 2008;21:979-989. https://doi.org/10.1016/j.echo.2008.06.011
  6. Yang HS, Srivathsan K, Wissner E, Chandrasekaran K. Images in cardiovascular medicine. Real-time 3-dimensional transesophageal echocardiography: novel utility in atrial fibrillation ablation with a prosthetic mitral valve. Circulation 2008;117:e304-e305.
  7. Dekker DL, Piziali RL, Dong E Jr. A system for ultrasonically imaging the human heart in three dimensions. Comput Biomed Res 1974;7:544-553. https://doi.org/10.1016/0010-4809(74)90031-7
  8. Carlgren LE. The incidence of congenital heart disease in children born in Gothenburg 1941-1950. Br Heart J 1959;21:40-50. https://doi.org/10.1136/hrt.21.1.40
  9. Hoffman JI, Christianson R. Congenital heart disease in a cohort of 19,502 births with long-term follow-up. Am J Cardiol 1978;42:641-647. https://doi.org/10.1016/0002-9149(78)90635-5
  10. Warnes CA, Liberthson R, Danielson GK, et al. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol 2001;37:1170-1175. https://doi.org/10.1016/S0735-1097(01)01272-4
  11. Shiota T. Role of modern 3D echocardiography in valvular heart disease. Korean J Intern Med 2014;29:685-702. https://doi.org/10.3904/kjim.2014.29.6.685
  12. Khoshhal S. Feasibility and effectiveness of three-dimensional echocardiography in diagnosing congenital heart diseases. Pediatr Cardiol 2013;34:1525-1531. https://doi.org/10.1007/s00246-013-0718-0
  13. Said SM, Driscoll DJ, Dearani JA. Transition of care in congenital heart disease from pediatrics to adulthood. Semin Pediatr Surg 2015;24:69-72. https://doi.org/10.1053/j.sempedsurg.2015.01.003
  14. Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2008;52:e143-e263. https://doi.org/10.1016/j.jacc.2008.10.001
  15. Cao Q, Radtke W, Berger F, Zhu W, Hijazi ZM. Transcatheter closure of multiple atrial septal defects: initial results and value of two- and three-dimensional transoesophageal echocardiography. Eur Heart J 2000;21:941-947. https://doi.org/10.1053/euhj.1999.1909
  16. Perk G, Lang RM, Garcia-Fernandez MA, et al. Use of real time three-dimensional transesophageal echocardiography in intracardiac catheter based interventions. J Am Soc Echocardiogr 2009;22:865-882. https://doi.org/10.1016/j.echo.2009.04.031
  17. Tobis J, Shenoda M. Percutaneous treatment of patent foramen ovale and atrial septal defects. J Am Coll Cardiol 2012;60:1722-1732. https://doi.org/10.1016/j.jacc.2012.01.086
  18. Kong D, Cheng L, Dong L, et al. Three-dimensional echocardiography in the evaluation of right ventricular global and regional systolic function in patients with atrial septal defect before and after percutaneous closure. Echocardiography 2016;33:596-605. https://doi.org/10.1111/echo.13134
  19. Roguin N, Du ZD, Barak M, Nasser N, Hershkowitz S, Milgram E. High prevalence of muscular ventricular septal defect in neonates. J Am Coll Cardiol 1995;26:1545-1548. https://doi.org/10.1016/0735-1097(95)00358-4
  20. Mercer-Rosa L, Seliem MA, Fedec A, Rome J, Rychik J, Gaynor JW. Illustration of the additional value of real-time 3-dimensional echocardiography to conventional transthoracic and transesophageal 2-dimensional echocardiography in imaging muscular ventricular septal defects: does this have any impact on individual patient treatment? J Am Soc Echocardiogr 2006;19:1511-1519. https://doi.org/10.1016/j.echo.2006.06.015
  21. Sivakumar K, Singhi A, Pavithran S. Enface reconstruction of VSD on RV septal surface using real-time 3D echocardiography. JACC Cardiovasc Imaging 2012;5:1176-1180. https://doi.org/10.1016/j.jcmg.2012.03.021
  22. Acar P, Abadir S, Aggoun Y. Transcatheter closure of perimembranous ventricular septal defects with Amplatzer occluder assessed by real-time three-dimensional echocardiography. Eur J Echocardiogr 2007;8:110-115. https://doi.org/10.1016/j.euje.2006.02.008
  23. Ahmed MI, Gok G, Yuzbas B, et al. Incremental value of three-dimensional echocardiography over the two-dimensional technique in the assessment of combined sinus of valsalva rupture into the right ventricle and adjacent perimembranous ventricular septal defect. Echocardiography 2014;31:779-782. https://doi.org/10.1111/echo.12661
  24. Chamsi-Pasha MA, Sayyed SH, Moulton MJ. Real-time 3-dimensional transesophageal echocardiography in the assessment of ventriculoatrial shunt (Gerbode defect) complicating simultaneous mitral and tricuspid valve repair. J Am Coll Cardiol 2014;63:e37. https://doi.org/10.1016/j.jacc.2013.11.060
  25. Carpentier A, Chauvaud S, Mace L, et al. A new reconstructive operation for Ebstein's anomaly of the tricuspid valve. J Thorac Cardiovasc Surg 1988;96:92-101.
  26. Attenhofer Jost CH, Connolly HM, Dearani JA, Edwards WD, Danielson GK. Ebstein's anomaly. Circulation 2007;115:277-285. https://doi.org/10.1161/CIRCULATIONAHA.106.619338
  27. Badano LP, Agricola E, Perez de Isla L, Gianfagna P, Zamorano JL. Evaluation of the tricuspid valve morphology and function by transthoracic real-time three-dimensional echocardiography. Eur J Echocardiogr 2009;10:477-484. https://doi.org/10.1093/ejechocard/jep044
  28. Patel V, Nanda NC, Rajdev S, et al. Live/real time three-dimensional transthoracic echocardiographic assessment of Ebstein's anomaly. Echocardiography 2005;22:847-854. https://doi.org/10.1111/j.1540-8175.2005.00173.x
  29. van Noord PT, Scohy TV, McGhie J, Bogers AJ. Three-dimensional transesophageal echocardiography in Ebstein's anomaly. Interact Cardiovasc Thorac Surg 2010;10:836-837. https://doi.org/10.1510/icvts.2009.229476
  30. Negoi RI, Ispas AT, Ghiorghiu I, et al. Complex Ebstein's malformation: defining preoperative cardiac anatomy and function. J Card Surg 2013;28:70-81. https://doi.org/10.1111/jocs.12032
  31. Reller MD, Strickland MJ, Riehle-Colarusso T, Mahle WT, Correa A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J Pediatr 2008;153:807-813. https://doi.org/10.1016/j.jpeds.2008.05.059
  32. O'Leary PW, Edwards WD, Julsrud PR, Puga FJ. Pulmonary atresia and ventricular septal defect. In: Allen HD, Driscoll DJ, Shaddy RE, Feltes TF, eds. Moss and Adams' Heart Disease in Infants, Children and Adolescents. 7th ed. Philadelphia: Lippincott Williams & Wilkins, 2008:878-887.
  33. Al Habib HF, Jacobs JP, Mavroudis C, et al. Contemporary patterns of management of tetralogy of Fallot: data from the Society of Thoracic Surgeons Database. Ann Thorac Surg 2010;90:813-819. https://doi.org/10.1016/j.athoracsur.2010.03.110
  34. Lindberg HL, Saatvedt K, Seem E, Hoel T, Birkeland S. Single-center 50 years' experience with surgical management of tetralogy of Fallot. Eur J Cardiothorac Surg 2011;40:538-542.
  35. Valente AM, Cook S, Festa P, et al. Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr 2014;27:111-141. https://doi.org/10.1016/j.echo.2013.11.009
  36. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685-713. https://doi.org/10.1016/j.echo.2010.05.010
  37. Larrazet F, Czitrom D, Laborde F, Bouabdallah K, Folliguet T. Decreased right ventricular lateral wall velocities early after cardiac surgery. Echocardiography 2011;28:438-441. https://doi.org/10.1111/j.1540-8175.2010.01355.x
  38. Tamborini G, Muratori M, Brusoni D, et al. Is right ventricular systolic function reduced after cardiac surgery? A two- and three-dimensional echocardiographic study. Eur J Echocardiogr 2009;10:630-634. https://doi.org/10.1093/ejechocard/jep015
  39. Atsumi A, Seo Y, Ishizu T, et al. Right ventricular deformation analyses using a three-dimensional speckle-tracking echocardiographic system specialized for the right ventricle. J Am Soc Echocardiogr 2016;29:402-411.e2. https://doi.org/10.1016/j.echo.2015.12.014
  40. Ferraz Cavalcanti PE, Sa MP, Santos CA, et al. Pulmonary valve replacement after operative repair of tetralogy of Fallot: meta-analysis and meta-regression of 3,118 patients from 48 studies. J Am Coll Cardiol 2013;62:2227-2243. https://doi.org/10.1016/j.jacc.2013.04.107
  41. Sabate Rotes A, Eidem BW, Connolly HM, et al. Longterm follow-up after pulmonary valve replacement in repaired tetralogy of Fallot. Am J Cardiol 2014;114:901-908. https://doi.org/10.1016/j.amjcard.2014.06.023
  42. Silversides CK, Kiess M, Beauchesne L, et al. Canadian Cardiovascular Society 2009 Consensus Conference on the management of adults with congenital heart disease: outflow tract obstruction, coarctation of the aorta, tetralogy of Fallot, Ebstein anomaly and Marfan's syndrome. Can J Cardiol 2010;26:e80-e97. https://doi.org/10.1016/S0828-282X(10)70003-9
  43. Baumgartner H, Bonhoeffer P, De Groot NM, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 2010;31:2915-2957. https://doi.org/10.1093/eurheartj/ehq249
  44. Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol 2005;95:779-782. https://doi.org/10.1016/j.amjcard.2004.11.037
  45. Oosterhof T, van Straten A, Vliegen HW, et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 2007;116:545-551. https://doi.org/10.1161/CIRCULATIONAHA.106.659664
  46. Geva T, Gauvreau K, Powell AJ, et al. Randomized trial of pulmonary valve replacement with and without right ventricular remodeling surgery. Circulation 2010;122(11 Suppl):S201-S208. https://doi.org/10.1161/CIRCULATIONAHA.110.951178
  47. Lee C, Kim YM, Lee CH, et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J Am Coll Cardiol 2012;60:1005-1014. https://doi.org/10.1016/j.jacc.2012.03.077
  48. Sugeng L, Mor-Avi V, Weinert L, et al. Multimodality comparison of quantitative volumetric analysis of the right ventricle. JACC Cardiovasc Imaging 2010;3:10-18. https://doi.org/10.1016/j.jcmg.2009.09.017
  49. van der Zwaan HB, Helbing WA, McGhie JS, et al. Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: validation with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 2010;23:134-140. https://doi.org/10.1016/j.echo.2009.12.001
  50. Grewal J, Majdalany D, Syed I, Pellikka P, Warnes CA. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J Am Soc Echocardiogr 2010;23:127-133. https://doi.org/10.1016/j.echo.2009.11.002
  51. Katogi T. Extracardiac conduit Fontan procedure versus intra-atrial lateral tunnel Fontan procedure. Gen Thorac Cardiovasc Surg 2012;60:792-795. https://doi.org/10.1007/s11748-012-0161-9
  52. Pundi KN, Johnson JN, Dearani JA, et al. 40-Year follow-up after the Fontan operation: long-term outcomes of 1,052 patients. J Am Coll Cardiol 2015;66:1700-1710 . https://doi.org/10.1016/j.jacc.2015.07.065
  53. Soriano BD, Hoch M, Ithuralde A, et al. Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle: a comparison study with cardiac magnetic resonance. Circulation 2008;117:1842-1848. https://doi.org/10.1161/CIRCULATIONAHA.107.715854
  54. Zhong SW, Zhang YQ, Chen LJ, Wang SS, Li WH. Evaluation of left ventricular volumes and function by real time three-dimensional echocardiography in children with functional single left ventricle: a comparison between QLAB and TomTec. Echocardiography 2015;32:1554-1563. https://doi.org/10.1111/echo.12990
  55. Zhong SW, Zhang YQ, Chen LJ, Wang SS, Li WH, Sun YJ. Ventricular twisting and dyssynchrony in children with single left ventricle using three-dimensional speckle tracking imaging after the fontan operation. Echocardiography 2016;33:606-617. https://doi.org/10.1111/echo.13103
  56. Takahashi K, Mackie AS, Rebeyka IM, et al. Two-dimensional versus transthoracic real-time three-dimensional echocardiography in the evaluation of the mechanisms and sites of atrioventricular valve regurgitation in a congenital heart disease population. J Am Soc Echocardiogr 2010;23:726-734. https://doi.org/10.1016/j.echo.2010.04.017
  57. Kaku K, Takeuchi M, Tsang W, et al. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 2014;27:55-64. https://doi.org/10.1016/j.echo.2013.10.002
  58. Gomez A, de Vecchi A, Jantsch M, et al. 4D blood flow reconstruction over the entire ventricle from wall motion and blood velocity derived from ultrasound data. IEEE Trans Med Imaging 2015;34:2298-2308. https://doi.org/10.1109/TMI.2015.2428932
  59. Deferm S, Meyns B, Vlasselaers D, Budts W. 3D-printing in congenital cardiology: from flatland to spaceland. J Clin Imaging Sci 2016;6:8. https://doi.org/10.4103/2156-7514.179408
  60. Costello JP, Olivieri LJ, Su L, et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 2015;10:185-190. https://doi.org/10.1111/chd.12238
  61. Gosnell J, Pietila T, Samuel BP, Kurup HK, Haw MP, Vettukattil JJ. Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging 2016;29:665-669. https://doi.org/10.1007/s10278-016-9879-8

Cited by

  1. Echocardiographic Pitfalls for General Physicians in Understanding Adult Congenital Heart Disease vol.6, pp.1, 2017, https://doi.org/10.18525/cu.2021.6.1.17