Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Estey E, Dohner H. Acute myeloid leukaemia. Lancet 2006;368:1894-1907. https://doi.org/10.1016/S0140-6736(06)69780-8
- Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010;363:2424-2433. https://doi.org/10.1056/NEJMoa1005143
- Ding L, Ley TJ, Larson DE, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012;481:506-510. https://doi.org/10.1038/nature10738
- Nervi B, Ramirez P, Rettig MP, et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009;113:6206-6214. https://doi.org/10.1182/blood-2008-06-162123
- Zeng Z, Shi YX, Samudio IJ, et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009;113:6215-6224. https://doi.org/10.1182/blood-2008-05-158311
- Peled A, Tavor S. Role of CXCR4 in the pathogenesis of acute myeloid leukemia. Theranostics 2013;3:34-39. https://doi.org/10.7150/thno.5150
- Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006;25:977-988. https://doi.org/10.1016/j.immuni.2006.10.016
- Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 2010;16:2927-2931. https://doi.org/10.1158/1078-0432.CCR-09-2329
- Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK. CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 2011;17:2074-2080. https://doi.org/10.1158/1078-0432.CCR-10-2636
- Greenbaum A, Hsu YM, Day RB, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013;495:227-230. https://doi.org/10.1038/nature11926
- Zhang Y, Patel S, Abdelouahab H, et al. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death Dis 2012;3:e396. https://doi.org/10.1038/cddis.2012.137
- Chen Y, Jacamo R, Konopleva M, Garzon R, Croce C, Andreeff M. CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest 2013;123:2395-2407. https://doi.org/10.1172/JCI66553
- Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 1998;91:4523-4530.
- Voermans C, van Heese WP, de Jong I, Gerritsen WR, van Der Schoot CE. Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia 2002;16:650-657. https://doi.org/10.1038/sj.leu.2402431
- Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 2004;104:550-557. https://doi.org/10.1182/blood-2004-02-0566
- Konoplev S, Rassidakis GZ, Estey E, et al. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer 2007;109:1152-1156. https://doi.org/10.1002/cncr.22510
- Spoo AC, Lubbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood 2007;109:786-791. https://doi.org/10.1182/blood-2006-05-024844
- Dommange F, Cartron G, Espanel C, et al. CXCL12 polymorphism and malignant cell dissemination/tissue infiltration in acute myeloid leukemia. FASEB J 2006;20:1913-1915. https://doi.org/10.1096/fj.05-5667fje
- Fiegl M, Samudio I, Clise-Dwyer K, Burks JK, Mnjoyan Z, Andreeff M. CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood 2009;113:1504-1512.
- Sison EA, McIntyre E, Magoon D, Brown P. Dynamic chemotherapy-induced upregulation of CXCR4 expression: a mechanism of therapeutic resistance in pediatric AML. Mol Cancer Res 2013;11:1004-1016. https://doi.org/10.1158/1541-7786.MCR-13-0114
- Tavor S, Petit I, Porozov S, et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res 2004;64:2817-2824. https://doi.org/10.1158/0008-5472.CAN-03-3693
- Liesveld JL, Bechelli J, Rosell K, et al. Effects of AMD3100 on transmigration and survival of acute myelogenous leukemia cells. Leuk Res 2007;31:1553-1563. https://doi.org/10.1016/j.leukres.2007.02.017
- Tavor S, Eisenbach M, Jacob-Hirsch J, et al. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia 2008;22:2151-5158. https://doi.org/10.1038/leu.2008.238
- Oishi S, Fujii N. Peptide and peptidomimetic ligands for CXC chemokine receptor 4 (CXCR4). Org Biomol Chem 2012;10:5720-5731. https://doi.org/10.1039/c2ob25107h
- Beider K, Begin M, Abraham M, et al. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth. Exp Hematol 2011;39:282-292. https://doi.org/10.1016/j.exphem.2010.11.010
- Cho BS, Zeng Z, Mu H, et al. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood 2015;126:222-232. https://doi.org/10.1182/blood-2015-02-628677
- Kuhne MR, Mulvey T, Belanger B, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res 2013;19:357-366. https://doi.org/10.1158/1078-0432.CCR-12-2333
- Peng SB, Zhang X, Paul D, et al. Inhibition of CXCR4 by LY2624587, a fully humanized anti-CXCR4 antibody induces apoptosis of hematologic malignancies. PLoS One 2016;11:e0150585. https://doi.org/10.1371/journal.pone.0150585
- Pernasetti F, Liu SH, Hallin M, et al. A novel CXCR4 antagonist IgG1 antibody (PF-06747143) for the treatment of hematological malignancies. Blood 2014;124:2311.
- Zhang Y, Saavedra E, Tang R, et al. Targeting acute myeloid leukemia with a new CXCR4 antagonist IgG1 antibody (PF-06747143)in NOD/SCID mice. Blood 2015;126:1362.
- Hsieh YT, Jiang E, Pham J, et al. VLA4 blockade in acute myeloid leukemia. Blood 2013;122:3944.
- Layani-Bazar A, Skornick I, Berrebi A, et al. Redox modulation of adjacent thiols in VLA-4 by AS101 converts myeloid leukemia cells from a drug-resistant to drug-sensitive state. Cancer Res 2014;74:3092-3103. https://doi.org/10.1158/0008-5472.CAN-13-2159
- Chien S, Haq SU, Pawlus M, et al. Adhesion of acute myeloid leukemia blasts to E-selectin in the vascular niche enhances their survival by mechanisms such as Wnt activation. Blood 2013;122:61. https://doi.org/10.1182/blood-2012-12-473389
- Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006;12:1167-1174. https://doi.org/10.1038/nm1483
- Jacamo R, Chen Y, Wang Z, et al. Reciprocal leukemia-stroma VCAM-1/VLA-4-dependent activation of NF-kappaB mediates chemoresistance. Blood 2014;123:2691-2702. https://doi.org/10.1182/blood-2013-06-511527
- Klein RS, Rubin JB. Immune and nervous system CXCL12 and CXCR4: parallel roles in patterning and plasticity. Trends Immunol 2004;25:306-314. https://doi.org/10.1016/j.it.2004.04.002
- Han AR, Lee JY, Kim HJ, Min WS, Park G, Kim SH. A CXCR4 antagonist leads to tumor suppression by activation of immune cells in a leukemia-induced microenvironment. Oncol Rep 2015;34:2880-2888. https://doi.org/10.3892/or.2015.4297
- Hoellenriegel J, Zboralski D, Maasch C, et al. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood 2014;123:1032-1039. https://doi.org/10.1182/blood-2013-03-493924
- Vater A, Sahlmann J, Kroger N, et al. Hematopoietic stem and progenitor cell mobilization in mice and humans by a first-in-class mirror-image oligonucleotide inhibitor of CXCL12. Clin Pharmacol Ther 2013;94:150-157. https://doi.org/10.1038/clpt.2013.58
- Uy GL, Rettig MP, Motabi IH, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 2012;119:3917-3924. https://doi.org/10.1182/blood-2011-10-383406
- Greenberg PL, Lee SJ, Advani R, et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 2004;22:1078-1086. https://doi.org/10.1200/JCO.2004.07.048
- Uy GL, Avigan D, Cortes JE, et al. Safety and tolerability of plerixafor in combination with cytarabine and daunorubicin in patients with newly diagnosed acute myeloid leukemia: preliminary results from a phase I study. Blood 2011;118:82. https://doi.org/10.1182/blood-2011-05-352708
- Roboz GJ, Scandura JM, Ritchie E, et al. Combining decitabine with plerixafor yields a high response rate in newly diagnosed older patients with AML. Blood 2013;122:621. https://doi.org/10.1182/blood-2013-06-508507
- Andreeff M, Zeng Z, Kelly M, et al. Mobilization and elimination of FLT3-ITD+ acute myelogenous leukemia (AML) stem/progenitor cells by plerixafor, G-CSF, and sorafenib: phase I trial results in relapsed/refractory AML patients. J Clin Oncol 2014;32(15 Suppl):7033.
- Borthakur G, Ofran Y, Nagler A, et al. The peptidic CXCR4 antagonist, BL-8040, significantly reduces bone marrow immature leukemia progenitors by inducing differentiation, apoptosis and mobilization: results of the dose escalation clinical trial in acute myeloid leukemia. Blood 2015;126:2546.
- Becker PS, Foran JM, Altman JK, et al. Targeting the CXCR4 pathway: safety, tolerability and clinical activity of ulocuplumab (BMS-936564), an anti-CXCR4 antibody, in relapsed/refractory acute myeloid leukemia. Blood 2014;124:386.
- Rashidi A, DiPersio JF. Targeting the leukemia-stroma interaction in acute myeloid leukemia: rationale and latest evidence. Ther Adv Hematol 2016;7:40-51. https://doi.org/10.1177/2040620715619307
Cited by
- The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: a possible link to epigenetic regulation vol.32, pp.4, 2017, https://doi.org/10.3904/kjim.2016.302
- Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu vol.9, pp.None, 2017, https://doi.org/10.3389/fimmu.2018.01823
- Adhesion Deregulation in Acute Myeloid Leukaemia vol.8, pp.1, 2019, https://doi.org/10.3390/cells8010066
- Defining the in vivo characteristics of acute myeloid leukemia cells behavior by intravital imaging vol.97, pp.2, 2017, https://doi.org/10.1111/imcb.12216
- 3D models of the bone marrow in health and disease: yesterday, today, and tomorrow vol.9, pp.1, 2017, https://doi.org/10.1557/mrc.2018.203
- Alteration of cellular and immune‐related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes vol.234, pp.4, 2017, https://doi.org/10.1002/jcp.27142
- Pharmacological modulation of CXCR4 cooperates with BET bromodomain inhibition in diffuse large B-cell lymphoma vol.104, pp.4, 2017, https://doi.org/10.3324/haematol.2017.180505
- High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype vol.8, pp.7, 2019, https://doi.org/10.3390/jcm8070970
- The FLT3-ITD mutation and the expression of its downstream signaling intermediates STAT5 and Pim-1 are positively correlated with CXCR4 expression in patients with acute myeloid leukemia vol.9, pp.1, 2017, https://doi.org/10.1038/s41598-019-48687-z
- The CXCR4 Antagonist, AMD3100, Reverses Mesenchymal Stem Cell-Mediated Drug Resistance in Relapsed/Refractory Acute Lymphoblastic Leukemia vol.13, pp.None, 2020, https://doi.org/10.2147/ott.s249425
- Targeting CXCR4 in AML and ALL vol.10, pp.None, 2017, https://doi.org/10.3389/fonc.2020.01672
- Overexpressed microRNA‐103a‐3p inhibits acute lower‐extremity deep venous thrombosis via inhibition of CXCL12 vol.72, pp.3, 2017, https://doi.org/10.1002/iub.2168
- DNA methylation disruption reshapes the hematopoietic differentiation landscape vol.52, pp.4, 2017, https://doi.org/10.1038/s41588-020-0595-4
- Bone marrow niches in haematological malignancies vol.20, pp.5, 2017, https://doi.org/10.1038/s41568-020-0245-2
- Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia vol.189, pp.5, 2017, https://doi.org/10.1111/bjh.16456
- Extracellular Adenine Nucleotides and Adenosine Modulate the Growth and Survival of THP-1 Leukemia Cells vol.21, pp.12, 2017, https://doi.org/10.3390/ijms21124425
- Has Drug Repurposing Fulfilled Its Promise in Acute Myeloid Leukaemia? vol.9, pp.6, 2020, https://doi.org/10.3390/jcm9061892
- Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders? vol.34, pp.9, 2020, https://doi.org/10.1038/s41375-020-0886-x
- The Role of Bone Stem Cell Niches in Bone Metastasis vol.10, pp.21, 2017, https://doi.org/10.3390/app10217713
- An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination vol.13, pp.1, 2017, https://doi.org/10.1186/s13045-020-00863-9
- Chemokine receptor CXCR4: An important player affecting the molecular-targeted drugs commonly used in hematological malignancies vol.13, pp.12, 2017, https://doi.org/10.1080/17474086.2020.1839885
- Importance of Altered Gene Expression of Metalloproteinases 2, 9, and 16 in Acute Myeloid Leukemia: Preliminary Study vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6697975
- The Dynamic Interface Between the Bone Marrow Vascular Niche and Hematopoietic Stem Cells in Myeloid Malignancy vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.635189
- The CXCL12 Crossroads in Cancer Stem Cells and Their Niche vol.13, pp.3, 2017, https://doi.org/10.3390/cancers13030469
- At the Bedside: Profiling and treating patients with CXCR4‐expressing cancers vol.109, pp.5, 2021, https://doi.org/10.1002/jlb.5bt1219-714r
- In Silico Methods for the Identification of Diagnostic and Favorable Prognostic Markers in Acute Myeloid Leukemia vol.22, pp.17, 2017, https://doi.org/10.3390/ijms22179601
- Single cell RNA sequencing of AML initiating cells reveals RNA-based evolution during disease progression vol.35, pp.10, 2017, https://doi.org/10.1038/s41375-021-01338-7
- Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities vol.50, pp.None, 2021, https://doi.org/10.1016/j.blre.2021.100850
- A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia vol.10, pp.11, 2021, https://doi.org/10.3390/cells10112833
- Relevance of plasma bone marrow Activin-A and CXCL-12 concentration levels as a biomarker in acute myeloid leukemia vol.32, pp.3, 2017, https://doi.org/10.3233/cbm-203171