Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes 2013;4:177-189. https://doi.org/10.4239/wjd.v4.i5.177
- Wang ZV, Hill JA. Diabetic cardiomyopathy: catabolism driving metabolism. Circulation 2015;131:771-773. https://doi.org/10.1161/CIRCULATIONAHA.115.015357
- Trachanas K, Sideris S, Aggeli C, et al. Diabetic cardiomyopathy: from pathophysiology to treatment. Hellenic J Cardiol 2014;55:411-421.
- Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002;109:121-130. https://doi.org/10.1172/JCI0214080
- Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 2008;121:748-757. https://doi.org/10.1016/j.amjmed.2008.03.046
- Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham study. JAMA 1979;241:2035-2038. https://doi.org/10.1001/jama.1979.03290450033020
- Ryden L, Armstrong PW, Cleland JG, et al. Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus: results from the ATLAS trial. Eur Heart J 2000;21:1967-1978. https://doi.org/10.1053/euhj.2000.2311
- Shindler DM, Kostis JB, Yusuf S, et al. Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am J Cardiol 1996;77:1017-1020. https://doi.org/10.1016/S0002-9149(97)89163-1
- Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016;12:144-153. https://doi.org/10.1038/nrendo.2015.216
- Wong AK, AlZadjali MA, Choy AM, Lang CC. Insulin resistance: a potential new target for therapy in patients with heart failure. Cardiovasc Ther 2008;26:203-213. https://doi.org/10.1111/j.1755-5922.2008.00053.x
- Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin 2012;8:609-617. https://doi.org/10.1016/j.hfc.2012.06.005
- Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy: fact or fiction? Herz 2011;36:102-115. https://doi.org/10.1007/s00059-011-3429-4
- Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 2008;51:93-102. https://doi.org/10.1016/j.jacc.2007.10.021
- Nicolino A, Longobardi G, Furgi G, et al. Left ventricular diastolic filling in diabetes mellitus with and without hypertension. Am J Hypertens 1995;8:382-389. https://doi.org/10.1016/0895-7061(95)00022-H
- Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 2003;289:194-202. https://doi.org/10.1001/jama.289.2.194
- Konduracka E, Cieslik G, Galicka-Latala D, et al. Myocardial dysfunction and chronic heart failure in patients with long-lasting type 1 diabetes: a 7-year prospective cohort study. Acta Diabetol 2013;50:597-606. https://doi.org/10.1007/s00592-013-0455-0
- Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 2004;25:543-567. https://doi.org/10.1210/er.2003-0012
- Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787-790. https://doi.org/10.1038/35008121
- Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 2002;51:1938-1948. https://doi.org/10.2337/diabetes.51.6.1938
- Aragno M, Mastrocola R, Medana C, et al. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology 2006;147:5967-5974. https://doi.org/10.1210/en.2006-0728
- Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003;112:1049-1057. https://doi.org/10.1172/JCI18127
- Gawlowski T, Stratmann B, Stork I, et al. Heat shock protein 27 modification is increased in the human diabetic failing heart. Horm Metab Res 2009;41:594-599. https://doi.org/10.1055/s-0029-1216374
- Petrova R, Yamamoto Y, Muraki K, et al. Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol 2002;34:1425-1431. https://doi.org/10.1006/jmcc.2002.2084
- Feng B, Chen S, Chiu J, George B, Chakrabarti S. Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab 2008;294:E1119-E1126. https://doi.org/10.1152/ajpendo.00029.2008
- Factor SM, Minase T, Cho S, Fein F, Capasso JM, Sonnenblick EH. Coronary microvascular abnormalities in the hypertensive-diabetic rat: a primary cause of cardiomyopathy? Am J Pathol 1984;116:9-20.
- Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 2014;19:25-33. https://doi.org/10.1007/s10741-013-9378-7
- Zhou X, Ma L, Habibi J, et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat. Hypertension 2010;55:880-888. https://doi.org/10.1161/HYPERTENSIONAHA.109.145136
- Hayden MR, Habibi J, Joginpally T, Karuparthi PR, Sowers JR. Ultrastructure study of transgenic Ren2 rat aorta. Part 1: rndothelium and intima. Cardiorenal Med 2012;2:66-82. https://doi.org/10.1159/000335565
- Campbell DJ, Somaratne JB, Jenkins AJ, et al. Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovasc Diabetol 2011;10:80. https://doi.org/10.1186/1475-2840-10-80
- Blaha MJ, DeFilippis AP, Rivera JJ, et al. The relationship between insulin resistance and incidence and progression of coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2011;34:749-751. https://doi.org/10.2337/dc10-1681
- Olesen P, Nguyen K, Wogensen L, Ledet T, Rasmussen LM. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin. Am J Physiol Heart Circ Physiol 2007;292:H1058-H1064. https://doi.org/10.1152/ajpheart.00047.2006
- Yuan LQ, Zhu JH, Wang HW, et al. RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS One 2011;6:e29037. https://doi.org/10.1371/journal.pone.0029037
- Mandavia CH, Pulakat L, DeMarco V, Sowers JR. Over-nutrition and metabolic cardiomyopathy. Metabolism 2012;61:1205-1210. https://doi.org/10.1016/j.metabol.2012.02.013
- Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 1998;40:239-247. https://doi.org/10.1016/S0008-6363(98)00186-2
- Liu J, Shen W, Zhao B, et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv Drug Deliv Rev 2009;61:1343-1352. https://doi.org/10.1016/j.addr.2009.06.007
- Falcao-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2012;17:325-344. https://doi.org/10.1007/s10741-011-9257-z
- Adeghate E, Singh J. Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev 2014;19:15-23. https://doi.org/10.1007/s10741-013-9388-5
- Schaffer SW. Cardiomyopathy associated with noninsulin-dependent diabetes. Mol Cell Biochem 1991;107:1-20. https://doi.org/10.1007/BF02424571
- Battiprolu PK, Lopez-Crisosto C, Wang ZV, Nemchenko A, Lavandero S, Hill JA. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci 2013;92:609-615. https://doi.org/10.1016/j.lfs.2012.10.011
- Harmancey R, Lam TN, Lubrano GM, Guthrie PH, Vela D, Taegtmeyer H. Insulin resistance improves metabolic and contractile efficiency in stressed rat heart. FASEB J 2012;26:3118-3126. https://doi.org/10.1096/fj.12-208991
- McGavock JM, Lingvay I, Zib I, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007;116:1170-1175. https://doi.org/10.1161/CIRCULATIONAHA.106.645614
- Rijzewijk LJ, van der Meer RW, Smit JW, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008;52:1793-1799. https://doi.org/10.1016/j.jacc.2008.07.062
- Rijzewijk LJ, van der Meer RW, Lamb HJ, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol 2009;54:1524-1532. https://doi.org/10.1016/j.jacc.2009.04.074
- van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 2011;92:10-18. https://doi.org/10.1093/cvr/cvr212
- Balaban RS. Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 2002;34:1259-1271. https://doi.org/10.1006/jmcc.2002.2082
- Iyngkaran P, Anavekar N, Majoni W, Thomas MC. The role and management of sympathetic overactivity in cardiovascular and renal complications of diabetes. Diabetes Metab 2013;39:290-298. https://doi.org/10.1016/j.diabet.2013.05.002
- Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 2008;118:863-871. https://doi.org/10.1161/CIRCULATIONAHA.107.760405
- Pappachan JM, Sebastian J, Bino BC, et al. Cardiac autonomic neuropathy in diabetes mellitus: prevalence, risk factors and utility of corrected QT interval in the ECG for its diagnosis. Postgrad Med J 2008;84:205-210. https://doi.org/10.1136/pgmj.2007.064048
- Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813-819. https://doi.org/10.1161/01.CIR.100.8.813
- Taskiran M, Fritz-Hansen T, Rasmussen V, Larsson HB, Hilsted J. Decreased myocardial perfusion reserve in diabetic autonomic neuropathy. Diabetes 2002;51:3306-3310. https://doi.org/10.2337/diabetes.51.11.3306
- Erbas T, Erbas B, Kabakci G, Aksoyek S, Koray Z, Gedik O. Plasma big-endothelin levels, cardiac autonomic neuropathy, and cardiac functions in patients with insulin-dependent diabetes mellitus. Clin Cardiol 2000;23:259-263. https://doi.org/10.1002/clc.4960230407
- Kreiner G, Wolzt M, Fasching P, et al. Myocardial m-[123I] iodobenzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM: comparison with cardiovascular reflex tests and relationship to left ventricular function. Diabetes 1995;44:543-549. https://doi.org/10.2337/diab.44.5.543
- Kumar R, Yong QC, Thomas CM, Baker KM. Intracardiac intracellular angiotensin system in diabetes. Am J Physiol Regul Integr Comp Physiol 2012;302:R510-R517. https://doi.org/10.1152/ajpregu.00512.2011
- Kurdi M, Booz GW. New take on the role of angiotensin II in cardiac hypertrophy and fibrosis. Hypertension 2011;57:1034-1038. https://doi.org/10.1161/HYPERTENSIONAHA.111.172700
- Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res 2000;87:1123-1132. https://doi.org/10.1161/01.RES.87.12.1123
- DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 2014;10:364-376. https://doi.org/10.1038/nrendo.2014.44
- McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res 2015;116:1022-1033. https://doi.org/10.1161/CIRCRESAHA.116.303697
- Hofmann U, Frantz S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ Res 2015;116:354-367. https://doi.org/10.1161/CIRCRESAHA.116.304072
- Jia G, Habibi J, Bostick BP, et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension 2015;65:531-539. https://doi.org/10.1161/HYPERTENSIONAHA.114.04737
- Mori J, Alrob OA, Wagg CS, Harris RA, Lopaschuk GD, Oudit GY. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am J Physiol Heart Circ Physiol 2013;304:H1103-H1113. https://doi.org/10.1152/ajpheart.00636.2012
- Asrih M, Mach F, Nencioni A, Dallegri F, Quercioli A, Montecucco F. Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome. Mediators Inflamm 2013;2013:367245.
- Weirather J, Hofmann UD, Beyersdorf N, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res 2014;115:55-67. https://doi.org/10.1161/CIRCRESAHA.115.303895
- Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 2012;8:709-716. https://doi.org/10.1038/nrendo.2012.114
- Ait-Oufella H, Salomon BL, Potteaux S, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006;12:178-180. https://doi.org/10.1038/nm1343
- Yu Q, Vazquez R, Zabadi S, Watson RR, Larson DF. T-lymphocytes mediate left ventricular fibrillar collagen cross-linking and diastolic dysfunction in mice. Matrix Biol 2010;29:511-518. https://doi.org/10.1016/j.matbio.2010.06.003
- Cao Y, Xu W, Xiong S. Adoptive transfer of regulatory T cells protects against coxsackievirus B3-induced cardiac fibrosis. PLoS One 2013;8:e74955. https://doi.org/10.1371/journal.pone.0074955
- Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 2010;6:883-903.
- Nunes S, Soares E, Fernandes J, et al. Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker. Cardiovasc Diabetol 2013;12:44. https://doi.org/10.1186/1475-2840-12-44
- Landsberg L, Molitch M. Diabetes and hypertension: pathogenesis, prevention and treatment. Clin Exp Hypertens 2004;26:621-628. https://doi.org/10.1081/CEH-200031945
- Mathis DR, Liu SS, Rodrigues BB, McNeill JH. Effect of hypertension on the development of diabetic cardiomyopathy. Can J Physiol Pharmacol 2000;78:791-798. https://doi.org/10.1139/y00-058
- Aijaz B, Ammar KA, Lopez-Jimenez F, Redfield MM, Jacobsen SJ, Rodeheffer RJ. Abnormal cardiac structure and function in the metabolic syndrome: a population-based study. Mayo Clin Proc 2008;83:1350-1357. https://doi.org/10.4065/83.12.1350
- Chavali V, Tyagi SC, Mishra PK. Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes 2013;6:151-160.
- Ernande L, Derumeaux G. Diabetic cardiomyopathy: myth or reality? Arch Cardiovasc Dis 2012;105:218-225. https://doi.org/10.1016/j.acvd.2011.11.007
- Battiprolu PK, Gillette TG, Wang ZV, Lavandero S, Hill JA. Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov Today Dis Mech 2010;7:e135-e143. https://doi.org/10.1016/j.ddmec.2010.08.001
- Khouri SJ, Maly GT, Suh DD, Walsh TE. A practical approach to the echocardiographic evaluation of diastolic function. J Am Soc Echocardiogr 2004;17:290-297. https://doi.org/10.1016/j.echo.2003.08.012
- Yu CM, Sanderson JE, Marwick TH, Oh JK. Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol 2007;49:1903-1914. https://doi.org/10.1016/j.jacc.2007.01.078
- Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 2013;18:149-166. https://doi.org/10.1007/s10741-012-9313-3
- Gottlieb I, Macedo R, Bluemke DA, Lima JA. Magnetic resonance imaging in the evaluation of non-ischemic cardiomyopathies: current applications and future perspectives. Heart Fail Rev 2006;11:313-323. https://doi.org/10.1007/s10741-006-0232-z
- Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007;28:2539-2550. https://doi.org/10.1093/eurheartj/ehm037
- Dinh W, Bansemir L, Futh R, et al. Increased levels of laminin and collagen type VI may reflect early remodelling in patients with acute myocardial infarction. Acta Cardiol 2009;64:329-334. https://doi.org/10.2143/AC.64.3.2038017
- D'Souza A, Howarth FC, Yanni J, et al. Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 2011;96:875-888. https://doi.org/10.1113/expphysiol.2011.058271
- Quilliot D, Alla F, Bohme P, et al. Myocardial collagen turnover in normotensive obese patients: relation to insulin resistance. Int J Obes (Lond) 2005;29:1321-1328. https://doi.org/10.1038/sj.ijo.0803022
- Stolen TO, Hoydal MA, Kemi OJ, et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 2009;105:527-536. https://doi.org/10.1161/CIRCRESAHA.109.199810
- Epp RA, Susser SE, Morissette MP, Kehler DS, Jassal DS, Duhamel TA. Exercise training prevents the development of cardiac dysfunction in the low-dose streptozotocin diabetic rats fed a high-fat diet. Can J Physiol Pharmacol 2013;91:80-89. https://doi.org/10.1139/cjpp-2012-0294
- Epshteyn V, Morrison K, Krishnaswamy P, et al. Utility of B-type natriuretic peptide (BNP) as a screen for left ventricular dysfunction in patients with diabetes. Diabetes Care 2003;26:2081-2087. https://doi.org/10.2337/diacare.26.7.2081
- Russell NE, Higgins MF, Amaruso M, Foley M, McAuliffe FM. Troponin T and pro-B-type natriuretic peptide in fetuses of type 1 diabetic mothers. Diabetes Care 2009;32:2050-2055. https://doi.org/10.2337/dc09-0552
- Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 2010;26:40-49. https://doi.org/10.1002/dmrr.1054
- Rijzewijk LJ, Jonker JT, van der Meer RW, et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J Am Coll Cardiol 2010;56:225-233. https://doi.org/10.1016/j.jacc.2010.02.049
- Kodama S, Tanaka S, Heianza Y, et al. Association between physical activity and risk of all-cause mortality and cardiovascular disease in patients with diabetes: a meta-analysis. Diabetes Care 2013;36:471-479. https://doi.org/10.2337/dc12-0783
- Sharma AK, Srinivasan BP. Triple verses glimepiride plus metformin therapy on cardiovascular risk biomarkers and diabetic cardiomyopathy in insulin resistance type 2 diabetes mellitus rats. Eur J Pharm Sci 2009;38:433-444. https://doi.org/10.1016/j.ejps.2009.09.004
- Aboukhoudir F, Rekik S. Left ventricular systolic function deterioration during dobutamine stress echocardiography as an early manifestation of diabetic cardiomyopathy and reversal by optimized therapeutic approach. Int J Cardiovasc Imaging 2012;28:1329-1339. https://doi.org/10.1007/s10554-011-9938-7
- Chung J, Abraszewski P, Yu X, et al. Paradoxical increase in ventricular torsion and systolic torsion rate in type I diabetic patients under tight glycemic control. J Am Coll Cardiol 2006;47:384-390. https://doi.org/10.1016/j.jacc.2005.08.061
- Zib I, Jacob AN, Lingvay I, et al. Effect of pioglitazone therapy on myocardial and hepatic steatosis in insulin-treated patients with type 2 diabetes. J Investig Med 2007;55:230-236. https://doi.org/10.2310/6650.2007.00003
- Xie Z, Lau K, Eby B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011;60:1770-1778. https://doi.org/10.2337/db10-0351
- von Bibra H, St John Sutton M. Impact of diabetes on postinfarction heart failure and left ventricular remodeling. Curr Heart Fail Rep 2011;8:242-251. https://doi.org/10.1007/s11897-011-0070-8
- Wong AK, Symon R, AlZadjali MA, et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail 2012;14:1303-1310. https://doi.org/10.1093/eurjhf/hfs106
- Mamas MA, Deaton C, Rutter MK, et al. Impaired glucose tolerance and insulin resistance in heart failure: underrecognized and undertreated? J Card Fail 2010;16:761-768. https://doi.org/10.1016/j.cardfail.2010.05.027
- Sacca L, Napoli R. Insulin resistance in chronic heart failure: a difficult bull to take by the horns. Nutr Metab Cardiovasc Dis 2009;19:303-305. https://doi.org/10.1016/j.numecd.2008.09.002
- Caglayan E, Stauber B, Collins AR, et al. Differential roles of cardiomyocyte and macrophage peroxisome proliferator-activated receptor gamma in cardiac fibrosis. Diabetes 2008;57:2470-2479. https://doi.org/10.2337/db07-0924
- Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol 2013;304:C508-C518. https://doi.org/10.1152/ajpcell.00248.2012
- Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol 2014;64:1388-1400. https://doi.org/10.1016/j.jacc.2014.04.083
- Witteles RM, Keu KV, Quon A, Tavana H, Fowler MB. Dipeptidyl peptidase 4 inhibition increases myocardial glucose uptake in nonischemic cardiomyopathy. J Card Fail 2012;18:804-809. https://doi.org/10.1016/j.cardfail.2012.07.009
- Bostick B, Habibi J, Ma L, et al. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism 2014;63:1000-1011. https://doi.org/10.1016/j.metabol.2014.04.002
- Adeghate E, Kalasz H. Amylin analogues in the treatment of diabetes mellitus: medicinal chemistry and structural basis of its function. Open Med Chem J 2011;5:78-81. https://doi.org/10.2174/1874104501105010078
- Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 2015;12:90-100. https://doi.org/10.1177/1479164114559852
- Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117-2128. https://doi.org/10.1056/NEJMoa1504720
- Thomas CM, Yong QC, Seqqat R, et al. Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clin Sci (Lond) 2013;124:529-541. https://doi.org/10.1042/CS20120448
- Machackova J, Liu X, Lukas A, Dhalla NS. Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol Cell Biochem 2004;261:271-278. https://doi.org/10.1023/B:MCBI.0000028765.89855.73
- Symeonides P, Koulouris S, Vratsista E, et al. Both ramipril and telmisartan reverse indices of early diabetic cardiomyopathy: a comparative study. Eur J Echocardiogr 2007;8:480-486. https://doi.org/10.1016/j.euje.2006.09.005
-
Sharma V, McNeill JH. Parallel effects of
$\beta$ -adrenoceptor blockade on cardiac function and fatty acid oxidation in the diabetic heart: confronting the maze. World J Cardiol 2011;3:281-302. https://doi.org/10.4330/wjc.v3.i9.281 - Mohamad HE, Askar ME, Hafez MM. Management of cardiac fibrosis in diabetic rats: the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs). Diabetol Metab Syndr 2011;3:4. https://doi.org/10.1186/1758-5996-3-4
- Giannetta E, Isidori AM, Galea N, et al. Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 2012;125:2323-2333. https://doi.org/10.1161/CIRCULATIONAHA.111.063412
- Chen YH, Feng B, Chen ZW. Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Exp Clin Endocrinol Diabetes 2012;120:116-120. https://doi.org/10.1055/s-0031-1297968
- Cholesterol Treatment Trialists' (CTT) Collaborators, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008;371:117-125. https://doi.org/10.1016/S0140-6736(08)60104-X
- Van Linthout S, Riad A, Dhayat N, et al. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 2007;50:1977-1986. https://doi.org/10.1007/s00125-007-0719-8
- Dai QM, Lu J, Liu NF. Fluvastatin attenuates myocardial interstitial fibrosis and cardiac dysfunction in diabetic rats by inhibiting over-expression of connective tissue growth factor. Chin Med J (Engl) 2011;124:89-94.
- Nickel A, Loffler J, Maack C. Myocardial energetics in heart failure. Basic Res Cardiol 2013;108:358. https://doi.org/10.1007/s00395-013-0358-9
- Gao D, Ning N, Niu X, Hao G, Meng Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 2011;97:278-286. https://doi.org/10.1136/hrt.2010.208751
- Zhao P, Zhang J, Yin XG, et al. The effect of trimetazidine on cardiac function in diabetic patients with idiopathic dilated cardiomyopathy. Life Sci 2013;92:633-638. https://doi.org/10.1016/j.lfs.2012.03.015
- Li YJ, Wang PH, Chen C, Zou MH, Wang DW. Improvement of mechanical heart function by trimetazidine in db/db mice. Acta Pharmacol Sin 2010;31:560-569. https://doi.org/10.1038/aps.2010.31
- Maier LS, Layug B, Karwatowska-Prokopczuk E, et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail 2013;1:115-122. https://doi.org/10.1016/j.jchf.2012.12.002
- Senanayake EL, Howell NJ, Ranasinghe AM, et al. Multicentre double-blind randomized controlled trial of perhexiline as a metabolic modulator to augment myocardial protection in patients with left ventricular hypertrophy undergoing cardiac surgery. Eur J Cardiothorac Surg 2015;48:354-362. https://doi.org/10.1093/ejcts/ezu452
- Li CJ, Lv L, Li H, Yu DM. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 2012;11:73. https://doi.org/10.1186/1475-2840-11-73
- Delucchi F, Berni R, Frati C, et al. Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS One 2012;7:e39836. https://doi.org/10.1371/journal.pone.0039836
- Wang G, Li W, Lu X, Bao P, Zhao X. Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complications 2012;26:259-265. https://doi.org/10.1016/j.jdiacomp.2012.04.007
- Wang G, Li W, Lu X, Zhao X. Riboflavin alleviates cardiac failure in type I diabetic cardiomyopathy. Heart Int 2011;6:e21.
- Xu X, Xiao H, Zhao J, Zhao T. Cardioprotective effect of sodium ferulate in diabetic rats. Int J Med Sci 2012;9:291-300. https://doi.org/10.7150/ijms.4298
- Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2010;298:H833-H843. https://doi.org/10.1152/ajpheart.00418.2009
- Rabassa M, Zamora-Ros R, Urpi-Sarda M, Andres-Lacueva C. Resveratrol metabolite profiling in clinical nutrition research: from diet to uncovering disease risk biomarkers: epidemiological evidence. Ann N Y Acad Sci 2015;1348:107-115. https://doi.org/10.1111/nyas.12851
- Xu YJ, Tappia PS, Neki NS, Dhalla NS. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail Rev 2014;19:113-121. https://doi.org/10.1007/s10741-013-9379-6
- Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 2014;171:2029-2050. https://doi.org/10.1111/bph.12461
- Huynh K, Kiriazis H, Du XJ, et al. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 2012;55:1544-1553. https://doi.org/10.1007/s00125-012-2495-3
- Mortensen SA, Rosenfeldt F, Kumar A, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2014;2:641-649. https://doi.org/10.1016/j.jchf.2014.06.008
- Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014;142:375-415. https://doi.org/10.1016/j.pharmthera.2014.01.003
- Meloni M, Descamps B, Caporali A, et al. Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes 2012;61:229-240. https://doi.org/10.2337/db11-0763
- Katare R, Caporali A, Zentilin L, et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 2011;108:1238-1251. https://doi.org/10.1161/CIRCRESAHA.110.239111
- Greco S, Fasanaro P, Castelvecchio S, et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 2012;61:1633-1641. https://doi.org/10.2337/db11-0952
- Chen H, Untiveros GM, McKee LA, et al. Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One 2012;7:e41574. https://doi.org/10.1371/journal.pone.0041574
- Cheng Y, Guo S, Liu G, et al. Transplantation of bone marrow-derived endothelial progenitor cells attenuates myocardial interstitial fibrosis and cardiac dysfunction in streptozotocin-induced diabetic rats. Int J Mol Med 2012;30:870-876. https://doi.org/10.3892/ijmm.2012.1083
Cited by
- Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart vol.23, pp.1, 2017, https://doi.org/10.1007/s10741-017-9663-y
- The Chinese Herb Yi-Qi-Huo-Xue Protects Cardiomyocyte Function in Diabetic Cardiomyopathy vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/7316840
- Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control vol.9, pp.None, 2018, https://doi.org/10.3389/fphys.2018.01514
- Past and Current Status of Adult Type 2 Diabetes Mellitus Management in Korea: A National Health Insurance Service Database Analysis vol.42, pp.2, 2018, https://doi.org/10.4093/dmj.2018.42.2.93
- Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment vol.9, pp.1, 2017, https://doi.org/10.4239/wjd.v9.i1.1
- Long noncoding RNAs: A new player in the prevention and treatment of diabetic cardiomyopathy? vol.34, pp.8, 2017, https://doi.org/10.1002/dmrr.3056
- Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy vol.18, pp.None, 2017, https://doi.org/10.1186/s12872-018-0939-5
- Diabetic Cardiomyopathy: Five Major Questions with Simple Answers vol.13, pp.1, 2019, https://doi.org/10.15420/usc.2018.18.2
- Heart Failure: Complications of Type 2 Diabetes vol.20, pp.1, 2017, https://doi.org/10.4093/jkd.2019.20.1.1
- Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats vol.234, pp.2, 2017, https://doi.org/10.1002/jcp.27038
- Effect of Exercise Intervention on Cardiac Function in Type 2 Diabetes Mellitus: A Systematic Review vol.49, pp.2, 2019, https://doi.org/10.1007/s40279-018-1003-4
- Molecular Mechanisms Responsible for Diastolic Dysfunction in Diabetes Mellitus Patients vol.20, pp.5, 2017, https://doi.org/10.3390/ijms20051197
- Cardiac metabolic modulation upon low‐carbohydrate low‐protein ketogenic diet in diabetic rats studied in vivo using hyperpolarized 13C pyruvate, butyrate and acetoacetate probe vol.21, pp.4, 2019, https://doi.org/10.1111/dom.13608
- Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model vol.11, pp.9, 2017, https://doi.org/10.18632/aging.101954
- Left ventricular diastolic dysfunction in diabetes mellitus and the therapeutic role of exercise training vol.10, pp.2, 2017, https://doi.org/10.12680/balneo.2019.254
- Chemical Structures and Pharmacological Profiles of Ginseng Saponins vol.24, pp.13, 2017, https://doi.org/10.3390/molecules24132443
- Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date vol.10, pp.10, 2019, https://doi.org/10.4239/wjd.v10.i10.490
- Role of CCR2 in the Development of Streptozotocin-Treated Diabetic Cardiomyopathy vol.68, pp.11, 2019, https://doi.org/10.2337/db18-1231
- Cardiovascular remodeling in patients with diabetic сardiomyopathy vol.2019, pp.11, 2017, https://doi.org/10.15829/1560-4071-2019-11-42-47
- Relationship between hemoglobin A1c and serum troponin in patients with diabetes and cardiovascular events vol.18, pp.2, 2017, https://doi.org/10.1007/s40200-019-00460-9
- Hydrogen Sulfide Attenuates High Glucose-induced Myocardial Injury in Rat Cardiomyocytes by Suppressing Wnt/beta-catenin Pathway vol.39, pp.6, 2017, https://doi.org/10.1007/s11596-019-2120-5
- Hydrogen Sulfide Protects Against High Glucose-Induced Human Umbilical Vein Endothelial Cell Injury Through Activating PI3K/Akt/eNOS Pathway vol.14, pp.None, 2020, https://doi.org/10.2147/dddt.s242521
- Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition) vol.8, pp.None, 2017, https://doi.org/10.1093/burnst/tkaa017
- Echocardiographic Diagnosis of Diabetic Cardiomyopathy vol.5, pp.1, 2017, https://doi.org/10.18525/cu.2020.5.1.17
- ER membranes associated with mitochondria: Possible therapeutic targets in heart-associated diseases vol.156, pp.None, 2017, https://doi.org/10.1016/j.phrs.2020.104758
- Rg1 protects H9C2 cells from high glucose‐/palmitate‐induced injury via activation of AKT/GSK‐3β/Nrf2 pathway vol.24, pp.14, 2020, https://doi.org/10.1111/jcmm.15486
- Fluid overload is a determinant for cardiac structural and functional impairments in type 2 diabetes mellitus and chronic kidney disease stage 5 not undergoing dialysis vol.15, pp.7, 2017, https://doi.org/10.1371/journal.pone.0235640
- Impact of gestational diabetes mellitus on maternal cardiac adaptation to pregnancy vol.56, pp.2, 2017, https://doi.org/10.1002/uog.21941
- Establishment of a Risk Prediction Model for Non-alcoholic Fatty Liver Disease in Type 2 Diabetes vol.11, pp.9, 2017, https://doi.org/10.1007/s13300-020-00893-z
- Diabetic Cardiomyopathy as a Clinical Entity: Is It a Myth? vol.12, pp.10, 2017, https://doi.org/10.7759/cureus.11100
- Inhibition of microRNA‐150‐5p alleviates cardiac inflammation and fibrosis via targeting Smad7 in high glucose‐treated cardiac fibroblasts vol.235, pp.11, 2017, https://doi.org/10.1002/jcp.29386
- GAS5 regulates diabetic cardiomyopathy via miR-221-3p/p27 axis-associated autophagy vol.23, pp.2, 2017, https://doi.org/10.3892/mmr.2020.11774
- Identification of potential biomarkers for predicting the early onset of diabetic cardiomyopathy in a mouse model vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-69254-x
- Incidence of idiopathic cardiomyopathy in patients with type 2 diabetes in Taiwan: age, sex, and urbanization status-stratified analysis vol.19, pp.1, 2020, https://doi.org/10.1186/s12933-020-01144-y
- PDE5 Inhibitors in Type 2 Diabetes Cardiovascular Complications vol.1, pp.2, 2017, https://doi.org/10.3390/endocrines1020009
- Protective effects of medicinal plant against diabetes induced cardiac disorder: A review vol.265, pp.None, 2017, https://doi.org/10.1016/j.jep.2020.113328
- Mechanism of Ferroptosis and Its Role in Type 2 Diabetes Mellitus vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9999612
- Potential Therapeutic Effect of Citronellal on Diabetic Cardiomyopathy in Experimental Rats vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9987531
- Assessment of real-time three-dimensional echocardiography as a tool for evaluating left atrial volume and function in patients with type 2 diabetes mellitus vol.13, pp.1, 2017, https://doi.org/10.18632/aging.202218
- miR‐34a attenuates myocardial fibrosis in diabetic cardiomyopathy mice via targeting Pin‐1 vol.45, pp.3, 2017, https://doi.org/10.1002/cbin.11512
- Application of Animal Models in Diabetic Cardiomyopathy vol.45, pp.2, 2021, https://doi.org/10.4093/dmj.2020.0285
- Diabetic heart disease: A clinical update vol.12, pp.4, 2021, https://doi.org/10.4239/wjd.v12.i4.383
- Heart Failure and Diabetes Mellitus: Biomarkers in Risk Stratification and Prognostication vol.11, pp.10, 2017, https://doi.org/10.3390/app11104397
- Gold Nanoparticles Ameliorate Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats vol.1231, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2021.130009
- Role of some serum biomarkers in the early detection of diabetic cardiomyopathy vol.7, pp.5, 2017, https://doi.org/10.2144/fsoa-2020-0184
- The role of mitochondria in metabolic disease: a special emphasis on heart dysfunction vol.599, pp.14, 2017, https://doi.org/10.1113/jp279376
- Multitarget mechanism of Yiqi Jiedu Huayu decoction on diabetic cardiomyopathy based on network pharmacology vol.47, pp.None, 2017, https://doi.org/10.1016/j.eujim.2021.101388
- Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats vol.145, pp.None, 2017, https://doi.org/10.1016/j.biopha.2021.112412