DOI QR코드

DOI QR Code

Infection in systemic lupus erythematosus, similarities, and differences with lupus flare

  • Jung, Ju-Yang (Department of Rheumatology, Ajou University School of Medicine) ;
  • Suh, Chang-Hee (Department of Rheumatology, Ajou University School of Medicine)
  • Received : 2016.07.13
  • Accepted : 2017.02.21
  • Published : 2017.05.01

Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with diverse manifestations, and its pathogenesis is unclear and complicated. Infection and SLE are similar in that they both cause inf lammatory reactions in the immune system; however, one functions to protect the body, whereas the other is activated to damage the body. Infection is known as one of the common trigger factors for SLE; there are a number of reports on infectious agents that provoke autoimmune response. Several viruses, bacteria, and protozoa were revealed to cause immune dysfunction by molecular mimicry, epitope spreading, and bystander activation. In contrast, certain pathogens were revealed to protect from immune dysregulation. Infection can be threatening to patients with SLE who have a compromised immune system, and it is regarded as one of the common causes of mortality in SLE. A clinical distinction between infection and lupus f lare up is required when patients with SLE present fevers. With a close-up assessment of symptoms and physical examination, C-reactive protein and disease activity markers play a major role in differentiating the different disease conditions. Vaccination is necessary because protection against infection is important in patients with SLE.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI)

References

  1. Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet 2014;384:1878-1888. https://doi.org/10.1016/S0140-6736(14)60128-8
  2. Hwang J, Lee J, Ahn JK, Park EJ, Cha HS, Koh EM. Clinical characteristics of male and female Korean patients with systemic lupus erythematosus: a comparative study. Korean J Intern Med 2015;30:242-249. https://doi.org/10.3904/kjim.2015.30.2.242
  3. Hagberg N, Ronnblom L. Systemic lupus erythematosus: a disease with a dysregulated type I interferon system. Scand J Immunol 2015;82:199-207. https://doi.org/10.1111/sji.12330
  4. Ohl K, Tenbrock K. Regulatory T cells in systemic lupus erythematosus. Eur J Immunol 2015;45:344-355. https://doi.org/10.1002/eji.201344280
  5. Esposito S, Bosis S, Semino M, Rigante D. Infections and systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis 2014;33:1467-1475. https://doi.org/10.1007/s10096-014-2098-7
  6. Wucherpfennig KW. Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest 2001;108:1097-1104. https://doi.org/10.1172/JCI200114235
  7. Jung JY, Suh CH. Incomplete clearance of apoptotic cells in systemic lupus erythematosus: pathogenic role and potential biomarker. Int J Rheum Dis 2015;18:294-303. https://doi.org/10.1111/1756-185X.12568
  8. Munoz LE, van Bavel C, Franz S, Berden J, Herrmann M, van der Vlag J. Apoptosis in the pathogenesis of systemic lupus erythematosus. Lupus 2008;17:371-375. https://doi.org/10.1177/0961203308089990
  9. Koutouzov S, Mathian A, Dalloul A. Type-I interferons and systemic lupus erythematosus. Autoimmun Rev 2006;5:554-562. https://doi.org/10.1016/j.autrev.2006.05.002
  10. Draborg AH, Duus K, Houen G. Epstein-Barr virus and systemic lupus erythematosus. Clin Dev Immunol 2012;2012:370516.
  11. James JA, Kaufman KM, Farris AD, Taylor-Albert E, Lehman TJ, Harley JB. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 1997;100:3019-3026. https://doi.org/10.1172/JCI119856
  12. Perez-Mercado AE, Vila-Perez S. Cytomegalovirus as a trigger for systemic lupus erythematosus. J Clin Rheumatol 2010;16:335-337. https://doi.org/10.1097/RHU.0b013e3181f4cf52
  13. Barzilai O, Sherer Y, Ram M, Izhaky D, Anaya JM, Shoenfeld Y. Epstein-Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report. Ann N Y Acad Sci 2007;1108:567-577. https://doi.org/10.1196/annals.1422.059
  14. Francis L, Perl A. Infection in systemic lupus erythematosus: friend or foe? Int J Clin Rheumtol 2010;5:59-74. https://doi.org/10.2217/ijr.09.72
  15. Rasmussen NS, Draborg AH, Nielsen CT, Jacobsen S, Houen G. Antibodies to early EBV, CMV, and HHV6 antigens in systemic lupus erythematosus patients. Scand J Rheumatol 2015;44:143-149. https://doi.org/10.3109/03009742.2014.973061
  16. Herrmann M, Hagenhofer M, Kalden JR. Retroviruses and systemic lupus erythematosus. Immunol Rev 1996;152:145-156. https://doi.org/10.1111/j.1600-065X.1996.tb00914.x
  17. Tugnet N, Rylance P, Roden D, Trela M, Nelson P. Human endogenous retroviruses (HERVs) and autoimmune rheumatic disease: is there a link? Open Rheumatol J 2013;7:13-21.
  18. Pullmann R Jr, Bonilla E, Phillips PE, Middleton FA, Perl A. Haplotypes of the HRES-1 endogenous retrovirus are associated with development and disease manifestations of systemic lupus erythematosus. Arthritis Rheum 2008;58:532-540. https://doi.org/10.1002/art.23161
  19. Wu Z, Mei X, Zhao D, et al. DNA methylation modulates HERV-E expression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci 2015;77:110-116. https://doi.org/10.1016/j.jdermsci.2014.12.004
  20. Aslanidis S, Pyrpasopoulou A, Kontotasios K, Doumas S, Zamboulis C. Parvovirus B19 infection and systemic lupus erythematosus: activation of an aberrant pathway? Eur J Intern Med 2008;19:314-318. https://doi.org/10.1016/j.ejim.2007.09.013
  21. Gandhi MK, Khanna R. Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis 2004;4:725-738. https://doi.org/10.1016/S1473-3099(04)01202-2
  22. Mohamed AE, Hasen AM, Mohammed GF, Elmaraghy NN. Real-time PCR of cytomegalovirus and Epstein-Barr virus in adult Egyptian patients with systemic lupus erythematosus. Int J Rheum Dis 2015;18:452-458. https://doi.org/10.1111/1756-185X.12261
  23. Chen J, Zhang H, Chen P, et al. Correlation between systemic lupus erythematosus and cytomegalovirus infection detected by different methods. Clin Rheumatol 2015;34:691-698. https://doi.org/10.1007/s10067-015-2868-3
  24. Deng GM, Tsokos GC. Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation. J Immunol 2008;181:4019-4026. https://doi.org/10.4049/jimmunol.181.6.4019
  25. Versini M, Jeandel PY, Bashi T, Bizzaro G, Blank M, Shoenfeld Y. Unraveling the hygiene hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Med 2015;13:81. https://doi.org/10.1186/s12916-015-0306-7
  26. Vercelli D. Mechanisms of the hygiene hypothesis: molecular and otherwise. Curr Opin Immunol 2006;18:733-737. https://doi.org/10.1016/j.coi.2006.09.002
  27. Weinstock JV. Autoimmunity: the worm returns. Nature 2012;491:183-185. https://doi.org/10.1038/491183a
  28. Rook GA. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol 2012;42:5-15. https://doi.org/10.1007/s12016-011-8285-8
  29. Oldstone MB, Dixon FJ. Inhibition of antibodies to nuclear antigen and to DNA in New Zealand mice infected with lactate dehydrogenase virus. Science 1972;175:784-786. https://doi.org/10.1126/science.175.4023.784
  30. Clatworthy MR, Willcocks L, Urban B, et al. Systemic lupus erythematosus-associated defects in the inhibitory receptor FcgammaRIIb reduce susceptibility to malaria. Proc Natl Acad Sci U S A 2007;104:7169-7174. https://doi.org/10.1073/pnas.0608889104
  31. Willcocks LC, Carr EJ, Niederer HA, et al. A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc Natl Acad Sci U S A 2010;107:7881-7885. https://doi.org/10.1073/pnas.0915133107
  32. Badr G, Sayed A, Abdel-Maksoud MA, et al. Infection of female BWF1 lupus mice with malaria parasite attenuates B cell autoreactivity by modulating the CXCL12/CXCR4 axis and its downstream signals PI3K/AKT, NFkappaB and ERK. PLoS One 2015;10:e0125340. https://doi.org/10.1371/journal.pone.0125340
  33. Abdel-Maksoud MA, Abdel-Ghaffar FA, El-Amir A, Al-Quraishy S, Badr G. Infection with plasmodium chabaudi diminishes plasma immune complexes and ameliorates the histopathological alterations in different organs of female BWF1 lupus mice. Eur Rev Med Pharmacol Sci 2016;20:733-744.
  34. Chen M, Aosai F, Norose K, et al. Toxoplasma gondii infection inhibits the development of lupus-like syndrome in autoimmune (New Zealand Black x New Zealand White) F1 mice. Int Immunol 2004;16:937-946. https://doi.org/10.1093/intimm/dxh095
  35. Rodgers DT, McGrath MA, Pineda MA, et al. The parasitic worm product ES-62 targets myeloid differentiation factor 88-dependent effector mechanisms to suppress antinuclear antibody production and proteinuria in MRL/lpr mice. Arthritis Rheumatol 2015;67:1023-1035. https://doi.org/10.1002/art.39004
  36. Sawalha AH, Schmid WR, Binder SR, Bacino DK, Harley JB. Association between systemic lupus erythematosus and Helicobacter pylori seronegativity. J Rheumatol 2004;31:1546-1550.
  37. Zhao J, Qiu M, Li M, Lu C, Gu J. Low prevalence of hepatitis B virus infection in patients with systemic lupus erythematosus in southern China. Rheumatol Int 2010;30:1565-1570. https://doi.org/10.1007/s00296-009-1188-9
  38. Ram M, Anaya JM, Barzilai O, et al. The putative protective role of hepatitis B virus (HBV) infection from autoimmune disorders. Autoimmun Rev 2008;7:621-625. https://doi.org/10.1016/j.autrev.2008.06.008
  39. Petri M. Infection in systemic lupus erythematosus. Rheum Dis Clin North Am 1998;24:423-456. https://doi.org/10.1016/S0889-857X(05)70016-8
  40. Wang Z, Wang Y, Zhu R, et al. Long-term survival and death causes of systemic lupus erythematosus in China: a systemic review of observational studies. Medicine (Baltimore) 2015;94:e794. https://doi.org/10.1097/MD.0000000000000794
  41. Goldblatt F, Chambers S, Rahman A, Isenberg DA. Serious infections in British patients with systemic lupus erythematosus: hospitalisations and mortality. Lupus 2009;18:682-689. https://doi.org/10.1177/0961203308101019
  42. Cuchacovich R, Gedalia A. Pathophysiology and clinical spectrum of infections in systemic lupus erythematosus. Rheum Dis Clin North Am 2009;35:75-93. https://doi.org/10.1016/j.rdc.2009.03.003
  43. Gladman DD, Hussain F, Ibanez D, Urowitz MB. The nature and outcome of infection in systemic lupus erythematosus. Lupus 2002;11:234-239. https://doi.org/10.1191/0961203302lu170oa
  44. Borba EF, Ribeiro AC, Martin P, Costa LP, Guedes LK, Bonfa E. Incidence, risk factors, and outcome of Herpes zoster in systemic lupus erythematosus. J Clin Rheumatol 2010;16:119-122. https://doi.org/10.1097/RHU.0b013e3181d52ed7
  45. Hu SC, Yen FL, Wang TN, Lin YC, Lin CL, Chen GS. Immunosuppressive medication use and risk of herpes zoster (HZ) in patients with systemic lupus erythematosus (SLE): a nationwide case-control study. J Am Acad Dermatol 2016;75:49-58. https://doi.org/10.1016/j.jaad.2015.12.059
  46. Murray SG, Schmajuk G, Trupin L, et al. National lupus hospitalization trends reveal rising rates of herpes zoster and declines in pneumocystis pneumonia. PLoS One 2016;11:e0144918. https://doi.org/10.1371/journal.pone.0144918
  47. Ferreira JC, Marques HH, Ferriani MP, et al. Herpes zoster infection in childhood-onset systemic lupus erythematosus patients: a large multicenter study. Lupus 2016;25:754-759. https://doi.org/10.1177/0961203315627203
  48. Rondaan C, de Haan A, Horst G, et al. Altered cellular and humoral immunity to varicella-zoster virus in patients with autoimmune diseases. Arthritis Rheumatol 2014;66:3122-3128. https://doi.org/10.1002/art.38804
  49. Ramos-Casals M, Cuadrado MJ, Alba P, et al. Acute viral infections in patients with systemic lupus erythematosus: description of 23 cases and review of the literature. Medicine (Baltimore) 2008;87:311-318. https://doi.org/10.1097/MD.0b013e31818ec711
  50. Tam LS, Chan AY, Chan PK, Chang AR, Li EK. Increased prevalence of squamous intraepithelial lesions in systemic lupus erythematosus: association with human papillomavirus infection. Arthritis Rheum 2004;50:3619-3625. https://doi.org/10.1002/art.20616
  51. Lee YH, Choe JY, Park SH, et al. Prevalence of human papilloma virus infections and cervical cytological abnormalities among Korean women with systemic lupus erythematosus. J Korean Med Sci 2010;25:1431-1437. https://doi.org/10.3346/jkms.2010.25.10.1431
  52. Nath R, Mant C, Luxton J, et al. High risk of human papillomavirus type 16 infections and of development of cervical squamous intraepithelial lesions in systemic lupus erythematosus patients. Arthritis Rheum 2007;57:619-625. https://doi.org/10.1002/art.22667
  53. Duffy KN, Duffy CM, Gladman DD. Infection and disease activity in systemic lupus erythematosus: a review of hospitalized patients. J Rheumatol 1991;18:1180-1184.
  54. Bosch X, Guilabert A, Pallares L, et al. Infections in systemic lupus erythematosus: a prospective and controlled study of 110 patients. Lupus 2006;15:584-589. https://doi.org/10.1177/0961203306071919
  55. Jeong SJ, Choi H, Lee HS, et al. Incidence and risk factors of infection in a single cohort of 110 adults with systemic lupus erythematosus. Scand J Infect Dis 2009;41:268-274. https://doi.org/10.1080/00365540902744741
  56. Suh CH, Jeong YS, Park HC, et al. Risk factors for infection and role of C-reactive protein in Korean patients with systemic lupus erythematosus. Clin Exp Rheumatol 2001;19:191-194.
  57. Houssiau FA, Vasconcelos C, D'Cruz D, et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum 2002;46:2121-2131. https://doi.org/10.1002/art.10461
  58. Cutolo M, Seriolo B, Pizzorni C, et al. Use of glucocorticoids and risk of infections. Autoimmun Rev 2008;8:153-155. https://doi.org/10.1016/j.autrev.2008.07.010
  59. Feng PH, Tan TH. Tuberculosis in patients with systemic lupus erythematosus. Ann Rheum Dis 1982;41:11-14. https://doi.org/10.1136/ard.41.1.11
  60. Kang I, Park SH. Infectious complications in SLE after immunosuppressive therapies. Curr Opin Rheumatol 2003;15:528-534. https://doi.org/10.1097/00002281-200309000-00002
  61. Chang YS, Liu CJ, Ou SM, et al. Tuberculosis infection in primary Sjogren's syndrome: a nationwide population-based study. Clin Rheumatol 2014;33:377-383. https://doi.org/10.1007/s10067-013-2408-y
  62. Prabu V, Agrawal S. Systemic lupus erythematosus and tuberculosis: a review of complex interactions of complicated diseases. J Postgrad Med 2010;56:244-250. https://doi.org/10.4103/0022-3859.68653
  63. Yun JE, Lee SW, Kim TH, et al. The incidence and clinical characteristics of Mycobacterium tuberculosis infection among systemic lupus erythematosus and rheumatoid arthritis patients in Korea. Clin Exp Rheumatol 2002;20:127-132.
  64. Cho H, Kim YW, Suh CH, et al. Concordance between the tuberculin skin test and interferon gamma release assay (IGRA) for diagnosing latent tuberculosis infection in patients with systemic lupus erythematosus and patient characteristics associated with an indeterminate IGRA. Lupus 2016;25:1341-1348. https://doi.org/10.1177/0961203316639381
  65. Suh CH, Chun HY, Ye YM, Park HS. Unresponsiveness of C-reactive protein in the non-infectious inflammation of systemic lupus erythematosus is associated with interleukin 6. Clin Immunol 2006;119:291-296. https://doi.org/10.1016/j.clim.2005.11.006
  66. Kim HA, Jeon JY, An JM, Koh BR, Suh CH. C-reactive protein is a more sensitive and specific marker for diagnosing bacterial infections in systemic lupus erythematosus compared to S100A8/A9 and procalcitonin. J Rheumatol 2012;39:728-734. https://doi.org/10.3899/jrheum.111044
  67. Kim HA, Jeon JY, Choi GS, et al. The antichromatin antibodies can be useful as a diagnostic tool and disease activity marker of systemic lupus erythematosus in Koreans. Clin Immunol 2008;128:277-283. https://doi.org/10.1016/j.clim.2008.03.516
  68. Beca S, Rodriguez-Pinto I, Alba MA, Cervera R, Espinosa G. Development and validation of a risk calculator to differentiate flares from infections in systemic lupus erythematosus patients with fever. Autoimmun Rev 2015;14:586-593. https://doi.org/10.1016/j.autrev.2015.02.005
  69. Lacki JK, Leszczynski P, Kelemen J, Muller W, Mackiewicz SH. Cytokine concentration in serum of lupus erythematosus patients: the effect on acute phase response. J Med 1997;28:99-107.
  70. Sciascia S, Ceberio L, Garcia-Fernandez C, Roccatello D, Karim Y, Cuadrado MJ. Systemic lupus erythematosus and infections: clinical importance of conventional and upcoming biomarkers. Autoimmun Rev 2012;12:157-163. https://doi.org/10.1016/j.autrev.2012.03.009
  71. Pasoto SG, Ribeiro AC, Bonfa E. Update on infections and vaccinations in systemic lupus erythematosus and Sjogren's syndrome. Curr Opin Rheumatol 2014;26:528-537. https://doi.org/10.1097/BOR.0000000000000084
  72. van Assen S, Agmon-Levin N, Elkayam O, et al. EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis 2011;70:414-422. https://doi.org/10.1136/ard.2010.137216
  73. Aron-Maor A, Shoenfeld Y. Vaccination and systemic lupus erythematosus: the bidirectional dilemmas. Lupus 2001;10:237-240. https://doi.org/10.1191/096120301673085478
  74. Wiesik-Szewczyk E, Romanowska M, Mielnik P, et al. Anti-influenza vaccination in systemic lupus erythematosus patients: an analysis of specific humoral response and vaccination safety. Clin Rheumatol 2010;29:605-613. https://doi.org/10.1007/s10067-010-1373-y
  75. Elkayam O, Paran D, Caspi D, et al. Immunogenicity and safety of pneumococcal vaccination in patients with rheumatoid arthritis or systemic lupus erythematosus. Clin Infect Dis 2002;34:147-153. https://doi.org/10.1086/338043
  76. Grimaldi-Bensouda L, Le Guern V, Kone-Paut I, et al. The risk of systemic lupus erythematosus associated with vaccines: an international case-control study. Arthritis Rheumatol 2014;66:1559-1567. https://doi.org/10.1002/art.38429
  77. Dell' Era L, Esposito S, Corona F, Principi N. Vaccination of children and adolescents with rheumatic diseases. Rheumatology (Oxford) 2011;50:1358-1365. https://doi.org/10.1093/rheumatology/ker102
  78. Elkayam O, Paran D, Burke M, et al. Pneumococcal vaccination of patients with systemic lupus erythematosus: effects on generation of autoantibodies. Autoimmunity 2005;38:493-496. https://doi.org/10.1080/08916930500285725

Cited by

  1. Clinical characteristics and risk factors of infections in patients with systemic lupus erythematosus vol.37, pp.10, 2017, https://doi.org/10.1007/s10067-018-4198-8
  2. Anti-Inflammatory and Immune Regulatory Actions of Naja naja atra Venom vol.10, pp.3, 2017, https://doi.org/10.3390/toxins10030100
  3. Invasive fungal infections in Colombian patients with systemic lupus erythematosus vol.27, pp.7, 2018, https://doi.org/10.1177/0961203318763743
  4. Collagen triple helix repeat containing-1: a novel biomarker associated with disease activity in Systemic lupus erythematosus vol.27, pp.13, 2018, https://doi.org/10.1177/0961203318804877
  5. Epidemiology and management practices for childhood-onset systemic lupus erythematosus patients: a survey in Latin America vol.37, pp.12, 2018, https://doi.org/10.1007/s10067-018-4254-4
  6. Associated clinical factors for serious infections in patients with systemic lupus erythematosus vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-46039-5
  7. Mechanisms of lymphatic system‐specific viral replication and its potential role in autoimmune disease vol.195, pp.1, 2019, https://doi.org/10.1111/cei.13241
  8. A case of Lemierre syndrome combined with a suspected systemic lupus erythematosus flare vol.7, pp.None, 2017, https://doi.org/10.1177/2050313x19871782
  9. Increased risk of rheumatoid arthritis among patients with Mycoplasma pneumonia: A nationwide population-based cohort study in Taiwan vol.14, pp.1, 2019, https://doi.org/10.1371/journal.pone.0210750
  10. Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.02608
  11. Utility of neutrophil-to-lymphocyte ratio plus C-reactive protein for infection in systemic lupus erythematosus vol.28, pp.2, 2019, https://doi.org/10.1177/0961203318821176
  12. Mortality in systemic lupus erythematosus at a teaching hospital in India: A 5-year retrospective study vol.8, pp.7, 2017, https://doi.org/10.4103/jfmpc.jfmpc_362_19
  13. Procalcitonin and C-reactive protein as markers of infection in systemic lupus erythematosus: the controversy continues vol.28, pp.11, 2017, https://doi.org/10.1177/0961203318777101
  14. Risk factors of infection-associated mortality in children with lupus nephritis in under-resourced areas vol.28, pp.14, 2017, https://doi.org/10.1177/0961203319882498
  15. Talaromyces marneffei Infection in Systemic Lupus Erythematosus Patients: Report of Two Cases and Review of the Literature vol.13, pp.None, 2017, https://doi.org/10.2147/idr.s265479
  16. Increased Risk of Systemic Lupus Erythematosus in Patients With Helicobacter pylori Infection: A Nationwide Population-Based Cohort Study vol.6, pp.None, 2017, https://doi.org/10.3389/fmed.2019.00330
  17. Cryptococcal meningitis in patients with lupus nephritis vol.39, pp.2, 2020, https://doi.org/10.1007/s10067-019-04844-3
  18. Fieber bei systemischem Lupus erythematodes: Krankheitsschub oder Infektion? vol.79, pp.4, 2020, https://doi.org/10.1007/s00393-020-00773-8
  19. The contribution of HERV‐E clone 4‐1 and other HERV‐E members to the pathogenesis of rheumatic autoimmune diseases vol.128, pp.5, 2017, https://doi.org/10.1111/apm.13039
  20. Effect of early eradication therapy on systemic lupus erythematosus risk in patients with Helicobacter pylori infection: a nationwide population-based cohort study vol.29, pp.7, 2020, https://doi.org/10.1177/0961203320923393
  21. Vaccination of Patients with Systemic Lupus Erythematosus vol.95, pp.3, 2017, https://doi.org/10.3904/kjm.2020.95.3.170
  22. Clinical characterization, outcomes, and prognosis in patients with systemic lupus erythematosus admitted to the intensive care unit vol.29, pp.9, 2017, https://doi.org/10.1177/0961203320935176
  23. Immunosuppressive and immunomodulator therapy for rare or uncommon skin disorders in pandemic days vol.33, pp.5, 2017, https://doi.org/10.1111/dth.13686
  24. Association between periodontitis and systemic lupus erythematosus: a meta-analysis vol.29, pp.10, 2017, https://doi.org/10.1177/0961203320938447
  25. Infections in hospitalized children with newly diagnosed systemic lupus erythematosus in underresourced areas vol.29, pp.11, 2017, https://doi.org/10.1177/0961203320939164
  26. A cat’s scratch or a wolf’s bite? vol.29, pp.11, 2017, https://doi.org/10.1177/0961203320939632
  27. Systemic lupus erythematosus in the intensive care unit: a systematic review vol.29, pp.11, 2017, https://doi.org/10.1177/0961203320941941
  28. A case of complete atrioventricular block in secondary hemophagocytic syndrome/hemophagocytic lymphohistiocytosis recovered by plasma exchange and cytokine absorbing therapy with AN69ST continuous hem vol.43, pp.4, 2017, https://doi.org/10.1080/25785826.2020.1761145
  29. The risk of hospitalized infection in patients with systemic lupus erythematosus treated with hydroxychloroquine vol.29, pp.13, 2017, https://doi.org/10.1177/0961203320952853
  30. Differential parameters between activity flare and acute infection in pediatric patients with systemic lupus erythematosus vol.10, pp.1, 2017, https://doi.org/10.1038/s41598-020-76789-6
  31. Unexpected tendency to bleeding in COVID-19 patients: A case of spontaneous retroperitoneal hematoma vol.9, pp.None, 2021, https://doi.org/10.1177/2050313x211067907
  32. Blood Genomics Identifies Three Subtypes of Systemic Lupus Erythematosus: “IFN-High,” “NE-High,” and “Mixed” vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6660164
  33. Infection hospitalisation in systemic lupus in Sweden vol.8, pp.1, 2017, https://doi.org/10.1136/lupus-2021-000510
  34. CD14 (C-159T) polymorphism is associated with increased susceptibility to SLE, and plasma levels of soluble CD14 is a novel biomarker of disease activity: A hospital-based case-control study vol.30, pp.2, 2017, https://doi.org/10.1177/0961203320972799
  35. Predicting lupus flares: epidemiological and disease related risk factors vol.17, pp.2, 2017, https://doi.org/10.1080/1744666x.2020.1865156
  36. High Risk of Viral Reactivation in Hepatitis B Patients with Systemic Lupus Erythematosus vol.22, pp.17, 2021, https://doi.org/10.3390/ijms22179116
  37. High early mortality in idiopathic inflammatory myopathies: results from the inception cohort at a tertiary care centre in northern India vol.60, pp.9, 2017, https://doi.org/10.1093/rheumatology/keab001
  38. Rapid and precise diagnosis of pneumonia coinfected by Pneumocystis jirovecii and Aspergillus fumigatus assisted by next-generation sequencing in a patient with systemic lupus erythematosus: a case re vol.20, pp.1, 2017, https://doi.org/10.1186/s12941-021-00448-5
  39. Autoimmune haemolytic anaemia following SARS‐CoV‐2 infection in a child: A clue to a systemic autoimmune disease vol.69, pp.2, 2017, https://doi.org/10.1002/pbc.29481