DOI QR코드

DOI QR Code

Diabetic cardiomyopathy: where we are and where we are going

  • Lee, Wang-Soo (Divisions of Cardiology, Department of Internal Medicine, Chung-Ang University College of Medicine) ;
  • Kim, Jaetaek (Divisions of Endocrinology and Metabolism, Department of Internal Medicine, Chung-Ang University College of Medicine)
  • Received : 2016.06.27
  • Accepted : 2017.01.08
  • Published : 2017.05.01

Abstract

The global burden of diabetes mellitus and its related complications are currently increasing. Diabetes mellitus affects the heart through various mechanisms including microvascular impairment, metabolic disturbance, subcellular component abnormalities, cardiac autonomic dysfunction, and a maladaptive immune response. Eventually, diabetes mellitus can cause functional and structural changes in the myocardium without coronary artery disease, a disorder known as diabetic cardiomyopathy (DCM). There are many diagnostic tools and management options for DCM, although it is difficult to detect its development and effectively prevent its progression. In this review, we summarize the current research regarding the pathophysiology and pathogenesis of DCM. Moreover, we discuss emerging diagnostic evaluation methods and treatment strategies for DCM, which may help our understanding of its underlying mechanisms and facilitate the identification of possible new therapeutic targets.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes 2013;4:177-189. https://doi.org/10.4239/wjd.v4.i5.177
  2. Wang ZV, Hill JA. Diabetic cardiomyopathy: catabolism driving metabolism. Circulation 2015;131:771-773. https://doi.org/10.1161/CIRCULATIONAHA.115.015357
  3. Trachanas K, Sideris S, Aggeli C, et al. Diabetic cardiomyopathy: from pathophysiology to treatment. Hellenic J Cardiol 2014;55:411-421.
  4. Finck BN, Lehman JJ, Leone TC, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest 2002;109:121-130. https://doi.org/10.1172/JCI0214080
  5. Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 2008;121:748-757. https://doi.org/10.1016/j.amjmed.2008.03.046
  6. Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham study. JAMA 1979;241:2035-2038. https://doi.org/10.1001/jama.1979.03290450033020
  7. Ryden L, Armstrong PW, Cleland JG, et al. Efficacy and safety of high-dose lisinopril in chronic heart failure patients at high cardiovascular risk, including those with diabetes mellitus: results from the ATLAS trial. Eur Heart J 2000;21:1967-1978. https://doi.org/10.1053/euhj.2000.2311
  8. Shindler DM, Kostis JB, Yusuf S, et al. Diabetes mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction (SOLVD) Trials and Registry. Am J Cardiol 1996;77:1017-1020. https://doi.org/10.1016/S0002-9149(97)89163-1
  9. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016;12:144-153. https://doi.org/10.1038/nrendo.2015.216
  10. Wong AK, AlZadjali MA, Choy AM, Lang CC. Insulin resistance: a potential new target for therapy in patients with heart failure. Cardiovasc Ther 2008;26:203-213. https://doi.org/10.1111/j.1755-5922.2008.00053.x
  11. Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin 2012;8:609-617. https://doi.org/10.1016/j.hfc.2012.06.005
  12. Maisch B, Alter P, Pankuweit S. Diabetic cardiomyopathy: fact or fiction? Herz 2011;36:102-115. https://doi.org/10.1007/s00059-011-3429-4
  13. Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 2008;51:93-102. https://doi.org/10.1016/j.jacc.2007.10.021
  14. Nicolino A, Longobardi G, Furgi G, et al. Left ventricular diastolic filling in diabetes mellitus with and without hypertension. Am J Hypertens 1995;8:382-389. https://doi.org/10.1016/0895-7061(95)00022-H
  15. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 2003;289:194-202. https://doi.org/10.1001/jama.289.2.194
  16. Konduracka E, Cieslik G, Galicka-Latala D, et al. Myocardial dysfunction and chronic heart failure in patients with long-lasting type 1 diabetes: a 7-year prospective cohort study. Acta Diabetol 2013;50:597-606. https://doi.org/10.1007/s00592-013-0455-0
  17. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 2004;25:543-567. https://doi.org/10.1210/er.2003-0012
  18. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787-790. https://doi.org/10.1038/35008121
  19. Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 2002;51:1938-1948. https://doi.org/10.2337/diabetes.51.6.1938
  20. Aragno M, Mastrocola R, Medana C, et al. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology 2006;147:5967-5974. https://doi.org/10.1210/en.2006-0728
  21. Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003;112:1049-1057. https://doi.org/10.1172/JCI18127
  22. Gawlowski T, Stratmann B, Stork I, et al. Heat shock protein 27 modification is increased in the human diabetic failing heart. Horm Metab Res 2009;41:594-599. https://doi.org/10.1055/s-0029-1216374
  23. Petrova R, Yamamoto Y, Muraki K, et al. Advanced glycation endproduct-induced calcium handling impairment in mouse cardiac myocytes. J Mol Cell Cardiol 2002;34:1425-1431. https://doi.org/10.1006/jmcc.2002.2084
  24. Feng B, Chen S, Chiu J, George B, Chakrabarti S. Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab 2008;294:E1119-E1126. https://doi.org/10.1152/ajpendo.00029.2008
  25. Factor SM, Minase T, Cho S, Fein F, Capasso JM, Sonnenblick EH. Coronary microvascular abnormalities in the hypertensive-diabetic rat: a primary cause of cardiomyopathy? Am J Pathol 1984;116:9-20.
  26. Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 2014;19:25-33. https://doi.org/10.1007/s10741-013-9378-7
  27. Zhou X, Ma L, Habibi J, et al. Nebivolol improves diastolic dysfunction and myocardial remodeling through reductions in oxidative stress in the Zucker obese rat. Hypertension 2010;55:880-888. https://doi.org/10.1161/HYPERTENSIONAHA.109.145136
  28. Hayden MR, Habibi J, Joginpally T, Karuparthi PR, Sowers JR. Ultrastructure study of transgenic Ren2 rat aorta. Part 1: rndothelium and intima. Cardiorenal Med 2012;2:66-82. https://doi.org/10.1159/000335565
  29. Campbell DJ, Somaratne JB, Jenkins AJ, et al. Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovasc Diabetol 2011;10:80. https://doi.org/10.1186/1475-2840-10-80
  30. Blaha MJ, DeFilippis AP, Rivera JJ, et al. The relationship between insulin resistance and incidence and progression of coronary artery calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2011;34:749-751. https://doi.org/10.2337/dc10-1681
  31. Olesen P, Nguyen K, Wogensen L, Ledet T, Rasmussen LM. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin. Am J Physiol Heart Circ Physiol 2007;292:H1058-H1064. https://doi.org/10.1152/ajpheart.00047.2006
  32. Yuan LQ, Zhu JH, Wang HW, et al. RANKL is a downstream mediator for insulin-induced osteoblastic differentiation of vascular smooth muscle cells. PLoS One 2011;6:e29037. https://doi.org/10.1371/journal.pone.0029037
  33. Mandavia CH, Pulakat L, DeMarco V, Sowers JR. Over-nutrition and metabolic cardiomyopathy. Metabolism 2012;61:1205-1210. https://doi.org/10.1016/j.metabol.2012.02.013
  34. Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 1998;40:239-247. https://doi.org/10.1016/S0008-6363(98)00186-2
  35. Liu J, Shen W, Zhao B, et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv Drug Deliv Rev 2009;61:1343-1352. https://doi.org/10.1016/j.addr.2009.06.007
  36. Falcao-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2012;17:325-344. https://doi.org/10.1007/s10741-011-9257-z
  37. Adeghate E, Singh J. Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev 2014;19:15-23. https://doi.org/10.1007/s10741-013-9388-5
  38. Schaffer SW. Cardiomyopathy associated with noninsulin-dependent diabetes. Mol Cell Biochem 1991;107:1-20. https://doi.org/10.1007/BF02424571
  39. Battiprolu PK, Lopez-Crisosto C, Wang ZV, Nemchenko A, Lavandero S, Hill JA. Diabetic cardiomyopathy and metabolic remodeling of the heart. Life Sci 2013;92:609-615. https://doi.org/10.1016/j.lfs.2012.10.011
  40. Harmancey R, Lam TN, Lubrano GM, Guthrie PH, Vela D, Taegtmeyer H. Insulin resistance improves metabolic and contractile efficiency in stressed rat heart. FASEB J 2012;26:3118-3126. https://doi.org/10.1096/fj.12-208991
  41. McGavock JM, Lingvay I, Zib I, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007;116:1170-1175. https://doi.org/10.1161/CIRCULATIONAHA.106.645614
  42. Rijzewijk LJ, van der Meer RW, Smit JW, et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008;52:1793-1799. https://doi.org/10.1016/j.jacc.2008.07.062
  43. Rijzewijk LJ, van der Meer RW, Lamb HJ, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol 2009;54:1524-1532. https://doi.org/10.1016/j.jacc.2009.04.074
  44. van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 2011;92:10-18. https://doi.org/10.1093/cvr/cvr212
  45. Balaban RS. Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol 2002;34:1259-1271. https://doi.org/10.1006/jmcc.2002.2082
  46. Iyngkaran P, Anavekar N, Majoni W, Thomas MC. The role and management of sympathetic overactivity in cardiovascular and renal complications of diabetes. Diabetes Metab 2013;39:290-298. https://doi.org/10.1016/j.diabet.2013.05.002
  47. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 2008;118:863-871. https://doi.org/10.1161/CIRCULATIONAHA.107.760405
  48. Pappachan JM, Sebastian J, Bino BC, et al. Cardiac autonomic neuropathy in diabetes mellitus: prevalence, risk factors and utility of corrected QT interval in the ECG for its diagnosis. Postgrad Med J 2008;84:205-210. https://doi.org/10.1136/pgmj.2007.064048
  49. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813-819. https://doi.org/10.1161/01.CIR.100.8.813
  50. Taskiran M, Fritz-Hansen T, Rasmussen V, Larsson HB, Hilsted J. Decreased myocardial perfusion reserve in diabetic autonomic neuropathy. Diabetes 2002;51:3306-3310. https://doi.org/10.2337/diabetes.51.11.3306
  51. Erbas T, Erbas B, Kabakci G, Aksoyek S, Koray Z, Gedik O. Plasma big-endothelin levels, cardiac autonomic neuropathy, and cardiac functions in patients with insulin-dependent diabetes mellitus. Clin Cardiol 2000;23:259-263. https://doi.org/10.1002/clc.4960230407
  52. Kreiner G, Wolzt M, Fasching P, et al. Myocardial m-[123I] iodobenzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM: comparison with cardiovascular reflex tests and relationship to left ventricular function. Diabetes 1995;44:543-549. https://doi.org/10.2337/diab.44.5.543
  53. Kumar R, Yong QC, Thomas CM, Baker KM. Intracardiac intracellular angiotensin system in diabetes. Am J Physiol Regul Integr Comp Physiol 2012;302:R510-R517. https://doi.org/10.1152/ajpregu.00512.2011
  54. Kurdi M, Booz GW. New take on the role of angiotensin II in cardiac hypertrophy and fibrosis. Hypertension 2011;57:1034-1038. https://doi.org/10.1161/HYPERTENSIONAHA.111.172700
  55. Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res 2000;87:1123-1132. https://doi.org/10.1161/01.RES.87.12.1123
  56. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 2014;10:364-376. https://doi.org/10.1038/nrendo.2014.44
  57. McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res 2015;116:1022-1033. https://doi.org/10.1161/CIRCRESAHA.116.303697
  58. Hofmann U, Frantz S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ Res 2015;116:354-367. https://doi.org/10.1161/CIRCRESAHA.116.304072
  59. Jia G, Habibi J, Bostick BP, et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension 2015;65:531-539. https://doi.org/10.1161/HYPERTENSIONAHA.114.04737
  60. Mori J, Alrob OA, Wagg CS, Harris RA, Lopaschuk GD, Oudit GY. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am J Physiol Heart Circ Physiol 2013;304:H1103-H1113. https://doi.org/10.1152/ajpheart.00636.2012
  61. Asrih M, Mach F, Nencioni A, Dallegri F, Quercioli A, Montecucco F. Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome. Mediators Inflamm 2013;2013:367245.
  62. Weirather J, Hofmann UD, Beyersdorf N, et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res 2014;115:55-67. https://doi.org/10.1161/CIRCRESAHA.115.303895
  63. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 2012;8:709-716. https://doi.org/10.1038/nrendo.2012.114
  64. Ait-Oufella H, Salomon BL, Potteaux S, et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006;12:178-180. https://doi.org/10.1038/nm1343
  65. Yu Q, Vazquez R, Zabadi S, Watson RR, Larson DF. T-lymphocytes mediate left ventricular fibrillar collagen cross-linking and diastolic dysfunction in mice. Matrix Biol 2010;29:511-518. https://doi.org/10.1016/j.matbio.2010.06.003
  66. Cao Y, Xu W, Xiong S. Adoptive transfer of regulatory T cells protects against coxsackievirus B3-induced cardiac fibrosis. PLoS One 2013;8:e74955. https://doi.org/10.1371/journal.pone.0074955
  67. Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 2010;6:883-903.
  68. Nunes S, Soares E, Fernandes J, et al. Early cardiac changes in a rat model of prediabetes: brain natriuretic peptide overexpression seems to be the best marker. Cardiovasc Diabetol 2013;12:44. https://doi.org/10.1186/1475-2840-12-44
  69. Landsberg L, Molitch M. Diabetes and hypertension: pathogenesis, prevention and treatment. Clin Exp Hypertens 2004;26:621-628. https://doi.org/10.1081/CEH-200031945
  70. Mathis DR, Liu SS, Rodrigues BB, McNeill JH. Effect of hypertension on the development of diabetic cardiomyopathy. Can J Physiol Pharmacol 2000;78:791-798. https://doi.org/10.1139/y00-058
  71. Aijaz B, Ammar KA, Lopez-Jimenez F, Redfield MM, Jacobsen SJ, Rodeheffer RJ. Abnormal cardiac structure and function in the metabolic syndrome: a population-based study. Mayo Clin Proc 2008;83:1350-1357. https://doi.org/10.4065/83.12.1350
  72. Chavali V, Tyagi SC, Mishra PK. Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes 2013;6:151-160.
  73. Ernande L, Derumeaux G. Diabetic cardiomyopathy: myth or reality? Arch Cardiovasc Dis 2012;105:218-225. https://doi.org/10.1016/j.acvd.2011.11.007
  74. Battiprolu PK, Gillette TG, Wang ZV, Lavandero S, Hill JA. Diabetic cardiomyopathy: mechanisms and therapeutic targets. Drug Discov Today Dis Mech 2010;7:e135-e143. https://doi.org/10.1016/j.ddmec.2010.08.001
  75. Khouri SJ, Maly GT, Suh DD, Walsh TE. A practical approach to the echocardiographic evaluation of diastolic function. J Am Soc Echocardiogr 2004;17:290-297. https://doi.org/10.1016/j.echo.2003.08.012
  76. Yu CM, Sanderson JE, Marwick TH, Oh JK. Tissue Doppler imaging a new prognosticator for cardiovascular diseases. J Am Coll Cardiol 2007;49:1903-1914. https://doi.org/10.1016/j.jacc.2007.01.078
  77. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 2013;18:149-166. https://doi.org/10.1007/s10741-012-9313-3
  78. Gottlieb I, Macedo R, Bluemke DA, Lima JA. Magnetic resonance imaging in the evaluation of non-ischemic cardiomyopathies: current applications and future perspectives. Heart Fail Rev 2006;11:313-323. https://doi.org/10.1007/s10741-006-0232-z
  79. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007;28:2539-2550. https://doi.org/10.1093/eurheartj/ehm037
  80. Dinh W, Bansemir L, Futh R, et al. Increased levels of laminin and collagen type VI may reflect early remodelling in patients with acute myocardial infarction. Acta Cardiol 2009;64:329-334. https://doi.org/10.2143/AC.64.3.2038017
  81. D'Souza A, Howarth FC, Yanni J, et al. Left ventricle structural remodelling in the prediabetic Goto-Kakizaki rat. Exp Physiol 2011;96:875-888. https://doi.org/10.1113/expphysiol.2011.058271
  82. Quilliot D, Alla F, Bohme P, et al. Myocardial collagen turnover in normotensive obese patients: relation to insulin resistance. Int J Obes (Lond) 2005;29:1321-1328. https://doi.org/10.1038/sj.ijo.0803022
  83. Stolen TO, Hoydal MA, Kemi OJ, et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 2009;105:527-536. https://doi.org/10.1161/CIRCRESAHA.109.199810
  84. Epp RA, Susser SE, Morissette MP, Kehler DS, Jassal DS, Duhamel TA. Exercise training prevents the development of cardiac dysfunction in the low-dose streptozotocin diabetic rats fed a high-fat diet. Can J Physiol Pharmacol 2013;91:80-89. https://doi.org/10.1139/cjpp-2012-0294
  85. Epshteyn V, Morrison K, Krishnaswamy P, et al. Utility of B-type natriuretic peptide (BNP) as a screen for left ventricular dysfunction in patients with diabetes. Diabetes Care 2003;26:2081-2087. https://doi.org/10.2337/diacare.26.7.2081
  86. Russell NE, Higgins MF, Amaruso M, Foley M, McAuliffe FM. Troponin T and pro-B-type natriuretic peptide in fetuses of type 1 diabetic mothers. Diabetes Care 2009;32:2050-2055. https://doi.org/10.2337/dc09-0552
  87. Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 2010;26:40-49. https://doi.org/10.1002/dmrr.1054
  88. Rijzewijk LJ, Jonker JT, van der Meer RW, et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. J Am Coll Cardiol 2010;56:225-233. https://doi.org/10.1016/j.jacc.2010.02.049
  89. Kodama S, Tanaka S, Heianza Y, et al. Association between physical activity and risk of all-cause mortality and cardiovascular disease in patients with diabetes: a meta-analysis. Diabetes Care 2013;36:471-479. https://doi.org/10.2337/dc12-0783
  90. Sharma AK, Srinivasan BP. Triple verses glimepiride plus metformin therapy on cardiovascular risk biomarkers and diabetic cardiomyopathy in insulin resistance type 2 diabetes mellitus rats. Eur J Pharm Sci 2009;38:433-444. https://doi.org/10.1016/j.ejps.2009.09.004
  91. Aboukhoudir F, Rekik S. Left ventricular systolic function deterioration during dobutamine stress echocardiography as an early manifestation of diabetic cardiomyopathy and reversal by optimized therapeutic approach. Int J Cardiovasc Imaging 2012;28:1329-1339. https://doi.org/10.1007/s10554-011-9938-7
  92. Chung J, Abraszewski P, Yu X, et al. Paradoxical increase in ventricular torsion and systolic torsion rate in type I diabetic patients under tight glycemic control. J Am Coll Cardiol 2006;47:384-390. https://doi.org/10.1016/j.jacc.2005.08.061
  93. Zib I, Jacob AN, Lingvay I, et al. Effect of pioglitazone therapy on myocardial and hepatic steatosis in insulin-treated patients with type 2 diabetes. J Investig Med 2007;55:230-236. https://doi.org/10.2310/6650.2007.00003
  94. Xie Z, Lau K, Eby B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011;60:1770-1778. https://doi.org/10.2337/db10-0351
  95. von Bibra H, St John Sutton M. Impact of diabetes on postinfarction heart failure and left ventricular remodeling. Curr Heart Fail Rep 2011;8:242-251. https://doi.org/10.1007/s11897-011-0070-8
  96. Wong AK, Symon R, AlZadjali MA, et al. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail 2012;14:1303-1310. https://doi.org/10.1093/eurjhf/hfs106
  97. Mamas MA, Deaton C, Rutter MK, et al. Impaired glucose tolerance and insulin resistance in heart failure: underrecognized and undertreated? J Card Fail 2010;16:761-768. https://doi.org/10.1016/j.cardfail.2010.05.027
  98. Sacca L, Napoli R. Insulin resistance in chronic heart failure: a difficult bull to take by the horns. Nutr Metab Cardiovasc Dis 2009;19:303-305. https://doi.org/10.1016/j.numecd.2008.09.002
  99. Caglayan E, Stauber B, Collins AR, et al. Differential roles of cardiomyocyte and macrophage peroxisome proliferator-activated receptor gamma in cardiac fibrosis. Diabetes 2008;57:2470-2479. https://doi.org/10.2337/db07-0924
  100. Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol 2013;304:C508-C518. https://doi.org/10.1152/ajpcell.00248.2012
  101. Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol 2014;64:1388-1400. https://doi.org/10.1016/j.jacc.2014.04.083
  102. Witteles RM, Keu KV, Quon A, Tavana H, Fowler MB. Dipeptidyl peptidase 4 inhibition increases myocardial glucose uptake in nonischemic cardiomyopathy. J Card Fail 2012;18:804-809. https://doi.org/10.1016/j.cardfail.2012.07.009
  103. Bostick B, Habibi J, Ma L, et al. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism 2014;63:1000-1011. https://doi.org/10.1016/j.metabol.2014.04.002
  104. Adeghate E, Kalasz H. Amylin analogues in the treatment of diabetes mellitus: medicinal chemistry and structural basis of its function. Open Med Chem J 2011;5:78-81. https://doi.org/10.2174/1874104501105010078
  105. Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 2015;12:90-100. https://doi.org/10.1177/1479164114559852
  106. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117-2128. https://doi.org/10.1056/NEJMoa1504720
  107. Thomas CM, Yong QC, Seqqat R, et al. Direct renin inhibition prevents cardiac dysfunction in a diabetic mouse model: comparison with an angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor. Clin Sci (Lond) 2013;124:529-541. https://doi.org/10.1042/CS20120448
  108. Machackova J, Liu X, Lukas A, Dhalla NS. Renin-angiotensin blockade attenuates cardiac myofibrillar remodelling in chronic diabetes. Mol Cell Biochem 2004;261:271-278. https://doi.org/10.1023/B:MCBI.0000028765.89855.73
  109. Symeonides P, Koulouris S, Vratsista E, et al. Both ramipril and telmisartan reverse indices of early diabetic cardiomyopathy: a comparative study. Eur J Echocardiogr 2007;8:480-486. https://doi.org/10.1016/j.euje.2006.09.005
  110. Sharma V, McNeill JH. Parallel effects of $\beta$-adrenoceptor blockade on cardiac function and fatty acid oxidation in the diabetic heart: confronting the maze. World J Cardiol 2011;3:281-302. https://doi.org/10.4330/wjc.v3.i9.281
  111. Mohamad HE, Askar ME, Hafez MM. Management of cardiac fibrosis in diabetic rats: the role of peroxisome proliferator activated receptor gamma (PPAR-gamma) and calcium channel blockers (CCBs). Diabetol Metab Syndr 2011;3:4. https://doi.org/10.1186/1758-5996-3-4
  112. Giannetta E, Isidori AM, Galea N, et al. Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 2012;125:2323-2333. https://doi.org/10.1161/CIRCULATIONAHA.111.063412
  113. Chen YH, Feng B, Chen ZW. Statins for primary prevention of cardiovascular and cerebrovascular events in diabetic patients without established cardiovascular diseases: a meta-analysis. Exp Clin Endocrinol Diabetes 2012;120:116-120. https://doi.org/10.1055/s-0031-1297968
  114. Cholesterol Treatment Trialists' (CTT) Collaborators, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008;371:117-125. https://doi.org/10.1016/S0140-6736(08)60104-X
  115. Van Linthout S, Riad A, Dhayat N, et al. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 2007;50:1977-1986. https://doi.org/10.1007/s00125-007-0719-8
  116. Dai QM, Lu J, Liu NF. Fluvastatin attenuates myocardial interstitial fibrosis and cardiac dysfunction in diabetic rats by inhibiting over-expression of connective tissue growth factor. Chin Med J (Engl) 2011;124:89-94.
  117. Nickel A, Loffler J, Maack C. Myocardial energetics in heart failure. Basic Res Cardiol 2013;108:358. https://doi.org/10.1007/s00395-013-0358-9
  118. Gao D, Ning N, Niu X, Hao G, Meng Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 2011;97:278-286. https://doi.org/10.1136/hrt.2010.208751
  119. Zhao P, Zhang J, Yin XG, et al. The effect of trimetazidine on cardiac function in diabetic patients with idiopathic dilated cardiomyopathy. Life Sci 2013;92:633-638. https://doi.org/10.1016/j.lfs.2012.03.015
  120. Li YJ, Wang PH, Chen C, Zou MH, Wang DW. Improvement of mechanical heart function by trimetazidine in db/db mice. Acta Pharmacol Sin 2010;31:560-569. https://doi.org/10.1038/aps.2010.31
  121. Maier LS, Layug B, Karwatowska-Prokopczuk E, et al. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail 2013;1:115-122. https://doi.org/10.1016/j.jchf.2012.12.002
  122. Senanayake EL, Howell NJ, Ranasinghe AM, et al. Multicentre double-blind randomized controlled trial of perhexiline as a metabolic modulator to augment myocardial protection in patients with left ventricular hypertrophy undergoing cardiac surgery. Eur J Cardiothorac Surg 2015;48:354-362. https://doi.org/10.1093/ejcts/ezu452
  123. Li CJ, Lv L, Li H, Yu DM. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 2012;11:73. https://doi.org/10.1186/1475-2840-11-73
  124. Delucchi F, Berni R, Frati C, et al. Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS One 2012;7:e39836. https://doi.org/10.1371/journal.pone.0039836
  125. Wang G, Li W, Lu X, Bao P, Zhao X. Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complications 2012;26:259-265. https://doi.org/10.1016/j.jdiacomp.2012.04.007
  126. Wang G, Li W, Lu X, Zhao X. Riboflavin alleviates cardiac failure in type I diabetic cardiomyopathy. Heart Int 2011;6:e21.
  127. Xu X, Xiao H, Zhao J, Zhao T. Cardioprotective effect of sodium ferulate in diabetic rats. Int J Med Sci 2012;9:291-300. https://doi.org/10.7150/ijms.4298
  128. Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2010;298:H833-H843. https://doi.org/10.1152/ajpheart.00418.2009
  129. Rabassa M, Zamora-Ros R, Urpi-Sarda M, Andres-Lacueva C. Resveratrol metabolite profiling in clinical nutrition research: from diet to uncovering disease risk biomarkers: epidemiological evidence. Ann N Y Acad Sci 2015;1348:107-115. https://doi.org/10.1111/nyas.12851
  130. Xu YJ, Tappia PS, Neki NS, Dhalla NS. Prevention of diabetes-induced cardiovascular complications upon treatment with antioxidants. Heart Fail Rev 2014;19:113-121. https://doi.org/10.1007/s10741-013-9379-6
  131. Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 2014;171:2029-2050. https://doi.org/10.1111/bph.12461
  132. Huynh K, Kiriazis H, Du XJ, et al. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 2012;55:1544-1553. https://doi.org/10.1007/s00125-012-2495-3
  133. Mortensen SA, Rosenfeldt F, Kumar A, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail 2014;2:641-649. https://doi.org/10.1016/j.jchf.2014.06.008
  134. Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014;142:375-415. https://doi.org/10.1016/j.pharmthera.2014.01.003
  135. Meloni M, Descamps B, Caporali A, et al. Nerve growth factor gene therapy using adeno-associated viral vectors prevents cardiomyopathy in type 1 diabetic mice. Diabetes 2012;61:229-240. https://doi.org/10.2337/db11-0763
  136. Katare R, Caporali A, Zentilin L, et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res 2011;108:1238-1251. https://doi.org/10.1161/CIRCRESAHA.110.239111
  137. Greco S, Fasanaro P, Castelvecchio S, et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 2012;61:1633-1641. https://doi.org/10.2337/db11-0952
  138. Chen H, Untiveros GM, McKee LA, et al. Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One 2012;7:e41574. https://doi.org/10.1371/journal.pone.0041574
  139. Cheng Y, Guo S, Liu G, et al. Transplantation of bone marrow-derived endothelial progenitor cells attenuates myocardial interstitial fibrosis and cardiac dysfunction in streptozotocin-induced diabetic rats. Int J Mol Med 2012;30:870-876. https://doi.org/10.3892/ijmm.2012.1083

Cited by

  1. Hyperglycemia-induced cardiac contractile dysfunction in the diabetic heart vol.23, pp.1, 2017, https://doi.org/10.1007/s10741-017-9663-y
  2. The Chinese Herb Yi-Qi-Huo-Xue Protects Cardiomyocyte Function in Diabetic Cardiomyopathy vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/7316840
  3. Diabetic Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control vol.9, pp.None, 2018, https://doi.org/10.3389/fphys.2018.01514
  4. Past and Current Status of Adult Type 2 Diabetes Mellitus Management in Korea: A National Health Insurance Service Database Analysis vol.42, pp.2, 2018, https://doi.org/10.4093/dmj.2018.42.2.93
  5. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment vol.9, pp.1, 2017, https://doi.org/10.4239/wjd.v9.i1.1
  6. Long noncoding RNAs: A new player in the prevention and treatment of diabetic cardiomyopathy? vol.34, pp.8, 2017, https://doi.org/10.1002/dmrr.3056
  7. Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy vol.18, pp.None, 2017, https://doi.org/10.1186/s12872-018-0939-5
  8. Diabetic Cardiomyopathy: Five Major Questions with Simple Answers vol.13, pp.1, 2019, https://doi.org/10.15420/usc.2018.18.2
  9. Heart Failure: Complications of Type 2 Diabetes vol.20, pp.1, 2017, https://doi.org/10.4093/jkd.2019.20.1.1
  10. Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats vol.234, pp.2, 2017, https://doi.org/10.1002/jcp.27038
  11. Effect of Exercise Intervention on Cardiac Function in Type 2 Diabetes Mellitus: A Systematic Review vol.49, pp.2, 2019, https://doi.org/10.1007/s40279-018-1003-4
  12. Molecular Mechanisms Responsible for Diastolic Dysfunction in Diabetes Mellitus Patients vol.20, pp.5, 2017, https://doi.org/10.3390/ijms20051197
  13. Cardiac metabolic modulation upon low‐carbohydrate low‐protein ketogenic diet in diabetic rats studied in vivo using hyperpolarized 13C pyruvate, butyrate and acetoacetate probe vol.21, pp.4, 2019, https://doi.org/10.1111/dom.13608
  14. Phloretin protects against cardiac damage and remodeling via restoring SIRT1 and anti-inflammatory effects in the streptozotocin-induced diabetic mouse model vol.11, pp.9, 2017, https://doi.org/10.18632/aging.101954
  15. Left ventricular diastolic dysfunction in diabetes mellitus and the therapeutic role of exercise training vol.10, pp.2, 2017, https://doi.org/10.12680/balneo.2019.254
  16. Chemical Structures and Pharmacological Profiles of Ginseng Saponins vol.24, pp.13, 2017, https://doi.org/10.3390/molecules24132443
  17. Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date vol.10, pp.10, 2019, https://doi.org/10.4239/wjd.v10.i10.490
  18. Role of CCR2 in the Development of Streptozotocin-Treated Diabetic Cardiomyopathy vol.68, pp.11, 2019, https://doi.org/10.2337/db18-1231
  19. Cardiovascular remodeling in patients with diabetic сardiomyopathy vol.2019, pp.11, 2017, https://doi.org/10.15829/1560-4071-2019-11-42-47
  20. Relationship between hemoglobin A1c and serum troponin in patients with diabetes and cardiovascular events vol.18, pp.2, 2017, https://doi.org/10.1007/s40200-019-00460-9
  21. Hydrogen Sulfide Attenuates High Glucose-induced Myocardial Injury in Rat Cardiomyocytes by Suppressing Wnt/beta-catenin Pathway vol.39, pp.6, 2017, https://doi.org/10.1007/s11596-019-2120-5
  22. Hydrogen Sulfide Protects Against High Glucose-Induced Human Umbilical Vein Endothelial Cell Injury Through Activating PI3K/Akt/eNOS Pathway vol.14, pp.None, 2020, https://doi.org/10.2147/dddt.s242521
  23. Guidelines on multidisciplinary approaches for the prevention and management of diabetic foot disease (2020 edition) vol.8, pp.None, 2017, https://doi.org/10.1093/burnst/tkaa017
  24. Echocardiographic Diagnosis of Diabetic Cardiomyopathy vol.5, pp.1, 2017, https://doi.org/10.18525/cu.2020.5.1.17
  25. ER membranes associated with mitochondria: Possible therapeutic targets in heart-associated diseases vol.156, pp.None, 2017, https://doi.org/10.1016/j.phrs.2020.104758
  26. Rg1 protects H9C2 cells from high glucose‐/palmitate‐induced injury via activation of AKT/GSK‐3β/Nrf2 pathway vol.24, pp.14, 2020, https://doi.org/10.1111/jcmm.15486
  27. Fluid overload is a determinant for cardiac structural and functional impairments in type 2 diabetes mellitus and chronic kidney disease stage 5 not undergoing dialysis vol.15, pp.7, 2017, https://doi.org/10.1371/journal.pone.0235640
  28. Impact of gestational diabetes mellitus on maternal cardiac adaptation to pregnancy vol.56, pp.2, 2017, https://doi.org/10.1002/uog.21941
  29. Establishment of a Risk Prediction Model for Non-alcoholic Fatty Liver Disease in Type 2 Diabetes vol.11, pp.9, 2017, https://doi.org/10.1007/s13300-020-00893-z
  30. Diabetic Cardiomyopathy as a Clinical Entity: Is It a Myth? vol.12, pp.10, 2017, https://doi.org/10.7759/cureus.11100
  31. Inhibition of microRNA‐150‐5p alleviates cardiac inflammation and fibrosis via targeting Smad7 in high glucose‐treated cardiac fibroblasts vol.235, pp.11, 2017, https://doi.org/10.1002/jcp.29386
  32. GAS5 regulates diabetic cardiomyopathy via miR-221-3p/p27 axis-associated autophagy vol.23, pp.2, 2017, https://doi.org/10.3892/mmr.2020.11774
  33. Identification of potential biomarkers for predicting the early onset of diabetic cardiomyopathy in a mouse model vol.10, pp.None, 2017, https://doi.org/10.1038/s41598-020-69254-x
  34. Incidence of idiopathic cardiomyopathy in patients with type 2 diabetes in Taiwan: age, sex, and urbanization status-stratified analysis vol.19, pp.1, 2020, https://doi.org/10.1186/s12933-020-01144-y
  35. PDE5 Inhibitors in Type 2 Diabetes Cardiovascular Complications vol.1, pp.2, 2017, https://doi.org/10.3390/endocrines1020009
  36. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review vol.265, pp.None, 2017, https://doi.org/10.1016/j.jep.2020.113328
  37. Mechanism of Ferroptosis and Its Role in Type 2 Diabetes Mellitus vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/9999612
  38. Potential Therapeutic Effect of Citronellal on Diabetic Cardiomyopathy in Experimental Rats vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/9987531
  39. Assessment of real-time three-dimensional echocardiography as a tool for evaluating left atrial volume and function in patients with type 2 diabetes mellitus vol.13, pp.1, 2017, https://doi.org/10.18632/aging.202218
  40. miR‐34a attenuates myocardial fibrosis in diabetic cardiomyopathy mice via targeting Pin‐1 vol.45, pp.3, 2017, https://doi.org/10.1002/cbin.11512
  41. Application of Animal Models in Diabetic Cardiomyopathy vol.45, pp.2, 2021, https://doi.org/10.4093/dmj.2020.0285
  42. Diabetic heart disease: A clinical update vol.12, pp.4, 2021, https://doi.org/10.4239/wjd.v12.i4.383
  43. Heart Failure and Diabetes Mellitus: Biomarkers in Risk Stratification and Prognostication vol.11, pp.10, 2017, https://doi.org/10.3390/app11104397
  44. Gold Nanoparticles Ameliorate Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Rats vol.1231, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2021.130009
  45. Role of some serum biomarkers in the early detection of diabetic cardiomyopathy vol.7, pp.5, 2017, https://doi.org/10.2144/fsoa-2020-0184
  46. The role of mitochondria in metabolic disease: a special emphasis on heart dysfunction vol.599, pp.14, 2017, https://doi.org/10.1113/jp279376
  47. Multitarget mechanism of Yiqi Jiedu Huayu decoction on diabetic cardiomyopathy based on network pharmacology vol.47, pp.None, 2017, https://doi.org/10.1016/j.eujim.2021.101388
  48. Sinapic acid ameliorates cardiac dysfunction and cardiomyopathy by modulating NF-κB and Nrf2/HO-1 signaling pathways in streptozocin induced diabetic rats vol.145, pp.None, 2017, https://doi.org/10.1016/j.biopha.2021.112412